
International Journal of Computer Applications (0975 – 8887) 

Volume 88 – No.5, February 2014 

12 

Mobile Agent Framework for Distributed Network 

Performance Management 

Mohamed A. Madkour, Kawther Moria, Fathy E. Eassa, & Kamal M. Jambi 
King AbdulAziz University, Faculty of Computing and Information Technology 

 

ABSTRACT 

The traditional centralized network management approach 

presents severe efficiency and scalability limitations in large 

scale networks. The process of data collection and analysis 

typically involves huge transfers of management data to the 

manager which consumes considerable network bandwidth 

and causes bottlenecks at the manager side. Mobile agent 

technology provides an effective solution to alleviate this 

burden by distributing the management functionality over the 

network elements. A Mobile Agent has the ability to 

autonomously move among network elements to perform the 

required tasks locally. Thus, the code is transferred to the data 

location instead of moving the entire data to the manager’s 

site.  

The present study aims to investigate the effectiveness of 

using mobile agents to overcome the limitations of the 

centralized structure. Focusing on the network performance 

management functional area, a prototype is developed to 

assess the effectiveness of a distributed mobile-agent-based 

network management system. The developed prototype 

installs itself automatically on remote machines and 

periodically checks their software and hardware status. 

Experiments are done to measure the network traffic volume 

when managing a typical network. Practical measurements are 

compared for the traffic generated by both the developed 

prototype and the current centralized network management 

standard (SNMP). This comparison confirms that mobile-

agent-based management employs much less traffic than the 

centralized system. An estimation of the required management 

delays is provided for both sequential- and parallel- 

dispatching of the mobile agents.  

Keywords 
Network Management, Network Management Applications, 

Network Performance Management, Mobile Agents and 

Agent-based Management 

1. INTRODUCTION 
Computer networks are indispensible in all aspects of modern 

civilized life. It is extremely important to have uninterrupted 

and efficient network operation in order to avoid considerable 

business losses [1]. Network management plays a central role 

to achieve this goal. The term Network Management System 

(NMS) refers to the “sum of all procedures and products for 

planning, configuring, controlling, monitoring, managing 

computer networks as well as distributed systems and 

removing errors in all of these” [2]. NMS’s goal is to ensure 

that network users receive the information system technology 

services with the quality of services that they expect. To 

achieve this goal, the International Standard Organization 

(ISO) defined the OSI network management model that 

categorizes five areas of function, sometimes referred to as 

the FCAPS model. These are: Fault Management, 

Configuration Management, Accounting Management, 

Performance Management, and Security Management. In the 

1990s the International Telecommunication Union (ITU) 

further refined the FCAPS as part of the Telecommunications 

Management Network (TMN) recommendation M.3400 on 

Management Functions [3]. All of these management areas 

need to collect different management data from remote 

network elements, using a proper information retrieval 

process.  The present study would focus on the performance 

management area. 

The performance of a given network has a direct effect on the 

applications that run on that network. Poor network 

performance badly affects these applications. In some cases, 

the network may not work at all; in others, it may be slow or 

unusable. Performance management enables the manager to 

determine the efficiency of the current network and to develop 

informed plans for future expansions. In general the 

performance manager should be able to collect data from key 

network components about critical performance measures 

such as the throughput, percentage utilization, packet loss 

rates and response times. By collecting and analyzing 

performance data, the network health can be monitored. 

Trends can indicate capacity or reliability issues before they 

become service affecting. Performance thresholds can be set 

in order to trigger an alarm that varies depending upon the 

severity of the monitored event. 

Different management technologies have been proposed to 

perform the information retrieval process that collects the 

management data. In the early 1990’s two important 

centralized network management technologies emerged. The 

Internet Engineering Task Force (IETF) developed the Simple 

Network Management Protocol (SNMP) [4] which is widely 

deployed nowadays [5]. Another known centralized NMS is 

the Common Management Information Protocol (CMIP) 

developed by the Open Systems Interconnection (OSI) 

Management System [6]. By the end of the 1990’s SNMP is 

mostly employed for network management because of its 

simplicity in implementation and use [7].  

Both of the systems SNMP and CMIP follow the 

Manager/Agent structure that uses polling or traps techniques. 

The management service is done by polling agents to collect 

required management data. Typically an agent resides at a 

Network Element (NE). After collecting the required 

information from all NEs in the managed domain, the 

manager then aggregates and processes the retrieved data to 

take whatever necessary actions. The second centralized 

approach technique is the trap in which an agent that resides 

at some NE sends a trap message to inform the manager about 

any critical situation [7]. 

The rapid growth of networks, the variety of equipments, and 

the demand for heterogeneity results in a high level of 

complexity when using the centralized approach to manage 

very large networks comprising large numbers of NEs. Thus, 

centralized management approach suffers from problems such 

as insufficient scalability where the process of data collection 

and analysis typically involves massive transfers of 

management data. This scenario then causes extensive strain 



International Journal of Computer Applications (0975 – 8887) 

Volume 88 – No.5, February 2014 

13 

on network throughput and processing bottlenecks at the 

manager machine [8]. Moreover, the centralized approach 

may suffer from unsatisfactory reliability and flexibility if the 

management server fails. In such case the entire network 

would halt until the connections with the server are restored 

again. 

The mobile agent (MA) technology, emerged in the mid 

1990’s, provides plausible solutions to overcome the 

limitations of the centralized network management paradigm. 

Such solutions are based on exploiting the MA’s ability to 

autonomously migrate to different NEs and independently 

perform complex management tasks.  A mobile agent can 

suspend its execution according to some factors and resume it 

in another place. Additionally, it has the ability to get the best 

choice of when, where to go, and what to do according to 

changes of the network environment [9]. Therefore, MAs 

offer a powerful management technique represented by the 

efficient use of the network’s bandwidth, and the high degree 

of flexibility and NE re-configurability. It is believed that 

MAs can provide better solutions to network performance by 

saving the need to move large amounts of management data 

[10, 11, 12, and 13]. In this research, we investigate the 

possibility of building a mobile-agent-based system to provide 

performance management functionality in computer networks. 

The present work aims to investigate the possibility of using 

the MA technology to provide network performance 

management functionality in a real distributed network. A 

prototype is developed to conduct practical experiments in 

real network environments to measure and assess the 

performance of a typical real network. It provides a basis for 

comparing the suggested approach with the current 

centralized SNMP approach. The rest of this paper is 

organized as follows. Section 2 discusses the related work, 

and Section 3 provides a detailed design of the proposed MA 

framework. Section 4 provides an overview of the prototype 

implementation based on the proposed MA framework, 

presents the experimental work done, and discusses the 

obtained results. Finally, Section 5 presents the conclusions 

and gives directions for future work. 

2. RELATED WORK 
Network performance management should provide solutions 

to ensure that traffic over the network is effectively managed 

to optimize performance for all users. It consists of 

measuring, modeling, planning, and optimizing networks to 

ensure that they carry traffic with the speed, reliability, and 

capacity that is appropriate for the nature of the running 

applications and the cost constraints of the related 

organizations.  

Many researchers conducted their researches to resolve the 

problem of network management.  Hyojoon Kim et al [14] 

used software defined networking (SDN) paradigm in 

improving network management. They provided better control 

over tasks for performing network diagnosis and 

troubleshooting. The sources performance problems can be 

determined by network operator. 

In [15] Saber Zrelli et al ouline the main challenges that face 

organizations in managing large scale heterogeneous network 

infrastructures. They also proposed extended network 

management framework that is based on service oriented 

architecture. 

In [16], authors proposed a design and implementation of 

Web-Based Management (WBM) network system. The 

system include seven modules, one of them is equipment 

performance management. 

Migration is not a new trend; it has surfaced several times in 

the last three decades. The basic idea is to move some 

computational structure over the network and execute it 

remotely. Internet worms, SQL, viruses, mobile objects, 

postscript, and applets are broadly speaking examples of code 

that can be moved over the network for remote execution. But 

the autonomy of MA migration and its reactivity features is 

really what attracts the attention of many researchers [11].  

To overcome the network management complexity resulting 

from the ever growing networks, the MA technology provided 

a new management scheme. The motive behind the agent 

mobility is that, it addresses many limitations faced by the 

traditional centralized Manager/Agent architecture regarding 

the information retrieval. In particular it allows minimizing 

the bandwidth consumption, supporting network load 

balancing, enhancing scalability and flexibility, increasing 

fault tolerance and solving problems caused by unreliable 

network connections.  

Several researches incline to integrate the MA technology 

with the existing network management approaches to adapt 

with rapidly network changes. Guo et al [17] present a 

distributed plug-and-play network management model using 

MAs to implement an automatic and self-adapting NMS. In 

this model, network components can be automatically located 

and get initial management tasks without any human 

intervention. Chou et al [18] designed a Web-based NMS that 

uses MAs to perform the management tasks. They integrate 

both the web technology, which offers all the NMS services 

from the web browser, with the MAs technology. 

On the other hand, many researches tend to integrate the MA 

technology with the SNMP approach being the most NMS 

used at present. For example, Reuter and Baude [12] 

developed an integrated architecture using the MA technology 

together with the SNMP approach to generate an up-to-date 

network topology. Their developed MA architecture 

implements the discovery process to record the network 

topology and refreshed it when needed. This result would be 

of extreme importance to the network management 

applications. 

Currently, there are intense researches in using the MA 

technology in the five network management functional areas 

[3] mentioned in Section 1. In performance management, 

Guanyu et al [11] propose a MA framework which solves the 

problem of the information retrieval process that is expressed 

in the centralized approach. They gave evidence that the 

network performance can be improved by using MA over a 

large network size. Gavalas [1] identifies ways for the 

effective use of the MA technology in distributed 

management applications, considering large size and dynamic 

networks. His study addresses a set of requirements for 

tailoring the MA platforms to meet the management 

applications, stressing that the MA framework should be 

implemented to satisfy these requirements. He provided a 

comparison, regarding network performance, between the 

centralized management approach and the distributed objects-

based approaches. Foster et al [19] describe a powerful 

decentralized agent control and management strategy in 

performance tuning that prevents system overflow and 

maintains good overall system throughput. 

Several researches tend to evaluate the mobile agent system 

performance itself. Xuhui et al [20] built a simulation 



International Journal of Computer Applications (0975 – 8887) 

Volume 88 – No.5, February 2014 

14 

environment that evaluates the performance of the MA 

systems which run on a LAN or in a single host machine. The 

simulator prototype is developed using the Aglets platform 

tool [21], and they tested it with certain MA-based algorithms 

to ensure its functionality.  

On the theoretical side, a formal model for the MA systems is 

provided by Zhen et al [22]. They describe a new formal 

language for distributed network management based on 

mobile agents. Moreover, a New MA communication protocol 

is offered by Bernich and Mourlin [23] with a flexible scheme 

to exchange data between MAs. 

3. THE PROPOSED MA FRAMEWORK 
This section presents detailed design of a proposed Mobile 

Agent System (MAS) for enhancing the performance of 

retrieving management information and managing the 

performance of computer networks. This approach alleviates 

network performance problems faced by almost all network 

administrators when using the current centralized network 

management standard, namely SNMP. In SNMP the process 

of retrieving management information suffers from latency 

and network bottleneck on the manager’s side. This is because 

the manager is responsible for collecting huge dynamic and 

duplicated information, analyzing it locally, and using it in the 

management applications.  

A prototype is developed according to the proposed MAS 

framework, and practical experiments are conducted to assess 

its performance and compare it with that of the SNMP 

standard. 

3.1 The MAS Architecture 
Figure 1 shows the main components in the developed MAS. 

This system employs several interacting static and mobile 

agents, a global database, and one local database in each host. 

The agents cooperate by exchanging messages to collect data 

and compute several performance measurement variables such 

as the number of dropped packets, the number of errors in the 

packets, the use of the ICMP messages, link and device 

utilization, and etc.  

The following is a brief description of the MAS components: 

1. The MainAgent is a stationary agent that controls 

the entire MAS system. Once it is installed, it creates all 

needed classes at the local manager and dispatches a set of 

mobile InstallationAgents to a list of addresses, belonging to 

the managed hosts and devices, to start the installation 

process. 

2. The InterfaceAgent is a stationary agent that resides 

at the manager machine and works as a system interface to the 

administrator. It accepts input values that the system needs, 

such as addresses of all the connected hosts, and passes them 

to the MainAgent. 

3. The InstallationAgent is a mobile agent that is 

dispatched to all hosts in the managed network to remotely 

install the MAS system at every host.  

4. The CheckAgent is a stationary agent that resides at 

the manager machine and checks the history database for 

hardware and software status. This agent produces periodic 

status reports, for example monthly or weekly. The network’s 

administrator examines these reports to identify any improper 

states in the managed hardware and/or software components. 

5. The GeneratorAgent is a stationary agent that 

generates the MAs and dispatches them to their destinations. 

It gets the required addresses from the MainAgent. 

6. The IntegrityMobileAgent is a mobile agent that 

regularly visits all managed elements in the network to check 

the integrity of the MAS. 

7. The CheckUpAgent is a mobile agent that collects 

updated information from the hosts on the network then 

returns back to the manager to update the database 

accordingly. 

8. The SNMP-Agent: In SNMP the “Management 

Information Bases” (MIBs) describe the structure of the 

management data of a device subsystem using a hierarchical 

namespace containing object identifiers (OID). Each OID 

identifies a variable that can be read or set via SNMP. The 

SNMP-Agent is a stationary agent that reads the required OID 

variables. It then sends the results locally to the 

ObserverAgent. 

9. The ObserverAgent is a stationary agent responsible 

of observing the hardware and software status of all managed 

network elements. Once the OID values are sent from the 

SNMP-Agent, it starts reading and analyzing them. Upon 

detecting any error, the ObserverAgent sends a message to the 

MainAgent containing the error details.  

10. The PerfAgent is a mobile agent dispatched to 

every host to perform the performance measurement 

calculations. 

11. The History Database is a repository of history 

information about each and every piece of software and 

hardware installed in the managed network. The collection of 

history information for each network element starts from the 

time that it’s installation.  

12. The Host Database: Every host has its own Host 

Database that stores the latest updated MIB values as 

retrieved by the ObserverAgent.  

3.2 System Design 
MAS has two main tasks, namely to install itself 

automatically on a host machine and to collect network 

management data from remote network elements (hosts and 

etc.). This data is eventually analyzed at the system manager 

to evaluate the network’s performance. 

3.2.1 Automated System Installation 

MAS system installs its components at all hosts connected to 

the network. Once the system automatically starts up, this 

process is done independently without any human 

intervention. Figure 1 shows the process of creating the MAS 

agents in two hosts. The process starts with loading the 

InterfaceAgent. It creates the MainAgent which creates the 

GeneratorAgent and the History database. All these agents 

are stationary agents that reside at the manager machine. 

The automatic installation process proceeds as follows at 

every host: 

1. The user passes the list of host addresses, as Aglet 

addresses, to the InterfaceAgent. These addresses are then 

compiled as an array of strings and sent to the MainAgent. 

The MainAgent sends the message “Install” to the 

GeneratorAgent. It contains the route scheme (parallel, 

sequential or SiG) and the address list. 



International Journal of Computer Applications (0975 – 8887) 

Volume 88 – No.5, February 2014 

15 

 

2. The GeneratorAgent creates instances of the 

InstallationAgent and dispatches them in parallel one 

instance to each host.  

3. Upon arriving at its target host, each instance of the 

InstallationAgent starts the initialization process. This results 

in creating the host database file and extracting the MAS 

agents and their objects. 

4. Next, it will run the ObserverAgent and the SNMP-

Agent to start the MAS system. Both agents will collaborate 

to collect the entire host information and then pass the 

collected data to the InstallationAgent. 

5. Next the InstallationAgent would return back to the 

manager with the results and then dispose itself.  

A confirmation is needed to check if the installation is done 

correctly. Within a specified timeout period, the manager 

must receive an acknowledgement from every host on the list 

confirming proper installation. If any host fails to respond 

within the timeout, this means that either the 

InstallationAgent was totally lost or the installation process 

failed. Consequently the MainAgent must resend another 

instance of the InstallationAgent. Should that failure persists 

then the administrator should be informed to start human 

intervention. 

3.2.2 History and Host Databases 
The “History” is a global database used in the MAS system to 

store the collected management data from all hosts in the 

system. Typically the manager records the entire OID 

variables that represent host specifications for every host. 

These data are collected periodically and stored in the 

“History” database indexed by the date and time of collection. 

Figure 2 shows the structure of this database. The second 

database type used in the MAS system is the HostDatabase.  

Every host in the system has its unique local HostDatabase 

that stores the most up-to-date information about the host 

hardware and software specifications.  

 

 

It also stores the OID variables used in the status detection 

process. Figure 3 shows the structure of this database. 

3.2.3 Performance Measurements 
The MainAgent instructs the GeneratorAgent to generate the 

PerfAgent and let it visit every host to perform host utilization 

performance measurement calculations. At every visited host, 

the PerfAgent will compute the percentage utilization of the 

network interface over two consecutive time instances, “X” 

and “Y”. The following outlines the PerfAgent actions done at 

every host. 

1. Send “HR-OID” message to the SNMP-Agent to get 

the values of the required OID variables, as shown 

in Table-1, for the instance “X”. 

2. After some delay, say 50 seconds, repeat step 1 

above to get the values of the same OID variables 

for the instance “Y”. 

3. After performing the required calculations, as 

shown in Table-2 [24], the PerfAgent would 

dispatch itself to the manager as shown in Figure 4. 

4. Once returned back to the manager, it will store the 

obtained results in the “History” database and then 

passes them to the InterfaceAgent who displays 

them to the administrator.  

 

 

 

 

MainAgent 

 

 

 

 

GenAgent 

 

 

 

 

 

IntAgent 

Manager 

GenAgent: GeneratorAgent 

ObAgent: Observer Agent 

 
IntAgent: InterfaceAgent 

 MA: MobileAgent OR  
         IntegrityMobileAgent 
         OR PerfAgent  

Figure 1. The MAFS components. 

: Messages between   
  Agents 
  

 

 

 

 

CheckAgent 

History 

Database 

HDB: Host Database 

 

Host B  

 

 

 

SNMPAgent 

 

 

 

 

 

ObAgent 

 

Host A  

 

 

 

SNMPAgent 

 

 

 

 

 

ObAgent 

 

HDB HDB 



International Journal of Computer Applications (0975 – 8887) 

Volume 88 – No.5, February 2014 

16 

 

 

Table 1. OID variables defined in RFC 1213 MIB 

OID 

variables 
Meaning 

ifInOctets 
The total number of bytes received on the 

interface 

ifOutOctets 
The total number of bytes transmitted out of 

the interface 

ifSpeed The estimation of the interface's current 

bandwidth in bits per second 

 

Table 2. Variables for computing the utilization 

Variables Meaning 

ifInOctetsx 
The value of ifInOctets that is measured at 

instance “X” 

ifInOctetsy 
The value of ifInOctets that is measured at 

instance “Y” 

ifOutOctetsx 
The value of ifOutOctets that is measured at 

instance “X” 

ifOutOctetsy 
The value of ifOutOctets that is measured at 

instance “Y” 

 

The utilization of the network interface is computed as 

follows in equation 1. 

Length of the polling period= Y - X 

Total bytes = (ifInOctetsy– ifInOctetsx) + (ifOutOctetsy – 

ifOutOctetsx) 

Total bytes per sec = Total bytes / (Y-X) 

Utilization = (Total bytes per sec * 8) / ifSpeed        (1) 

 

4. TESTING AND EVALUATION 
This section explains the structure of the MAS system. A 

prototype is implemented using JAVA under management of 

the IBM Aglets framework. Several experiments are 

conducted to evaluate the MAS performance in retrieving the 

MIB tables. The MAS system uses its “CheckUpAgent” to 

collect the updated management information from a group of 

hosts and then store it in the “History” database. 

The experiments compare the standard SNMP approach with 

the developed MAS approach. Two performance measures are 

considered in this regard, (a) measuring the network traffic to 

determine the scalability, and (b) estimating the management 

time. 

4.1 Comparison of the Network Traffic 
Two experiments measure the network traffic generated to 

retrieve required data from the MIB database in both cases. 

Two hosts are used; “Host A” runs as a manager and “Host B” 

runs as the managed node. A Graphical User Interface tool, 

Wireshark Network Protocol Analyzer, is used to capture the 

flow of packets and monitor the traffic. This tool allows to 

interactively browsing packet data from a live network. 

Experiment 1: The AdventNet SNMP Agent is used as a 

centralized manager. It runs on “Host A” and polls the entire 

MIB table (Host Resources MIB) from “Host B”. The entire 

MIB tables that consist of around 64 OID are fully 

transferred, however only few rows are needed. 

During the operation of transferring the required information, 

the Wireshark tool has captured the network traffic and 

determined how many packets were exchanged between both 

hosts. Figure 5 shows the obtained results. A total of 519 

packets were captured for transferring the entire MIB tables, 

which is about 750 kilo bytes. 

Experiment 2:  In the MAS approach, the CheckUpAgent 

moves from “Host A” to “Host B” to get the required data, 

which is around 10 OID values, and returns back.  There is no 

need to get the entire MIB database, only the updated 

information. During this operation the traffic generated 

between both hosts is captured by the Wireshark tool. Figure 

6 shows that the data retrieval is completed using 11 packets, 

which is about 740 bytes. 

As shown in Table-3, the obtained results are clearly in favor 

of the MAS system with a total traffic volume being three 

orders of magnitude less than the traffic for the centralized 

SNMP management. It should be noted however that the 

results of Experiment 2 may differ depending on the amount 

of changes occurred in the required management information. 

In fact, more changes in the software and hardware 

specifications of the managed hosts would slightly increase 

the transferred data.  

 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 88 – No.5, February 2014 

17 

 

Table 3. Network traffic comparison 

Network 

Manager 
Traffic Type 

No. of 

Packets 

Exchanged 

Total Bytes 

Exchanged 

Standard 

SNMP 

Retrieving the 

entire MIB table; 

64 OID’s 

519 750 kByte 

Develope

d MAS 

Retrieving the 

required 

information; 10 

OID’s 

11 740 Bytes 

4.2 Management Time Estimation 
Table-4 shows the variables used to estimate the management 

time for the developed mobile-agent-based MAS system. The 

total delay to retrieve the required MIB information is 

considered here as a measure of performance. This is 

computed as the transmission delays of the mobile agent that 

collects the management data plus the time required to collect 

that data from the visited hosts 

In computing the total time delay for the MAS system two 

dispatching schemes are considered, namely sequential 

dispatching and parallel dispatching as shown in Figure 7 and 

Figure 8, respectively.  

Table 4. Variables for the Time Response Computations 

N The number of hosts that the mobile agent visits. 

Th_i 
The time that the CheckUpAgent consumes to collect 

management data at the ith host. 

Th_s 

The total time that the CheckUpAgent consumes to 

collect management data from all N hosts using 

sequential dispatching. 

Tx_i 
The transmission time to dispatch the CheckUpAgent 

to the ith host from the previous host in its itinerary. 

Tx_s 

The total transmission time consumed to dispatch the 

CheckUpAgent from the manager host to all N hosts 

using sequential dispatching and returning back to the 

manager. 

Ts 
The total round trip delays of the CheckUpAgent to 

visit N hosts using sequential dispatching. 

Tp 
The total round trip delays of the CheckUpAgent to 

visit N hosts using parallel dispatching. 

4.2.1 Delay Time in the Sequential Dispatching 

Scheme 
The total time that the CheckUpAgent consumes to perform 

its management tasks at all N hosts using sequential 

dispatching is the sum of computation delay at the managed 

hosts plus the transmission delays for dispatching the agent, as 

given by equation 2. 

Ts  =  Th_s   +    Tx_s         (2) 

The management information collected by the CheckUpAgent 

depends on the hardware and software specifications of the 

visited hosts. An experiment has been done using two 

machines Host A and Host B. Host A contains few (17) 

installed software applications, where the host B contains a 

large number (118) of installed applications. A timer is used 

to measure the time that the CheckUpAgent spends in each 

host to collect the management information. Actually, 10 

experiments have been done at each tested machine and the 

average over these results is taken to set an upper and lower 

bounds on the time that the CheckUpAgent spends in an 

arbitrary host to collect the management information. The 

computed upper and lower bounds are 1250.2 ms and 3054.5 

ms, respectively. The delay time at the ith host will be 

estimated as a random value Th_i between the two bounds.  

Consequently, the total time spent at N hosts is estimated as 

follows: 

Th_i  = Random(1250.2, 3054.5)                   (3) 

       i=N 

Th_s = ∑  Th_i                                               (4) 

       i=1 

To estimate the network transmission delay, a simple 

experiment is conducted to ping multiple random sites in the 

Internet to get upper and lower bounds of the transmission 

delays. Ten experiments are carried out at different times of 

the day to ping a large set of about 30 sites selected at random 

in each experiment. The average values of the transmission 

delay bounds are found to be 1.1 ms and 61.2 ms, 

respectively. 

In sequential dispatching, the CheckUpAgent visits N hosts 

and returns back to the manager. The delay for each of these 

N+1 transmissions is considered to be a random value 

between the obtained upper and lower bounds. The total 

transmission delay is estimated as follows:  

Tx_i  = Random(1.1, 61.2)                        (5) 

          i=N+1 

Tx_s = ∑  Tx_i                                          (6) 

          i=1 

4.2.2 Delay Time in the Parallel Dispatching Scheme 
In this scheme each instance of the CheckUpAgent would be 

dispatched to one host machine and then returns back with the 

result. Following the same argument in the sequential 

dispatching, the total delay time is given by equation (7). 

Tp  =  Random(1.1, 61.2) + Random(1250.2, 3054.5)  + 

Random(1.1, 61.2)          (7) 

Figure 9 shows the sequential and parallel management delays 

for up to 12 managed hosts. The results are obvious but it is 

presented here to give numerical estimation of the total 

network management delay in both sequential- and parallel- 

dispatching schemes. 

As shown in Figure 9, the management delay in case of 

sequential dispatching is almost linearly proportional to the 

number of managed hosts. A hybrid dispatching scheme 

would be advantageously employed to limit the management 

delay should the number of hosts be extremely large. In such  



International Journal of Computer Applications (0975 – 8887) 

Volume 88 – No.5, February 2014 

18 

 

 

scheme the managed hosts will be divided into several groups 

of about 10 hosts each. Each group will be managed 

sequentially by a different instance of the CheckUpAgent. 

The exact number of hosts in a group depends on a trade-off. 

On one hand, the management delays will increase for a large 

group size. On the other hand, in case of small groups the total 

number of trips done by the CheckUpAgent instances will 

increase. This will directly increase the required network 

bandwidth. Moreover the manager overhead to handle many 

instances of the CheckUpAgent will also increase.  

5. CONCLUSIONS 
The present work investigates the effectiveness of using 

mobile agent technology for the management of computer 

networks compared to the centralized technique used in the 

SNMP standard. In particular, the mobile agent technology 

introduces significant advantages that enhance the network 

management applications performance. It automates the 

management functions, reduces network traffic, distributes the 

management workload, supports for heterogeneous 

environments, and supports on-line extensibility of services. 

Moreover, it has the ability to work off-line autonomously, it 

is easy to upgrade, and provide many off-line fault tolerance 

services. 

 

Both sequential and parallel dispatching of the mobile agent 

to the managed network element (hosts and etc.) is considered 

here. The main issue that affects mobile agent systems is the 

mobile agent’s size, the smaller the better in order to keep its 

transmission time low. Towards this goal the initial mobile 

agent code should be minimized by storing part of the 

management functionality at the managed network element. 

Secondly, to limit the size of its memory buffers the parallel 

dispatching scheme seems appropriate. However, this would 

lead to an increase in the required network bandwidth should 

the number of managed elements becomes excessively large. 

A hybrid dispatching scheme would be more appropriate in 

this case. 

The present work provides a framework for using a mobile 

agent system (MAS) in network management, and gives an 

outline for the system’s design. A prototype is developed and 

used to conduct experiments in real network environment and 

compare its performance, regarding the required traffic 

volume, to the Internet’s standard centralized SNMP 

management protocol. The results indicated a great reduction 

in the traffic volume in favor of the developed system. An 

estimation of the management delay is also investigated and a 

numerical comparison between parallel and sequential 

dispatching schemes is provided.  

A final word must be stated here regarding the 

implementation of mobile agents in real life networks and in 

the Internet. Such systems still require greater effort to 

implement it practically because the existing platforms 

provide only basic mobility functions. More importantly they 

suffer from security threats, and need to be tailored for the 

management functions. These problems need further attention 

to allow for safe and effective implementation of the mobile 

agent technology in managing computer networks and 

internets. 

6. Acknowledgement 
The members of the research team are thankful to King 

Abdulaziz City for Science and Technology (KACST) for 

their grant (AT-30-114) for this project. 

 

7. REFERENCES 
[1] D. Gavalas, Mobile Software Agents for Network 

Monitoring and Performance Management, Ph.D. Thesis, 

University of Essex, UK, July 2001. 

[2] G.Hegering, S. Abeck, Integrated Network and System 

Management, Addison-Wesley, 1994. 

[3] ITU-T recommendation M.3400 (02/2000). 



International Journal of Computer Applications (0975 – 8887) 

Volume 88 – No.5, February 2014 

19 

[4] J. Case, M. Fedor, M. Schoffstall, J. Davin, A Simple 

Network Management Protocol (SNMP), RFC 1157, 

May 1990. 

[5] Z. Hong, G. Feng, Y. qiang, W. Xing, Research on 

Mobile Agent-based Hierarchical Network Management 

Model, Proceedings of  IEEE International Symposium 

on Microwave, Antenna, Propagation and EMC 

Technologies for Wireless Communications (MAPE), 

2005. 

[6] Information Technology, Open Systems Interconnection, 

Common Management Information Protocol (CMIP) – 

Part 1: Specification, 1998. 

[7] M. Subramanian, Network Management Principals and 

Practice, Addison Wesley, 2000. 

[8] S. Tokdemir, Survey paper: mobile agents – architecture 

and applications, spring 2005. 

[9] V. Pham, A. Karmouch, Mobile Software Agents: An 

Overview, IEEE Communications Magazine, pp. 26-37, 

1998. 

[10] A. Michalas, Enhancing The Performance Of Mobile 

Agent Based Network Management Applications, 

Proceedings of Sixth IEEE Symposium on Computers 

and Communications (ISCC'01)   pp. 0432, 2001. 

[11] L. Guanyu ; W.  Baofeng; Y. Yang; A.  Lihua , 

Researches on Performance Optimization of Distributed 

Integrated System Based on Mobile Agent, The Sixth 

World Congress on Intelligent Control and Automation, 

pp. 4038- 4041, June 2006. 

[12] E. Reuter, F. Baude, A mobile-agent and SNMP based 

management platform built with the Java ProActive 

library, IEEE Workshop on IP Operations and 

Management, pp 140- 145, 2002. 

[13] L. Jing-hua, X. Guang-hui, A New Network 

Management Framework Design and Application 

Realization, In Proceedings of the Sixth international 

Conference on Parallel and Distributed Computing 

Applications and Technologies, IEEE Computer Society, 

2005. 

[14]  Hyojoon Kim and  Nick Feamster “Improving Network 

Management with Software Defined Networking “ IEEE 

Communications Magazine, February  2013. 

[15] Saber Zrelli, Atsushi Ishida, Nobuo Okabe and Fumio 

Teraoka “ENM: A Service Oriented Architecture for 

Ontology-Driven Network Management in 

Heterogeneous Network Infrastructures” IEEE/IFIP 4th 

Workshop on Management of the future Internet, 2012. 

[16] Liu ZhiLong, Chun Hu, and Wei Ge. “WBM based 

network management system design and 

Implementation” 9th International conference on Fuzzy 

Systems and Knowledge Discovery (FSKD 2012).  

[17] Nan Guo, Tianhan Gao, and Hong Zhao, Distributed 

Plug-and-Play Network Management Model Based on 

Mobile Agents, Proceedings of IEEE International 

Conference on e-Technology, e-Commerce and e-Service 

(EEE '04), 28-31 March 2004 , pp. 487 – 491. 

[18] L. Chou, K. Tang, C. Kao, Multiple/mobile-agent-based 

network management systems for Taiwan's National 

Broadband Experimental Networks, Global 

Telecommunications Conference, IEEE Computer 

Society pp. 1975- 1979 , November 2002. 

[19] S. Foster, A. Nebesh, D. Moore, J. Flester, Performance 

Tuning Mobile Agent Workflow Applications, In 

Proceedings of the Technology of Object-Oriented 

Languages and Systems, IEEE Computer Society, 1999. 

[20] L. Xuhui, C. Jiannong, H. Yanxiang, C. Yifeng, 

MADESE: A Simulation Environment for Mobile Agent, 

Proceedings of  CIT 06, IEEE Computer Society, 2006. 

[21] Bill Venners, “The architecture of aglets”, 

JavaWorld.com, 04/01/97. 

[22] H. Zhen, W. Zhen, L. Xiao, Formal Language 

Description of Mobile Agent's Theory Model, 

Proceedings of Machine Learning and Cybernetics 

International Conference ,pp. 185-187, 2006. 

[23] M. Bernich, F. Mourlin, “Mobile agent communication 

scheme”, International Conference on Systems and 

Networks Communication (ICSNC '06), pp. 6-6, October 

2006. 

[24] I. Adhicandra , C. Pattinson, “Performance Evaluation of 

Network Management Operations”,  Proceeding of 3rd 

Annual Symposium of Postgraduate Networking 

Conference(PGNET),  pp. 210-214, 2002. 

 

IJCATM : www.ijcaonline.org 


