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ABSTRACT 

Inductive learning enables the system to recognize patterns 

and regularities in previous knowledge or training data and 

extract the general rules from them. In literature there are 

proposed two main categories of inductive learning methods 

and techniques. Divide-and-Conquer algorithms also called 

decision Tree algorithms and Separate-and-Conquer 

algorithms known as covering algorithms. This paper first 

briefly describe the concept of decision trees followed by a 

review of the well known existing decision tree algorithms 

including description of ID3, C4.5 and CART algorithms. A 

well known example of covering algorithms is RULe 

Extraction System (RULES) family. An up to date overview 

of RULES algorithms, and Rule Extractor-1 algorithm, their 

solidity as well as shortage are explained and discussed. 

Finally few application domains of inductive learning are 

presented. 
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1. INTRODUCTION 
A new field of machine learning known as inductive learning 

has been introduced to help in inducing general rules and 

predicting future activities [1]. Inductive learning is learning 

from observation and earlier knowledge by generalization of 

rules and conclusions. Inductive learning allows for the 

identification of training data or earlier knowledge patterns 

and similarities which are then extracted as generalized rules. 

The identified and extracted generalized rules come to use in 

reasoning and problem solving[2].  Data mining is one step in 

the process of knowledge discovery in databases (KDD). It is 

possible to design automated tools for learning rules from 

databases by using data mining or other knowledge discovery 

techniques[3][4]. There is an intersection point between the 

field of data mining and machine learning as they both extract 

interesting patterns and knowledge from databases[5]. 

According to Holsheimer et al. [6], data mining refers to the 

use of the database as a training set in the learning process.  

In inductive learning different methods have been proposed to 

infer classification rules. These methods and techniques were 

divided into two main categories: Divide-and-Conquer 

(Decision Tree) and Separate-and-Conquer (Covering). 

Divide-and-conquer algorithms, such as ID3, C4.5 and CART 

are classification techniques that derive the general 

conclusions using decision tree. Separate-and-Conquer 

algorithms such as AQ family, CN2 (Clark and Niblett), and  

RULES (RULe Extraction System)  family where rules are 

directly induced from a give set of training examples[1][7]. A 

decision tree represents one of the mostly used approaches in 

inductive machine learning. A set of training examples 

usually used to form a decision tree [4]. The preference of 

decision trees for inductive learning is due to their ease in 

implementation and comprehension, and the lack of methods 

for preparation like normalization. Decision tree performance 

is good and it can function well with large databases. For this 

reason and due to its efficiency decision tree can handle a 

huge amount of training examples. Both numerical and 

categorical data are possible in the decision tree structure.  

Decision trees generalize in a better way for data instances not 

yet observed, once examined the attribute value pair in the 

training data. The better understanding of classification based 

on the attributes provided. The attribute arrangement on the 

decision tree is from the information available hence the 

classification is well laid out. The negative aspect of the 

decision trees is that the generalized rules given are not 

always the most generalized. For this reason, some algorithms 

like AQ family algorithms do not use decision trees. The AQ 

algorithm family makes use of the disjunction of positive 

examples feature values [8].  

In the arena of divide-and-conquer algorithms, a major issue 

that arises is the complications with trying to show certain 

rules in the tree.  Specifically, it‟s challenging to induce rules 

that do not have anything in common with tree attributes, and 

a further complication is the fact that some attributes that 

show up are either repetitive or unnecessary[9]. Also, these 

algorithms caused the replication problem, wherein sub-trees 

can be repeated on different branches.  It is difficult to handle 

a tree when it gets too big.  Using divide-and-conquer 

methods on a large tree might lead to unnecessary 

confusion[7]. 

As a consequence, researchers have lately tried improving 

covering algorithms to compare or exceed the results of 

divide-and-conquer attempts.  It is better to induce the rules 

directly from the dataset itself instead of inducing them from a 

decision tree structure which is summarized into four main 

properties  according to Kurgan et al. [10] . Firstly, using 

representation such as “IF…THEN” makes the rules more 

easily understood by people.  It is also a proven fact that rule 

learning is a more effective method than using decision trees. 

Moreover, the derived rules can be used and stored easily in 

any expert system or any knowledge-based system. Lastly, it 

is also easier to study and make changes to rules that have 

been induced without affecting other rules because they are 

independent of each other[10]. 

This paper is organized as follows: Section 2 describes the 

concept of decision tree followed by the divide and conqure 

algorithms majoring on ID3, C4.5 and CART, the mostly 

applied algorithms. In Section 3 we review the separate and 

conquer algorithms specifically the Rules Family of 

Algorithms and Rule Extractor-1 algorithm. Section 4 

discusses some inductive learning applications. Finally, 

Section 5 concludes the paper with future works. 
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2. DIVIDE AND CONQURE 

ALGORITHMS 
A brief explanation of the concept of decision tree and the 

well known divide and conqure algorithms such as ID3, C4.5 

and CART are presented below. 

2.1. Decision Tree 
Decision trees, according to Mitchell[11], categorize instances 

by arranging them form the root to a particular leaf node 

down the tree. This acts as the categorization of instances. 

Any node in the tree represents a test of some attribute of the 

instance while each descending branch from the node, will 

represent a possible attribute value. The figure below is an 

example of a decision tree constructed based on the attribute 

named outlook. The outlook attribute has three values 

overcast, sunny, and rain. Some values have sub trees like rain 

and sunny values in figure 1. Classification of examples into 

distinct set of probable groupings, are often termed as 

classification problems [8][11]. 

 

 

Figure 1: Decision Tree Example 

The first step achieved by the tree models is the categorization 

into groups of the observations. The process that follows after 

achieving the groups form the categorization process is the 

scoring of these particular groups. Classification trees and 

regression trees are the two categories of tree models. A 

regression tress has a continuous response variable but the 

classification trees, have a quantitative or qualitative 

categorical response variable. It is possible to give the 

definition of tree models as a recursive procedural process 

where n statistical units, in a set, put into groups. The process 

of putting the units into groups is by division dependent on a 

given division rule, and it is progressive. The aim of the 

division rule is homogeneity maximization or the response 

variable purity measure in its group as obtained. The division 

rule institutes a way of partitioning the observations. Each 

division procedure in the process is dependent on the 

explanatory variable to split and the splitting rule required, 

knowing the division rule applicable.  A final partition of the 

observations is the main result of any decision tree [3]. 

2.2 Decision Tree Learning Algorithms 
Among the many algorithms for decision trees creation, ID3 

and C4.5 by J. R. Quinlan, are the two mostly used. Another 

famous algorithm is CART by Breiman. A brief explanation 

of each one of them is presented below. 

 

 

2.2.1 ID3 Algorithm 

Ross Quinlan created Iterative Dichotomiser 3 algorithm in 

1986. It is also known as ID3 algorithm. It is among the 

algorithms earlier stated. ID3 is based on Hunt‟s algorithm. It 

is a simple decision tree learning algorithm. In the iterative 

inductive approach ID3 is used to classify objects[8]. The 

whole idea in the buildup of the ID3 algorithm is 

accomplished through the top down search of particular sets 

to examine every attribute at each node in the tree [12][13]. 

Here, a metric, Information gain, comes into play for the 

purpose of attribute selection. Attribute selection is the main 

part of classification of given sets. Information gain enables 

for the measure of the relevance of the questions asked. This 

allows for the minimization of the questions needed for the 

classification of a learning set. The choice that ID3 makes on 

the splitting attribute depends on the information gain 

measure. Claude Shannon came up with the idea of measuring 

information gain by entropy in 1948[8][13]. 

ID3 has a preference for the trees generated. Once generated, 

the tree should be shorter and near the top of the tree is where 

attributes with lower entropies should be [2]. In building the 

tree models, ID3 accepts categorical attribute. This is the only 

process where ID3 accepts them. ID3 algorithm implement 

decision tree serially. However in the existence of noise ID3 

does not give accurate results. For this reason, ID3 has to 

perform a thorough processing of data before its use in tree 

model building. These decision trees are mostly used for the 

decision making purpose [8][14].The figure below shows the 

basic implementation technique of ID3 algorithm as presented 

in [2]. 

 

Figure2: ID3 algorithm 

 

There are problems with ID3 algorithm. The resultant 

decision tree over fitting the training example is one problem. 

This is as a result of the procedural splitting in the attempt of 

individual split optimization instead of the whole tree 

optimization [4]. The outcome of this process is decision trees 

that are too precise from the use of conditions that are 

pointless or irrelevant. There is a repercussion to this 

outcome. This is the interference of the categorization of 

unknown examples or those examples with incomplete 

attributes values. Usually, pruning is used to reduce over fit in 

decision trees.  However, this procedure may not work 

efficiently for an inadequate data set that demands 

probabilistic as opposed to categorical classification [15]. 

1 .For each uncategorized attribute, its entropy would be 

calculated with respect to the categorized attribute, or 

conclusion. 

2. The attribute with lowest entropy would be selected.  

3. The data would be divided into sets according to the 

attribute‟s value. For example, if the attribute „Size‟ was 

chosen, and the values for „Size‟ were „big‟, „medium‟ and 

„small, therefore three sets would be created, divided by these 

values.  

4. A tree with branches that represent the sets would be 

constructed. For the above example, three branches would be 

created where first branch would be „big‟, second branch would 

be „medium‟ and third branch would be „small‟.  

5. Step 1 would be repeated for each branch, but the already 

selected attribute would be removed and the data used was only 

the data that exists in the sets. 

 6. The process stopped when there were no more attribute to be 

considered or the data in the set had the same conclusion, for 

example, all data had the „Result‟ = yes. 

 



International Journal of Computer Applications (0975 – 8887) 

   Volume 88 – No.4, February 2014 

22 

2.2.2 C4.5 Algorithm 

Ross Quinlan, 1993, developed an upgraded algorithm of ID3. 

C4.5 is the ID3 upgrade. C4.5 is similar to its predecessor in 

that is based on Hunt‟s algorithm and it has a serial 

implementation. Tree pruning in C4.5 is after its creation. 

Once created, it returns through the tree created and tries to 

eliminate irrelevant branches by substituting them with leaf 

nodes hence the error rate decreases [16]. 

Both continuous and categorical attributes are acceptable in 

tree model building in C4.5, unlike in ID3. It uses 

categorization to tackle continuous attributes. This 

categorization is done by creating a threshold and separating 

the attributes based on their position in reference to this 

threshold [17][18]. Determination of the best splitting 

attribute, like in ID3, is at each tree node through the sorting 

of data. In C4.5, splitting attribute evaluation is by the gain 

ratio impurity method [13]. C4.5 can work with training data 

with attributes missing values. It allows for the missing values 

representation as “?”. It also works with attributes with 

different costs. In gain ratio and entropy calculations, C4.5 

ignores the missing value attributes [16]. 

2.2.3 CART Algorithm 
Classification and regression tree algorithm also known as 

CART is a development by Breiman in 1984. From its name, 

it is able to generate classification and regression model trees. 

CART binary splits attributes in the building of the 

classification trees. Like ID3 and C4.5, it is based on Hunt‟s 

algorithm and can apply serial implementation [18]. 

In CART decision tree building, categorical and continuous 

attributes are both acceptable. It is similar to C4.5 in that it 

can work with missing attributes in data. CART applies the 

Gini index splitting measure to determine the splitting 

attribute for the decision tree construction[13].  From its use 

of the binary splitting of attributes, it gives binary splits hence 

binary decision trees. This is different from ID3 and C4.5 split 

production. Unlike ID3 and C4.5 algorithms, Gini Index 

measure does not use probabilistic assumptions. Therefore, 

the unreliable branches are pruned following the cost 

complexity. This improves the tree‟s accuracy [17][18]. 

3. SEPARATE AND CONQUER 

ALGORITHMS 
Separate-and-Conquer algorithms such as AQ family, CN2, 

Rule Extractor-1 and RULES family of algorithms where 

rules are directly induced from a give set of training 

examples. 

3.1. RULES Family of Algorithms 
Below is a brief description of all versions of Rules Family of 

Algorithms.  

3.1.1. RULES-1 
RULES-1 (RULe Extraction System-1) also known as 

RULES algorithm was developed by Pham and 

Aksoy[19][20]. An implementation of RULES-1 extracts 

rules for objects in similar sets of classes.  Each object has its 

own attributes and values, which makes them individual.  

Each condition consists of an attribute and value pair, so for 

example, if an object has Na as the number of attributes, the 

rule may fall between one and Na conditions. In a collection 

of objects all of their values and attributes construct an array. 

The size of the array is equal to the total number of all values.  

At most, there can be Na iterations in the rule-forming 

procedure[19][20].  

 In the initial loop, the system examines every element to see 

if it is able to be part of a rule with that element as the 

condition.  It can help form a rule if any given element in that 

loop applies to a single class.  If, however, it applies to more 

than one class, it is overlooked in favor of the next potential 

element.  Once RULES-1 has checked all elements, it 

rechecks all examples against the candidate rule to ensure 

everything is in place.  If any examples remain that is 

unclassified, a new array is constructed containing all 

unclassified examples and the next iteration of the procedure 

is initiated.  If no more unclassified examples, the procedure 

is finished.  This continues until everything is classified 

properly or all iterations equal Na[19][20]. This process can 

be seen in the flowchart below in figure 3[19]. 

 Figure3: Flow chart of RULES 

RULES-1 does have its advantages and disadvantages.  A big 

advantage is that it doesn‟t have the issue of conditions being 

irrelevant, because of the irrelevant condition checking phase. 

There is no need for windowing because the computer doesn‟t 

need to keep track of all the examples simultaneously in the 

memory.  However, the system does have issues with overly-

large numbers of selected rules as RULES-1 doesn‟t have a 

way to filter out sizes.  Also, it does have a long training 

period associated with it when solving a problem with huge 

number of attributes and their values. Another shortage in 

RULES-1  that it cannot  handle training set with numerical 

values or incomplete examples [19][20].  
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3.1.2. RULES-2 
After creating RULES-1, Pham and Aksoy invented RULES-

2 in 1995.  RULES-2 is essentially similar to RULES-1 in 

terms of how it derives rules; however the only difference is 

that RULES-2 considers the value of one unclassified 

example to produce a rule for classifying that example instead 

of considering the values of all unclassified examples in each 

loop. As a result RULES-2 is able to operate faster.  It also 

gives the user some control over how many rules need to be 

extracted.  Another advantage is RULES-2‟s ability to 

compute with examples that aren‟t complete, and to handle 

numeric and nominal values while filtering out examples that 

aren‟t relevant and  automatically avoids irrelevant 

conditions[20]. 

  

3.1.3. RULES-3 
RULES-3 was the succeeding version, which built on the 

advantages of the systems that came before and also 

introduced new features, such as more compact rule sets and 

ways to adjust how precise the rules extracted need to be.  

Users of RULES-3 can define the minimum number of 

conditions need to exist to create a rule.  There are advantages 

to this – the rules will be more exact, and not as many search 

operations will be needed to find the correct rule set[20]. This 

process can be summarized as below in figure 4[21]. 

 
Figure4: RULES-3 algorithm 

 

3.1.4. RULES3-Plus 
In 1997 Pham and Dimov built upon RULES-3‟s ability to 

form rules in their creation of RULES-3 PLUS algorithm [22].  

RULES-3 Plus is more efficient than RULES-3 in searching 

out rules, it applies the beam search strategy instead of greedy 

search and it makes use of the so-called H measure to help 

with selecting rules according to how correct and general they 

are. 

However, RULES-3 Plus does have its drawbacks – its 

efficiency is not a foregone conclusion, as it tends to overly-

train itself to cover all data.  The H measure, as well, is a very 

complex calculation and it doesn‟t always bring in the most 

accurate and general results.  Although RULES-3 Plus 

discretised its continuous valued attributes, its discretisation 

method does not follow any set rules; it is arbitrary and 

doesn‟t try to find any information in the data, which inhibits 

RULES-3 Plus‟ ability to learn new rules.  A summary of the 

rule forming procedure of RULES-3 Plus is presented below 

in figure 5 [22].   

 

 
Figure5: Rule forming procedure of RULE-3 Plus 

 

3.1.5. RULES-4 
RULES-4 [23] was created to address the ability to extract 

rules incrementally in the RULES family byprocessing one 

example at a time. Pham and Dimov developed RULES-4 in 

1997 as the first incremental learning algorithm under the 

RULES family. They invented it to be a variation on RULES-

3 Plus, and it has some additional advantages – namely the 

ability to store training examples in the Short Term Memory 

(STM) when they become available and ready. Another 

advantage of RULES-4 is the ability to let the user specify the 

size of the STM storage used in the creation of the rules.  

When that memory is full, RULES-4 has the ability to draw 

Step 1 Quantize attributes that have numerical values.  

Step 2 Select an unclassified example and form array 

SETAV. 

Step 3 Initialize arrays PRSET and T_PRSET (PRSET and 

T_PRSET will consist of mPREST expressions with null 

conditions and zero H measures) and set nco=0.  

Step 4 IF nco < na  

             THEN nco = nco + 1 and set m = 0;  

             ELSE the example itself is taken as a rule and go to 

Step 7.  

Step 5 DO 

m=m+ 1;  

Form an array of expressions (T_EXP). The 

elements of this array are combinations of 

expression m in PRSET with conditions from 

SETAV that differ from the conditions 

already included in the expression m (the 

number of elements in T_EXP is: na - nco.  Set 

k = 1; 

DO 

k=k+ I;  

Compute the H measure of expression k 

in T_EXP;  

IF its H measure is higher than the H 

measure of any expression in T_PRSET  

THEN replace the expression having 

the lowest H measure with expression 

k; 

WHILE k < na - nco ;  

Discard the array T_EXP; 

WHILE m < mPREST  

Step 6  IF there are consistent expressions in T_PRSET 

THEN choose as a rule the expression that has the 

highest H measure and discard the others;  

Mark the examples covered by this rule as 

classified;  

Go to Step 7; 

ELSE copy T_PRSET into PRSET;  

Initialize T_PRSET and go to Step 4. 

Step 7 IF there are no more unclassified examples  

             THEN STOP;  

             ELSE go to Step 2. 

(Note: nco = number of conditions, na = number of Attributes, 

T_EXP= a temporary array of expressions, mPRSET= number 

of expressions stored in PRSET and its given by the user, 

T_PRSET= a temporary array of partial rules of the same 

dimension as PRSET). 

Step 1 Define ranges for the attributes, which have 

numerical values and assign labels to those ranges 

Step 2 Set the minimum number of conditions (Ncmin) for 

each rule  

Step 3 Take an unclassified example  

Step 4 Nc=Ncmin–1  

Step 5 If Nc<Na then Nc=Nc+1  

Step 6 Take all values or labels contained in the example  

Step 7 Form objects, which are combinations of Nc values 

or labels taken from the values or labels obtained in Step 6 

Step 8 If at least one of the objects belongs to a unique 

class then form rules with those objects; ELSE go to Step 5 

Step 9 Select the rule, which classifies the highest number 

of examples  

Step 10 Remove examples classified by the selected rule 

Step 11 If there are no more unclassified examples then 

STOP; ELSE go to Step 3. 

(Note: Nc = number of conditions, Na = number of 

Attributes). 
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on RULES-3 Plus‟ knowledge to create new rules. Pham and 

Dimov explain the incremental algorithm in figure 6. 

 

 
Figure6: The incremental induction procedure of 

RULES-4  
 

STM always empty and it‟s initialized with a set of examined 

examples. LTM contained the previously extracted rules or 

some initial rules defined by the user[23]. 

 

3.1.6. RULES-5 
Pham et al. [24] invented RULES-5 in 2003 which built on 

the advantages of RULES-3 Plus . They tried to overcome 

some insufficiencies of RULES-3 Plus algorithm in their 

newly developed algorithm called RULES-5. It implements a 

method to manage continuous attributes so there is no need 

for quantization[24]. Choosing the condition and the 

procedure of handling continues attributes are the main 

process in RULES-5 algorithm. The authors explain this core 

process as follows: The process of rule extraction in RuleS-5 

consider only  the conditions except the closest example (CE) 

that is covered by the extracted rule and  does not belong to 

the target class. Any data set may include both continues and 

discrete attributes. In order to calculate CE, a measure is used 

to compute the distance between any two examples in the data 

set whether it includes discrete attributes or continues ones. 

The main advantage that distinguishes RULES-5 from 

previous RULES algorithms is its ability to generate fewer 

rules in a very accurate manner. As a result it takes shorter 

training time and searching time[20]. 

 

3.1.7. RULES-6 
RULES-6 was developed by Pham and Afify [25] in 2005  

using RULES-3 Plus as a basis. RULES-6 is a quick way of 

finding IF-THEN rules from given examples; it is also simpler 

in its evaluations of rules and how it handles continuous 

attributes.  Because Pham and Afify developed RULES-6 to 

build on and improve RULES-3 Plus by adding the ability to 

handle noise in dataset, RULES-6 is both more accurate and 

easier to use, and it doesn‟t suffer the same slowdowns in the 

learning process because it doesn‟t get bogged down in 

useless details.  Making it even more effective, RULES-6 uses 

simpler criteria for qualifying rules and checking continuous 

values in the algorithms which led to a further improvement in 

the performance of the algorithm. Figure 7 describes the 

pseudo code of RULES-6. A pruned general to specific search 

is carried out by Induce_One_Rule procedure to search for 

rules [25]. 

 
Figure7: Pseudo code description of RULES-6 

 

3.1.8. RULES3- EXT: 
In 2010 Mathkour [26] developed a new inductive learning 

algorithm called RULES3-EXT. many disadvantages exist in 

RULES-3, RULES3-EXT was created to address them 

efficiently. The main advantages of RULES3-EXT are as 

follows: It is capable of eliminating repetitive examples, 

allowing users to make changes where needed in attribute 

order, if any of the extracted rules cannot fully be satisfied by 

an unseen example the system can partially fire rules,  and it 

can work on a smaller number of required files to extract a 

knowledge base two files instead of three. The main steps 

which describe the induction process of RULES3-EXT 

algorithm  are given below in figure 8 [26]. 

 
Figure8: RULES3- EXT algorithm 

 

3.1.9. RULES-7 
RULES family has extended to Rules-7 [27], also known as 

RULe Extraction System Version 7 which improves upon its 

predecessor RULES-6 by fixing some of its drawbacks. 

RULES7 employs a general to specific beam search on the 

data set to derive the best rule. It selects sequentially a seed 

example that is passed by Induce_Rules procedure to the 

Induce_One_Rule procedure after calculating MS which is the 

Step 1 Define ranges for the attributes, which have numerical 

values and assign labels to those ranges. 

Step 2 Set the minimum number of conditions (Ncmin) for 

each rule.  

Step 3 Take an unclassified example. 

Step 4 Nc=Ncmin-1  

Step 5 If Nc<Na then Nc=Nc+1  

Step 6 Take all values or labels contained in the example.  

Step 7 Form objects, which are combinations of Nc values or 

labels taken from the values or labels obtained in Step 6.  

Step 8 If at least one of the objects belongs to a unique class 

then form rules with those objects; ELSE go to Step 5.  

Step 9 Select the rule, which classifies the highest number of 

examples. 

Step 10 Remove examples classified by the selected rule. 

Step 11 If there are no more unclassified examples then STOP; 

ELSE go to Step 3. 

 (Note: Nc: number of conditions, Na: number of attributes). 

Procedure Induce_Rules (TrainingSet, BeamWidth)  

RuleSet = ∅ 

While all the examples in the TrainingSet are not covered 

Do  
Take a seed example s that has not yet been covered 

Rule = Induce_One_Rule (s, TrainingSet, BeamWidth)  

Mark the examples covered by Rule as covered 

RuleSet = RuleSet ∪ {Rule} 

End While  

Return RuleSet 

End 

Input: Short-Term Memory (STM), Long-Term Memory, 

ranges of values for numerical attributes, frequency 

distribution of examples among classes, one new example. 

Output: STM, LTM, updated ranges of values for numerical 

attributes, updated frequency distribution of examples 

among classes. 

Step 1 Update the frequency distribution of examples among 

classes.  

Step 2 Test, whether the numerical attributes are within their 

existing ranges and if not update the ranges. 

Step 3.Test whether there are rules in the LTM that classify 

or misclassify the new example and simultaneously update 

their accuracy measures (A measures) and H measures. 

Step 4 Prune the LTM by removing the rules for which the 

A measure is lower than a given prespecified level 

(threshold). 

Step 5 IF the number of examples in the STM is less than a 

prespecified limit THEN add the example to the STM 

ELSE IF there are no rules in the LTM that classify the new 

example THEN replace an example from the STM that 

belongs to the class with the largest number of presentatives 

in the STM by the new example. 

Step 6 For each example in the STM that is not covered by 

the LTM, form a new rule by applying the rule forming 

procedure of Rules-3 Plus. Add the rule to the LTM. Repeat 

this step until there are no examples uncovered by the LTM. 

 



International Journal of Computer Applications (0975 – 8887) 

   Volume 88 – No.4, February 2014 

25 

minimum number of instances to be covered by the 

ParentRule. The ParentRuleSet and ChildRuleSet both are 

initialized to Null.  

A rule with antecedent is created by the procedure called 

SETAV marking all conditions in the rule antecedent as not 

existing. BestRule (BR) is the most general rule developed by 

SETAV procedure and it is included in to the ParentRuleSet 

for specialization. Now the loop keeps iterating until the 

ChildRuleSet is empty and there are no more rules left in it to 

be copied into ParentRuleSet. The RULES-7 algorithm only 

considers those rules in the ParentRuleSet which have 

coverage more than MS. Once the criterion has been fulfilled, 

the rule adds new “Valid” condition to it by simply change the 

“exist” flag of the condition from its default value “no” to 

“yes.” [27]. This rule called ChilRule (CR) and it will pass 

through a check for rule duplication to make sure that 

ChildRuleSet is free from any kind of duplication. Different 

control structure has been used in RULES-7 to fix some flaws 

in RULES-6. Since duplicate rule check has already been 

carried out, algorithm does not require another step at the end 

to remove duplicate rules from ChildRuleSet which helps save 

significant time as compared to RULES-6[27]. A flowchart of 

RULES-7 is given in figure 9.   

 

Figure 9: A simplified description of RULES-7 

3.1.10. RULES-8 
In 2012 Pham [28] developed a new rule induction algorithm 

called RULES-8 for handling discrete and continuous 

variables without the need for any data pre-processing. It also 

has the ability to deal with noisy data in the data set. RULES-

8 has been proposed to address the deficiencies of its 

predecessors by selecting a candidate attribute-value instead 

of a seed example to form a new rule. It chooses the candidate 

attribute-value to make sure the generated rule is the best rule. 

The conditions selection is based on applying specific 

heuristic H measure. The conjunction of conditions is created 

by incrementally appending conditions based on H measure. 

This measure helps assess the information content of each 

newly formed rule. There is also an improved simplification 

technique applied on rules to produce more compact rule sets 

and reduce the overlapping between rules. 

Seed attribute-value is considered as a candidate condition 

which when applied to a rule is capable of covering most 

examples. Different from its predecessors in the RULES 

family, RULES-8 algorithm first selects a seed attribute-value 

and then employs a specialisation process to find a general 

rule by incrementally adding new conditions to them. Figure 

10 describes the rule forming procedure of RuLES-8 

algorithm[28]. 

 

Step 1: Select randomly one uncovered attribute-value from 

each attribute to form an array SETAV = [A.1 A.2 .. A.j ] , then 

mark them in the training set T. 

Step 2: Form array expression T_EXP from SETAV 

Step 3: Compute H measure for each expression in T_EXP 

and sort them out according to the accuracy of expressions 

and then add them to the PRSET (highest H measure). If the 

H measure of the newly formed rule is higher than the H 

measure on any rules in the PRSET, the new rule replaces the 

rule having the lowest H measure. 

Step 4: Select an expression with a potential condition (Aij) 

having the highest H measure to find the seed attribute-value 

(Ais) 

IF the expression having the highest H measure covers 

correctly all covering example  

THEN the potential condition (Aij) is selected as a 

seed attribute-value (Ais). 

Assume that it covers n examples. 

- Removes this expression from the PRSET 

- Go to step 7 

ELSE go to step 5 

Step 5: Check uncovered attribute-values 

IF there are not uncovered attribute-values THEN 

Stop 

ELSE check uncovered attribute-values. 

IF there are uncovered attribute-values that have not 

been marked 

THEN go to step 1. 

ELSE go to step 6. 

Step 6: Form a new array SETAV by combining the potential 

attribute-value with other attribute value in the same example 

SETAV = [Aij + Ai1 ; Aij + Ai2 ;.. Aij + Aik ]. 

Go to step 2. 

Step 7: Form a set of conjunctions of condition SETCC by 

combining is Ais with other attribute-values, SETCC = [Ais + 

Ai1 ; Ais + Ai2 ;.. Ais + Aik ]. 

Step 8: Form array rule Temporary Rule Set (T_RSET) from 

SETCC. 

Step 9: Compute H measure for each expression of T_RSET 

and sort them out according to the consistency of expressions 

and then add them to the NRSET (highest H measure). If the 

H measure of the newly formed rule is higher than the H 

measure on any rules in the NRSET, the new rule replaces the 

rule having the lowest H measure. 

Step 10: Select an expression with the conjunction of 

conditions (A isc ) having the highest H measure to test the 

consistency. Assume that it covers m examples  

IF m> n THEN A isc  is considered as a new seed 

attribute-value 

Go to step 6 

ELSE add the new rule to RuleSet 

Go to Step 5 
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Figure 10: A pseudo-code description of RULES-8 rule 

forming procedure 

 

3.2. RULE EXTRACTOR-1 
REX-1 (Rule Extractor-1) was created to acquire IF-THEN 

from given examples.  It is an algorithm inventive for 

Inductive Learning and to dismiss the pitfalls encountered in 

the RULES family algorithms. The entropy value is used to 

give more value to more important attributes.  The process of 

rules induction in REX-1 is as follows: REX-1 calculates 

basic entropy values and recalculated entropy values, then sets 

the attributes in ascending order to process the lowest entropy 

values first. The REX-1 algorithm is described below in figure 

11 [29]. 

 
Figure11: REX-1 algorithm 

 

4. INDUCTIVE LEARNING 

APPLICATIONS 
Inductive learning algorithms are domain independent and can 

be used in any task involving classification or pattern 

recognition. Some of them are summarized below[30]. 

4.1. Education 
Research in data mining for its use in education is on the rise.  

This new emerging field, called Educational Data Mining 

(EDM). Developing methods that discover and extract 

knowledge from data generating from educational 

environments is the main concern of EDM[31]. Decision 

Trees, Neural Networks, Naïve Bayes, K- Nearest neighbor, 

and many other techniques can be used in EDM. By the 

application of this technique, there is the discovery of 

different knowledge kind such as classifications, association 

rules, and clustering. The extracted knowledge can be used to 

make a number of predictions. For instance it can be used to 

predict student enrolment in a certain course, discovery of 

abnormal values in the student result slips, and selection of 

the most suitable course for the students based on their past 

strengths and skills. Moreover, they can help advice the 

students on additional courses they should take to boost their 

performance [12][32]. 

There exist several decision trees construction algorithms and 

they are widely used of all machine learning aspects 

especially in EDM. Examples of the mostly used algorithms 

in EDM are ID3, C4.5, CART, CHAID, QUEST, GUIDE, 

CRUISE, CTREE and ASSISTANT. J. Ross Quinlan's ID3 

and its successor, C4.5, are among the most widely used 

decision tree algorithms in the machine learning community 

[33]. C4.5 and ID3 are similar in how they act but C4.5 has 

improved behaviors in comparison to ID3.ID3 algorithm 

bases it selection of the best attribute information gain and on 

entropy concept. C4.5 handles uncertain data. This comes at 

the cost of a high rate of classification error. CART is another 

well known algorithm which divides its data in to two subsets 

recursively. This makes the data in one subset more 

homogeneous than the data in the other subset. CART will 

repeat the process of splitting till a stopping  condition is 

achieved or until the homogeneity norm is reached [3].  

 

4.2. Making Credit Decisions  
Loan companies often use questionnaires to collect 

information about credit applicants in order to determine their 

credit eligibility. This process used to be manual but has been 

automated to some extent. For example, American Express 

UK used a statistical decision procedure based on discriminate 

analysis to reject applicants below a specific threshold while 

accepting those exceeding another one. The remaining fell 

into a "borderline" region and was switched to loan officers 

for further review. However, loan officers were accurate in 

predicting potential default by borderline applicants no more 

than 50% of the time.  

These findings inspired American Express UK to try methods 

such as machine learning to improve decision-making 

processes. Michie and his colleagues used an induction 

method to produce a decision tree that made accurate 

predictions about 70% of the borderline applicants. It does not 

only improve the accuracy but it helps the company to provide 

explanations to the applicants [34]. 

 

5. CONCLUSION AND FUTURE WORK 
Inductive learning enables the system to recognize regularities 

and patterns in previous knowledge or training data and 

extract the general rules from them. This paper presented an 

overview of main inductive learning concepts as well as brief 

descriptions of existing algorithms. Many classification 

algorithms have been discussed in the literature but decision 

tree is the most commonly used tool due to ease of 

implementation as well as being easier to understand than 

other classification algorithms. The ID3, C4.5 and CART 

decision tree algorithms has been explained one by one. To 

exceed the results of divide-and-conquer attempts researchers 

have tried to improve covering algorithms. It is preferable to 

infer rules directly from the dataset itself instead of inferring 

them from a decision tree. The algorithm of RULES family is 

used to induce a set of classification rules from a collection of 

training examples for objects belonging to one known class. A 

brief description of RULES family is presented including: 

RULES1, RULES2, RULES3, RULES3-Plus, RULES4, 

RULES5, RULES6, RULES3-EXT, RULES7 and RULES8. 

Each version has certain new features to overcome the 

shortcomings of the previous versions. 

Step 1 In a given example set, the entropy is computed for 

each value and each attribute. 

Step 2 Reformulated entropy values are computed. (The 

entropy value of each attribute is multiplied with the 

number of the values of the attribute). 

Step 3 The reformulated entropy values are stored in 

ascending manner and the example set is reformed based 

on the sorting. 

Step 4 Odd number (n=1) combinations of the values in 

each example are selected. Any value of which entropy 

equals zero for n=1 may be selected as a rule. These 

values are converted into rules. The classified examples 

are marked. 

Step 5 Go to step 8. 

Step 6 Beginning from the first unclassified example, 

combinations with n values are formed by taking only one 

attribute from the values of attributes. 

Step 7 Each combination is applied to all of the examples 

in the set of examples. From the values composed of n 

combinations, those matching with only one class are 

converted into a rule. The classified examples are marked. 

Step 8 IF all of the examples are classified THEN go to 

step 11. 

Step 9 Perform n=n+1 expression. 

Step 10 IF n<N THEN go to step 6. 

Step 11 IF there are more than one rule representing the 

same example, the most general one is selected. 

Step 12 END. 

(Note: N: number of Attributes, n: Number of 

Combinations). 
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The objectives behind the research included surveying current 

inductive learning methods and extending RULES family of 

algorithms by developing a new simple rule induction 

algorithm that overcomes certain shortcomings of its 

predecessors. While I have achieved the first objective behind 

the research, my future work will be primarily focused on 

achieving the second goal. It is very important to invent new 

algorithms or improve current ones to achieve more reliable 

results. Therefore, my Initial specifications  of the newly 

developed rule induction algorithm but not limited to the 

following: Generate a compact  rule sets for discrete outputs, 

Handling of discrete and continuous inputs, the ability to deal 

with noisy examples without increasing the number of rules, 

the ability to deal with incomplete examples,  and improve 

rule forming processes where possible. 
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