
International Journal of Computer Applications (0975 – 8887)

Volume 88 – No.6, February 2014

11

A New Scalable Framework for Emulating Huge

Networks

M. Zahid

Research Laboratory STRS
INPT, Av. Alla Al Fassi –

Madinat AL Irfane
Rabat - Maroc

A. Mezrioui
Research Laboratory STRS

INPT, Av. Alla Al Fassi –
Madinat AL Irfane

Rabat - Maroc

A. Belmekki
Research Laboratory STRS

INPT, Av. Alla Al Fassi –
Madinat AL Irfane

Rabat - Maroc

ABSTRACT

Network emulation and simulation tools are widely used for

preproduction, studies and researches purposes. This success

is due to the quality of result they provide compared to the

real equipments. Another advantage of the network simulators

is that the cost of studies and experiences are exponentially

reduced especially for networks that use expensive hardware

or a big number of nodes. In the work done for fighting

against Distributed Denial of Service (DDoS) based on Botnet

(malicious programs that take the control of many machines

on behalf of the owners in order to attack services or send

spams), a real time test of the trace-back and counter-attack

algorithms is needed. So the emulation tool should be scalable

in order to create thousands of bots with fewer resources.

Unfortunately, the existing emulation/simulation tools suffer

from some limitations like the nodes number that cannot

exceed hundreds, have simulation concept or not scalable.

That’s why it was decided to develope a new network

emulator that implements huge networks. The aim of this

paper is to present this new scalable framework that help to

emulate network equipments and application based on UDP

and TCP protocols with a huge number of nodes. It was

developed basically for emulating DDoS attacks based on

Botnets but it can be used for any other purposes like stress

test for HTTP servers or telephony over IP services etc.

General Terms

Computer science, computer and network emulation,

computer security

Keywords

Simulation; Emulation; Network emulation; Network

security; Botnet; TCP/IP; DDos; BrutForcing; Virtualization;

GNS3; VMWare; VirtualBox; Qemu

1. INTRODUCTION
Distributed Denial of Service (DDoS) based on Botnet is one

of the most dangerous and widely used attacks in the internet

[1] [2]. This kind of attacks needs a hundred thousands of bots

in order to generate a huge number of requests or traffic and

then make the target service unreachable using the techniques

like the Internet Control Message Protocol (ICMP) flood, the

SYN flood, R-U-Dead-Yet (RUDY) attack and slow Read

attack [3].

For studying the Botnet attacks behavior and fight against

them, researchers need huge resources in terms of machines

and network equipments in order to establish the real word

conditions. Those conditions can help when testing algorithms

like detections and trace-back ones [4] [5]. For that, five basic

requirements that emulation/simulation tool should provide

was defined:

 Ability to create thousands of nodes

 Being based on emulation concept.

 Ability to consume fewer resources in terms of CPU

and memory

 Scalability and the ability to add new protocol and

network nodes easily.

 Ability to be distributed on several machines.

Because the existing tools can’t meet these requirements, a

new framework that contains two components was developed:

 Network emulator which is a tool that emulates the

network links and equipments like Ethernet links,

switches and routers.

 Lightweight C++ Virtual Machines where was

developed a network module that provides basically

Ethernet, ARP, IP, ICMP, UDP, TCP and DNS

protocols so they can execute any application based

on those protocols through the Network emulator.

These machines contain open interfaces that allow

adding new protocols (FTP, HTTP, SIP, RTP …)

easily. They can also reach 10000 operating virtual

machines over a real one.

The idea behind this framework is to provide an open test

platform that can be used for any kind of test related to the

computer network or network based software. For that, it was

divided into scalable modules for both network equipments

and protocols. This framework is shared as an Open Source

project under GNU General Public License version 2.0

(GPLv2) in source forge web site.

The rest of this paper is structured as follows. Section II

explains difference between simulation and emulation tools

and introduces the reason behind proposing this framework.

Section III describes the different modules and connectors of

this framework. Section IV then describes the architecture and

explains how to use it by providing some code samples.

Section V presents the test procedures and results. Finally,

section VI show the future works.

2. BACKGROUND AND MOTIVATION
This section explains the existing test methods and the reasons

behind developing such framework.

2.1 The existing test methods
Many researches were done for detecting DDoS or fighting

against them by providing new architectures and algorithms

like probabilistic packet marking algorithm that allows

detecting the attack source [4] and the architecture that detects

the DDoS/Brute forcing attacks for destroying the Botnet

behind [5]. However, researchers have to implement a big

International Journal of Computer Applications (0975 – 8887)

Volume 88 – No.6, February 2014

12

network with a big machines number in order to test their

proposals. So they often use the following techniques:

 Using log files from an Internet Service Provider

(ISP): This technique is based on the use of ISP log

from a detected DDoS traffic. These files are taken

from back office ISP equipments suspected to be

bridge for DDoS attacks.

 Using simulation tools: This technique is based on

implementing both the model of a Botnet and the

proposed algorithm or architecture in the simulation

tool. Many simulation tools provide protocols used

by the Botnet like IRC and peer-to-peer [6].

 Using virtual machines inside a super calculator:

This technique consist of running a big number of

virtual machines (1 million machines according to

Sandia National Laboratories) inside a super

calculator and installing bots inside them [7].

Every techniques of those listed below has an inconvenient:

 The log files used for test may not contain all the

attack data so the efficiency of the proposed

solution cannot be determined correctly.

 The integration of an algorithm seems to be an easy

task in a simulation tool. But when we want to test a

distributed architecture the integration become

complicated especially if the used algorithms are

based on packet content analyses. Furthermore, the

simulation tools can’t provide a very big number of

nodes.

 The use of virtual machines consumes a lot of

resources and money so it’s not accessible for

everybody (US$ 100,000 for creating 1 million

machines according to Sandia National

Laboratories) [7].

2.2 Choosing between simulation and

emulation concepts
The simulation technique is very useful since it can model the

network or protocol behavior by calculating the interaction

between the different network components. These kinds of

tools are called discrete event simulators because they use

mathematical formulas as functions of time. These formulas

help to calculate the nodes or protocols behavior using a given

period.

The emulation technique consists of programming a container

that has the same characteristics as a device or network layer.

This container can then be used to execute the real operating

system or encapsulate a real traffic. By that it emulates device

or network protocol behaves like it was in real world.

The aim behind this framework is to provide a tool that can

interact with real/virtual equipments and applications in real

time. So emulation concept seems to be the most adequate for

this purpose.

3. THE NEWPROPOSED FRAMEWORK
This framework meets the requirements defined previously

and it is divided into two components. The first one emulates

the network equipments and links; the second one provides

the IP protocol stack for emulating a huge number of

machines.

3.1 Network Emulator component
The Network Emulation is designed to be a new tool for

emulating networks that handles a huge traffic. Unlike

Dynamips (GNS3) that can handle only 1000 packets per

second [8], this component can manage a higher packet rate

and provide similar connecting interfaces. It is basically made

for research purpose and especially for studying and testing

models that contains a very big number of nodes such as

DDoS attacks based on Botnet IRC and peer2peer.

The Network emulator component is a distributed test

environment that can be deployed over many machines. It

provides network equipments like routers and switches; it

provides also connectors to the external applications (Virtual

machine, Lightweight C++ Virtual Machine, VPCS) and the

real networks.

3.2 Lightweight C++ Virtual Machine

(LwCVM) component
The Lightweight C++ Virtual Machine is written in C++ that

allows creating thousands of virtual machines in the same

physical one. In these machines, only the TCP/IP stack is

implemented in order to be as light as possible and use limited

resources in terms of Central Processing Unit (CPU) rate and

memory allocation. Those machines can also execute a

network based C++ code.

This component is based on the Open Source project

lightweight IP (LwIP) [9] which is a lightweight and

independent implementation of TCP/IP stack. This project

provides a portable source code written in C programming

language with many features for all the TCP/IP layers. These

features depend on the different layers like checksum (CRC)

calculators and verifiers, packet generators, memory manager,

packet field analyzers and generators etc. This project was

created in order to provide a lightweight TCP/IP stack for

embedded systems with limited memory and CPU frequency.

4. Architecture of the framework
This session explains the architecture of both components:

Network Emulator and LwCVM.

4.1 The Network Emulator architecture
The Network Emulator modeling is based on the Object

concept in order to benefit from the Object Oriented

Programming (POO) advantages which are making the

program structure clear and modular, easy to maintain and

also scalable for adding new features. The following figures

illustrate the architecture of this component.

Fig 1: Network emulator architecture

The Network Emulator provides the following network

equipments (see figure 1):

 Network Emulator Switch (NE Switch): it

represents a network switch that allows connecting

International Journal of Computer Applications (0975 – 8887)

Volume 88 – No.6, February 2014

13

machines to each others. The main role of this

equipment is to redirect the Ethernet packet

according to the destination hardware address.

 Network Emulator Router (NE Router): it represents

a network router that allows connection between

different networks. The role of this equipment is to

redirect packet according to the destination IP

address.

 The Network emulator provides also some external

connectors:

 UDP Host: it allows connecting the Network

emulator to LwCVM, Virtual PC Simulator (VPCS)

[10], Network Emulator running over another

machine and GNS3. This connector is based on

UDP protocol. It uses two UDP ports. The first one

is used for receiving UDP packet, the second one is

used for sending UDP packet to the remote host.

The UDP protocol is used here to encapsulate the

Ethernet packets generated by the LwCVM, VPCS,

Network Emulator or GNS3.

 Virtual Machine Host: it allows connecting the

Network emulator to a virtual machine (VMware,

VirtualBox, Qemu …) through a virtual network

card. So this last can be considered as a part of the

created network and can interact with the other

equipments transparently.

 Virtual Machine Router: it allows connecting the

Network Emulator to a virtual machine based on

Linux Micro Core. We have installed in this

machine all the services we can find in a real

network router like NAT, Firewall, routing

protocols (RIP) etc.

 Real Network Connector: it allows connecting the

Network Emulator to the real network through the

physical machine network card. So the virtual

machines and network equipments that can interact

with the real network transparently.

 The last three connectors are based on PCAP library

that allows access to the real and virtual network

cards.

 The Packet handler module ensures the transfer of

the Ethernet packet between the network equipment

and the external connectors. This handler is based

on a thread safe FIFO queue.

4.2 The LwCVM architecture
The LwCVM component was designed according to TCP/IP

model (see figure 2). So every component represents a TCP/IP

stack layer starting from the Ethernet layer to the TCP and

UDP ones.

Every layer can only communicates with the direct upper one

in order to handle the received packets and the direct lower

one in order to encapsulate the send ones.

Fig 2: LwCVM architecture

All the methods that allow the TCP/UDP socket management

in C standard library like createSocket(), bind(), connect(),

setSocketOption() and closeSocket() are implemented in the

class LwCVM that represents the lightweight virtual machine.

This class provides a virtual method main() that developers

can redefine and implement their socket based program. This

method is a self threading, so it can be executed in a separate

thread only by calling the method start().

This framework can be connected to the Network Emulator

framework through an UDP connection. But if we want to use

a huge number of LwCVM we will need a double number of

UDP Ports. That’s why we introduced a new component

LwCVMSwitch that represents a switch. The role of this

switch is to aggregate many LwCVM in the same UDP port.

By that we can decrease significantly the number of used

UDP ports in the physical machine.

4.3 Adaptation of LwIP source code
In order to use LwIP source code and adapt it, several changes

have been done:

 The use of object-oriented programming language

instead of procedural programming in order to

organize the code according to the different layers.

 The use of pThread API [11] to manage threads.

The TCP/IP stack needs timers in order to correct

packet lost and errors. Furthermore, the new API

provides TCP and UDP sockets which are a thread

blocking methods. Finally, the pThread API is

compatible with both Linux and Windows.

 The adaptation of the link layer to our context. This

adaptation concerns the low level so we changed the

methods that communicate with the network card by

new ones that encapsulate the Ethernet packet in

UDP sockets.

 Every equipment/connector in the Network

emulator has a separate thread that handle the

received packet. That’s why we use a safe threading

FIFO queue in order to exchange packets between

them.

4.4 How to use this framework
As we have seen, this framework is divided into two

components. So the use of this framework can be done in two

steps.

International Journal of Computer Applications (0975 – 8887)

Volume 88 – No.6, February 2014

14

4.4.1 How to use Network Emulator
This example explains how to create a simple network that

contains two machines (Virtual machine and LwCVM one)

using the Network Emulator (see figure 3):

1. Instantiate two connectors: virtual machine and

UDP Host connectors, these connectors will be used

to connect respectively a virtual machine and a

LwCVM to our network.

2. Instantiate a NE Switch

3. Connect the NE Switch to the connectors created

before.

4. Prepare and launch a LwCVM (see section IV.D.2).

5. Prepare and launch a virtual machine using

VirtualBox, VM ware or Qemu

6. Start the NE switch and the connectors.

Figure 3: Network emulation steps

4.4.2 How to use LwCVM
This part presents how to use the LwCVM in order to create a

lightweight virtual machine that sends ping request every

second to another machine. This manipulation has to be done

in two steps:

1. The first step consists of creating a subclass of the

class LwCVM and redefine the method main(). In

this method we can develop the program of the

emulation by using the available socket methods. In

this example we will send a ping request to a virtual

machine with the IP address 192.168.1.11 (see

figure 4).

2. The second step consists of instantiating the

previous subclass, setting its IP address and a

network mask and connecting it to the switch. This

last will ensure the connection with the Network

Emulator through the UPD ports 30100 and 20100

for sending and receiving the encapsulated Ethernet

packets (see figure 5).

Figure 4: Redifinition of the LwCVM behavior

Figure 5: Instantiation of the LwCVM

5. TEST OF THE LWCVM AND

NETWORK EMULATOR
This section describes the test scenarios done using this

framework. The tests are divided into two parts:

 The first part concerns the framework

performances.

 The second one concerns a DDoS attack test based

on ping requests.

5.1 Test environment and constraints
The entire tests were done using a machine with the following

characteristics:

 Linux 32 operating system

 Microprocessor Core 2 Duo 2.1 Ghz

 4 Gb of RAM.

 2 Mb of cash memory

//instanciate the switch class

LwCVMSwitch *lSwitch= new LwCVMSwitch ();

/*initiate the switch to be able to connect Network Emulator

through UDP protocol using the following parameter: local port,

remote port and host*/

lSwitch->init_connection(30100,20100,”localhost”);

// instanciate the lightweight virtual machine

myLwCVM *myVM= new myLwCVM ();

/*initiate the LwCVM with the parameters: IP address, network

mask, gateway IP address, MAC address*/

myVM ->init(“192.168.1.10”,” 255.255.255.0” ,” 192.168.1.1”);

//connect the LwVM to the switch

lSwitch ->connect(myVM);

//start the switch and the LwCVM

lSwitch ->start();

// create a subclass of the class LwCVM

class myLwCVM: public LwCVM

{

public:

// redefine the method main

 int main()

 { while(true)

 {

/*sending a ping request to the host 192.168.1.11every

second*/

 sendPingRequest(” 192.168.1.11”);

 usleep(1000000);

 }

 }

};

International Journal of Computer Applications (0975 – 8887)

Volume 88 – No.6, February 2014

15

Because the default thread stack size is 8 Mbyte. It was not

possible to instantiate more than 200 LwCVM in the same

process (every LwCVM needs two threads. The first one

manages the received packet and the second one executes the

main method). To deal with this limitation, the stack size was

decreased to 256 kbyte using the command “ulimit -s 256” so

it was possible to instantiate up to 3000 LwCVM per process.

5.2 Performance test

5.2.1 Latency test and packet lost ratio

5.2.1.1 Tests description
The aim of this test case is to calculate the network latency

over the Network Emulator. For that, we created two

networks using a router (NERouter) and two switches

(NESwitch). Each network contains the same number of

LwCVM that send 5000 ping requests to the opposite one

with a period of 10 ms.

During the test, the number of LwCVM was increased in each

network and the latency values were saved in a text file. Then

we calculate the average latency for all the machines.

The following figure (6) illustrates the latency test.

NERouter
NESwitch2

NESwitch1

LwCVM 2.1

LwCVM 2.2

LwCVM 2.n

LwCVM 1.1

LwCVM 1.2

LwCVM 1.n

Figure 6: Network Emulator latency test

5.2.1.2 Test result
The following chart (figure 7) illustrates the latency value in

millisecond for the ping test. It is evident that this frameworks

provide a good latency even with 2000 nodes (less than 2.5

ms).

Figure 7: Latency test result

The following chart (figure 8) illustrates the packet lost ratio

for the ping test. It shows that this framework provide a low

packet lost ratio with more than 2000 connected nodes.

Figure 8: Packet lost rate test result

5.2.2 Memory test

5.2.2.1 Test description
The aim of this test case is to calculate the memory consumed

by the LwCVM during the program execution. To reach this

aim, the number of instantiated LwCVM was increased

progressively.

5.2.2.2 Memory test result
The following chart (figure 9) illustrates the memory used by

the LwCVMs and shows that this framework consumes less

than 25 Mb of memory with 1000 machines.

Figure 9: Memory use test result

The results got from the previous tests show that this

framework can emulate a computer park with more than 2000

virtual machines in a real computer with average performance.

5.3 DDoS attack test

5.3.1 Test description
The aim of this test is to prove that this framework can

emulate a DDoS attack using a huge number of bots and not

to saturate the target machine bandwidth. So a mini Botnet

was programmed (contains 2000 bots) in order to receive

commands from a central server and execute them. This

Botnet is holly based on LwCVM for both Server and bots

that are connected to each other through a virtual router

(NERouter). This router is connected to the Host machine

network card using the connector RealNetworkConnector

through a third virtual swith (NESwitch). Finally the target

machine which is a real one was connected to the host

machine using an Ethernet link. By that, all the machines

0

0.5

1

1.5

2

2.5

100 250 500 750 1000 1250 1500 1750 2000

Latency (ms)

0

0.05

0.1

0.15

0.2

100 250 500 750 1000 1250 1500 1750 2000

Packet lost rate (%)

0

5

10

15

20

25

1 10 50 100 200 300 500 1000

Used memory (Mb)

International Journal of Computer Applications (0975 – 8887)

Volume 88 – No.6, February 2014

16

(Bots, Botnet server, target machine and the host machine)

behave like if they are connected through the virtual router

(see figure 9).

The network configuration is as follow:

 The Botnet server has the IP address 192.168.0.10

with the mask 255.255.255.0 and the default

gateway 192.168.0.1

 The bots had a range of IP addresses from 10.1.0.10

to 10.1.7.224 with the mask 255.255.0.0 and the

default gateway 10.1.0.1

 The host machine has the IP address 192.170.0.101

with the mask 255.255.255.0 and the default

gateway 192.170.0.1

 The target machine has the IP address

192.170.0.100 with the mask 255.255.255.0 and the

default gateway 192.170.0.1

The Botnet command was defined as follow:

ping IP_ADDRESS [-t]/[-n X]

Where:

 IP_ADDRESS: is the target host IP address.

 -n: option for sending the ping request X times

 -t: option for sending the ping request infinitely.

The following (figure 9) schema illustrates the test model:

NERouter
NESwitch2NESwitch1

Bot 1 (LwCVM)

Bot 2 (LwCVM)

Bot 2000 (LwCVM)

Botnet

Server (LwCVM)

Targer machine

(Real machine)

NESwitch3

Ethernet link

Host machine

(Real machine)

192.168.0.0/24

10.1.0.10

192.170.0.0/24

192.170.0.100

.1

.1

.1

192.168.0.10

192.170.0.101

10.1.0.0/16

Figure 9: DDoS attack test model

5.3.2 Test result
The following chart (figure 10) generated using Wireshark

illustrates the number of ICMP packets (1500 byte per packet)

received by the target machine. It shows that the average

packet rate is around 25000 packets per second. This rate is 25

times higher than Dynamips (GNS3).

Figure 10: Packet rate test result

The following chart (figure 11) generated also using

Wireshark illustrates connection bit rate received by the target

machine in b/s. As noticed, the average packet rate is around

276 Mb/s.

Figure 11: Bit rate test result

The results got from this test prove the ability of this

framework to emulate a Botnet containing more than 2000

bots using a simple real machine.

During the test we noticed also that if the connector Real

Network Connector is not used, the flow rate can reach in

certain conditions 70000 packets/s which is equivalent a

connection bit rate of 801 Mbps.

6. CONCLUSION AND FUTURE WORK
This paper presents a new scalable and distributed framework

that meets the requirements defined previously by allowing

the emulation of both networks and a huge number of virtual

machines using normal computers. It can also be deployed

over many machines to get a bigger computer park.

This framework was hosted in source forge under two projects

Open source projects:

 Network emulator:

http://sourceforge.net/projects/networkemulator/

 Lightweight C++ Virtual Machine:

http://sourceforge.net/projects/lwcvm/

The reason behind this is to allow researchers and developers

to use it, improve it and add new protocol stacks over the

existing ones (like SIP, HTTP/S, telnet, SSH ….) because it is

highly scalable.

Our future work will consist on developing an easy to use

graphical user interface (GUI) in that allow users to drag and

drop the available network equipments and connector with the

http://sourceforge.net/projects/networkemulator/

International Journal of Computer Applications (0975 – 8887)

Volume 88 – No.6, February 2014

17

possibility of customizing the behavior of the LwCVM and

run them inside this network.

We will also develop IRC, peer2peer and SIP protocols over

this framework in order to make a stress test for IPBX and

also test some Botnet trace back and elimination algorithms.

7. REFERENCES
[1] Chao Li, Wei Jiang and Xin Zou. Botnet: Survey and

Case Study.Innovative Computing, Information and

Control (ICICIC), 2009

[2] Daniel Plohmann and Elmar Gerhards-Padilla.Case

Study of the Miner Botnet. Cyber Conflict (CYCON),

2012

[3] Poongothai, M. Simulation and analysis of DDoS

attacks. Emerging Trends in Science, Engineering and

Technology (INCOSET), 2012

[4] Kihong Park and Heejo Lee. On the Effectiveness of

Probabilistic Packet Marking for IP Traceback under

Denial of Service Attack. INFOCOM, 2001

[5] Zahid M,Belmekki A and Mezrioui A. A new

architecture for detecting DDoS/brute forcing attack and

destroying the botnet behind. Multimedia Computing and

Systems (ICMCS), 2012

[6] Overlay Simulation Framework official web site:

http://www.oversim.org/

[7] Sandia National Laboratory official web site:

https://share.sandia.gov/news/resources/news_releases/sa

ndia-computer-scientists-successfully-boot-one-million-

linux-kernels-as-virtual-machines

[8] Official GNS3 web site:

http://www.gns3.net/documentation/gns3/introduction-

to-gns3/

[9] Lightweigh IP official web site:

http://savannah.nongnu.org/projects/lwip/

[10] Official Virtual PC simulator web site:

http://sourceforge.net/projects/vpcs/

[11] POSIX Threads Programming official web site:

https://computing.llnl.gov/tutorials/pthreads/

IJCATM : www.ijcaonline.org

