
International Journal of Computer Applications (0975 – 8887)

 Volume 88 – No.4, February 2014

20

An Overview of Inductive Learning Algorithms

Amal M. AlMana

College of Computer and Information Sciences
Information Systems Department

King Saud University
Riyadh, Saudi Arabia

Mehmet Sabih Aksoy, Ph.D
College of Computer and Information Sciences

Information Systems Department
King Saud University
Riyadh, Saudi Arabia

ABSTRACT

Inductive learning enables the system to recognize patterns

and regularities in previous knowledge or training data and

extract the general rules from them. In literature there are

proposed two main categories of inductive learning methods

and techniques. Divide-and-Conquer algorithms also called

decision Tree algorithms and Separate-and-Conquer

algorithms known as covering algorithms. This paper first

briefly describe the concept of decision trees followed by a

review of the well known existing decision tree algorithms

including description of ID3, C4.5 and CART algorithms. A

well known example of covering algorithms is RULe

Extraction System (RULES) family. An up to date overview

of RULES algorithms, and Rule Extractor-1 algorithm, their

solidity as well as shortage are explained and discussed.

Finally few application domains of inductive learning are

presented.

Keywords

Data Mining, Rules Induction, RULES Family, REX-1,

Covering Algorithms, Inductive Learning, ID3, C4.5, CART,

and Decision Tree algorithms

1. INTRODUCTION
A new field of machine learning known as inductive learning

has been introduced to help in inducing general rules and

predicting future activities [1]. Inductive learning is learning

from observation and earlier knowledge by generalization of

rules and conclusions. Inductive learning allows for the

identification of training data or earlier knowledge patterns

and similarities which are then extracted as generalized rules.

The identified and extracted generalized rules come to use in

reasoning and problem solving[2]. Data mining is one step in

the process of knowledge discovery in databases (KDD). It is

possible to design automated tools for learning rules from

databases by using data mining or other knowledge discovery

techniques[3][4]. There is an intersection point between the

field of data mining and machine learning as they both extract

interesting patterns and knowledge from databases[5].

According to Holsheimer et al. [6], data mining refers to the

use of the database as a training set in the learning process.

In inductive learning different methods have been proposed to

infer classification rules. These methods and techniques were

divided into two main categories: Divide-and-Conquer

(Decision Tree) and Separate-and-Conquer (Covering).

Divide-and-conquer algorithms, such as ID3, C4.5 and CART

are classification techniques that derive the general

conclusions using decision tree. Separate-and-Conquer

algorithms such as AQ family, CN2 (Clark and Niblett), and

RULES (RULe Extraction System) family where rules are

directly induced from a give set of training examples[1][7]. A

decision tree represents one of the mostly used approaches in

inductive machine learning. A set of training examples

usually used to form a decision tree [4]. The preference of

decision trees for inductive learning is due to their ease in

implementation and comprehension, and the lack of methods

for preparation like normalization. Decision tree performance

is good and it can function well with large databases. For this

reason and due to its efficiency decision tree can handle a

huge amount of training examples. Both numerical and

categorical data are possible in the decision tree structure.

Decision trees generalize in a better way for data instances not

yet observed, once examined the attribute value pair in the

training data. The better understanding of classification based

on the attributes provided. The attribute arrangement on the

decision tree is from the information available hence the

classification is well laid out. The negative aspect of the

decision trees is that the generalized rules given are not

always the most generalized. For this reason, some algorithms

like AQ family algorithms do not use decision trees. The AQ

algorithm family makes use of the disjunction of positive

examples feature values [8].

In the arena of divide-and-conquer algorithms, a major issue

that arises is the complications with trying to show certain

rules in the tree. Specifically, it‟s challenging to induce rules

that do not have anything in common with tree attributes, and

a further complication is the fact that some attributes that

show up are either repetitive or unnecessary[9]. Also, these

algorithms caused the replication problem, wherein sub-trees

can be repeated on different branches. It is difficult to handle

a tree when it gets too big. Using divide-and-conquer

methods on a large tree might lead to unnecessary

confusion[7].

As a consequence, researchers have lately tried improving

covering algorithms to compare or exceed the results of

divide-and-conquer attempts. It is better to induce the rules

directly from the dataset itself instead of inducing them from a

decision tree structure which is summarized into four main

properties according to Kurgan et al. [10] . Firstly, using

representation such as “IF…THEN” makes the rules more

easily understood by people. It is also a proven fact that rule

learning is a more effective method than using decision trees.

Moreover, the derived rules can be used and stored easily in

any expert system or any knowledge-based system. Lastly, it

is also easier to study and make changes to rules that have

been induced without affecting other rules because they are

independent of each other[10].

This paper is organized as follows: Section 2 describes the

concept of decision tree followed by the divide and conqure

algorithms majoring on ID3, C4.5 and CART, the mostly

applied algorithms. In Section 3 we review the separate and

conquer algorithms specifically the Rules Family of

Algorithms and Rule Extractor-1 algorithm. Section 4

discusses some inductive learning applications. Finally,

Section 5 concludes the paper with future works.

International Journal of Computer Applications (0975 – 8887)

 Volume 88 – No.4, February 2014

21

2. DIVIDE AND CONQURE

ALGORITHMS
A brief explanation of the concept of decision tree and the

well known divide and conqure algorithms such as ID3, C4.5

and CART are presented below.

2.1. Decision Tree
Decision trees, according to Mitchell[11], categorize instances

by arranging them form the root to a particular leaf node

down the tree. This acts as the categorization of instances.

Any node in the tree represents a test of some attribute of the

instance while each descending branch from the node, will

represent a possible attribute value. The figure below is an

example of a decision tree constructed based on the attribute

named outlook. The outlook attribute has three values

overcast, sunny, and rain. Some values have sub trees like rain

and sunny values in figure 1. Classification of examples into

distinct set of probable groupings, are often termed as

classification problems [8][11].

Figure 1: Decision Tree Example

The first step achieved by the tree models is the categorization

into groups of the observations. The process that follows after

achieving the groups form the categorization process is the

scoring of these particular groups. Classification trees and

regression trees are the two categories of tree models. A

regression tress has a continuous response variable but the

classification trees, have a quantitative or qualitative

categorical response variable. It is possible to give the

definition of tree models as a recursive procedural process

where n statistical units, in a set, put into groups. The process

of putting the units into groups is by division dependent on a

given division rule, and it is progressive. The aim of the

division rule is homogeneity maximization or the response

variable purity measure in its group as obtained. The division

rule institutes a way of partitioning the observations. Each

division procedure in the process is dependent on the

explanatory variable to split and the splitting rule required,

knowing the division rule applicable. A final partition of the

observations is the main result of any decision tree [3].

2.2 Decision Tree Learning Algorithms
Among the many algorithms for decision trees creation, ID3

and C4.5 by J. R. Quinlan, are the two mostly used. Another

famous algorithm is CART by Breiman. A brief explanation

of each one of them is presented below.

2.2.1 ID3 Algorithm

Ross Quinlan created Iterative Dichotomiser 3 algorithm in

1986. It is also known as ID3 algorithm. It is among the

algorithms earlier stated. ID3 is based on Hunt‟s algorithm. It

is a simple decision tree learning algorithm. In the iterative

inductive approach ID3 is used to classify objects[8]. The

whole idea in the buildup of the ID3 algorithm is

accomplished through the top down search of particular sets

to examine every attribute at each node in the tree [12][13].

Here, a metric, Information gain, comes into play for the

purpose of attribute selection. Attribute selection is the main

part of classification of given sets. Information gain enables

for the measure of the relevance of the questions asked. This

allows for the minimization of the questions needed for the

classification of a learning set. The choice that ID3 makes on

the splitting attribute depends on the information gain

measure. Claude Shannon came up with the idea of measuring

information gain by entropy in 1948[8][13].

ID3 has a preference for the trees generated. Once generated,

the tree should be shorter and near the top of the tree is where

attributes with lower entropies should be [2]. In building the

tree models, ID3 accepts categorical attribute. This is the only

process where ID3 accepts them. ID3 algorithm implement

decision tree serially. However in the existence of noise ID3

does not give accurate results. For this reason, ID3 has to

perform a thorough processing of data before its use in tree

model building. These decision trees are mostly used for the

decision making purpose [8][14].The figure below shows the

basic implementation technique of ID3 algorithm as presented

in [2].

Figure2: ID3 algorithm

There are problems with ID3 algorithm. The resultant

decision tree over fitting the training example is one problem.

This is as a result of the procedural splitting in the attempt of

individual split optimization instead of the whole tree

optimization [4]. The outcome of this process is decision trees

that are too precise from the use of conditions that are

pointless or irrelevant. There is a repercussion to this

outcome. This is the interference of the categorization of

unknown examples or those examples with incomplete

attributes values. Usually, pruning is used to reduce over fit in

decision trees. However, this procedure may not work

efficiently for an inadequate data set that demands

probabilistic as opposed to categorical classification [15].

1 .For each uncategorized attribute, its entropy would be

calculated with respect to the categorized attribute, or

conclusion.

2. The attribute with lowest entropy would be selected.

3. The data would be divided into sets according to the

attribute‟s value. For example, if the attribute „Size‟ was

chosen, and the values for „Size‟ were „big‟, „medium‟ and

„small, therefore three sets would be created, divided by these

values.

4. A tree with branches that represent the sets would be

constructed. For the above example, three branches would be

created where first branch would be „big‟, second branch would

be „medium‟ and third branch would be „small‟.

5. Step 1 would be repeated for each branch, but the already

selected attribute would be removed and the data used was only

the data that exists in the sets.

 6. The process stopped when there were no more attribute to be

considered or the data in the set had the same conclusion, for

example, all data had the „Result‟ = yes.

International Journal of Computer Applications (0975 – 8887)

 Volume 88 – No.4, February 2014

22

2.2.2 C4.5 Algorithm

Ross Quinlan, 1993, developed an upgraded algorithm of ID3.

C4.5 is the ID3 upgrade. C4.5 is similar to its predecessor in

that is based on Hunt‟s algorithm and it has a serial

implementation. Tree pruning in C4.5 is after its creation.

Once created, it returns through the tree created and tries to

eliminate irrelevant branches by substituting them with leaf

nodes hence the error rate decreases [16].

Both continuous and categorical attributes are acceptable in

tree model building in C4.5, unlike in ID3. It uses

categorization to tackle continuous attributes. This

categorization is done by creating a threshold and separating

the attributes based on their position in reference to this

threshold [17][18]. Determination of the best splitting

attribute, like in ID3, is at each tree node through the sorting

of data. In C4.5, splitting attribute evaluation is by the gain

ratio impurity method [13]. C4.5 can work with training data

with attributes missing values. It allows for the missing values

representation as “?”. It also works with attributes with

different costs. In gain ratio and entropy calculations, C4.5

ignores the missing value attributes [16].

2.2.3 CART Algorithm
Classification and regression tree algorithm also known as

CART is a development by Breiman in 1984. From its name,

it is able to generate classification and regression model trees.

CART binary splits attributes in the building of the

classification trees. Like ID3 and C4.5, it is based on Hunt‟s

algorithm and can apply serial implementation [18].

In CART decision tree building, categorical and continuous

attributes are both acceptable. It is similar to C4.5 in that it

can work with missing attributes in data. CART applies the

Gini index splitting measure to determine the splitting

attribute for the decision tree construction[13]. From its use

of the binary splitting of attributes, it gives binary splits hence

binary decision trees. This is different from ID3 and C4.5 split

production. Unlike ID3 and C4.5 algorithms, Gini Index

measure does not use probabilistic assumptions. Therefore,

the unreliable branches are pruned following the cost

complexity. This improves the tree‟s accuracy [17][18].

3. SEPARATE AND CONQUER

ALGORITHMS
Separate-and-Conquer algorithms such as AQ family, CN2,

Rule Extractor-1 and RULES family of algorithms where

rules are directly induced from a give set of training

examples.

3.1. RULES Family of Algorithms
Below is a brief description of all versions of Rules Family of

Algorithms.

3.1.1. RULES-1
RULES-1 (RULe Extraction System-1) also known as

RULES algorithm was developed by Pham and

Aksoy[19][20]. An implementation of RULES-1 extracts

rules for objects in similar sets of classes. Each object has its

own attributes and values, which makes them individual.

Each condition consists of an attribute and value pair, so for

example, if an object has Na as the number of attributes, the

rule may fall between one and Na conditions. In a collection

of objects all of their values and attributes construct an array.

The size of the array is equal to the total number of all values.

At most, there can be Na iterations in the rule-forming

procedure[19][20].

 In the initial loop, the system examines every element to see

if it is able to be part of a rule with that element as the

condition. It can help form a rule if any given element in that

loop applies to a single class. If, however, it applies to more

than one class, it is overlooked in favor of the next potential

element. Once RULES-1 has checked all elements, it

rechecks all examples against the candidate rule to ensure

everything is in place. If any examples remain that is

unclassified, a new array is constructed containing all

unclassified examples and the next iteration of the procedure

is initiated. If no more unclassified examples, the procedure

is finished. This continues until everything is classified

properly or all iterations equal Na[19][20]. This process can

be seen in the flowchart below in figure 3[19].

 Figure3: Flow chart of RULES

RULES-1 does have its advantages and disadvantages. A big

advantage is that it doesn‟t have the issue of conditions being

irrelevant, because of the irrelevant condition checking phase.

There is no need for windowing because the computer doesn‟t

need to keep track of all the examples simultaneously in the

memory. However, the system does have issues with overly-

large numbers of selected rules as RULES-1 doesn‟t have a

way to filter out sizes. Also, it does have a long training

period associated with it when solving a problem with huge

number of attributes and their values. Another shortage in

RULES-1 that it cannot handle training set with numerical

values or incomplete examples [19][20].

International Journal of Computer Applications (0975 – 8887)

 Volume 88 – No.4, February 2014

23

3.1.2. RULES-2
After creating RULES-1, Pham and Aksoy invented RULES-

2 in 1995. RULES-2 is essentially similar to RULES-1 in

terms of how it derives rules; however the only difference is

that RULES-2 considers the value of one unclassified

example to produce a rule for classifying that example instead

of considering the values of all unclassified examples in each

loop. As a result RULES-2 is able to operate faster. It also

gives the user some control over how many rules need to be

extracted. Another advantage is RULES-2‟s ability to

compute with examples that aren‟t complete, and to handle

numeric and nominal values while filtering out examples that

aren‟t relevant and automatically avoids irrelevant

conditions[20].

3.1.3. RULES-3
RULES-3 was the succeeding version, which built on the

advantages of the systems that came before and also

introduced new features, such as more compact rule sets and

ways to adjust how precise the rules extracted need to be.

Users of RULES-3 can define the minimum number of

conditions need to exist to create a rule. There are advantages

to this – the rules will be more exact, and not as many search

operations will be needed to find the correct rule set[20]. This

process can be summarized as below in figure 4[21].

Figure4: RULES-3 algorithm

3.1.4. RULES3-Plus
In 1997 Pham and Dimov built upon RULES-3‟s ability to

form rules in their creation of RULES-3 PLUS algorithm [22].

RULES-3 Plus is more efficient than RULES-3 in searching

out rules, it applies the beam search strategy instead of greedy

search and it makes use of the so-called H measure to help

with selecting rules according to how correct and general they

are.

However, RULES-3 Plus does have its drawbacks – its

efficiency is not a foregone conclusion, as it tends to overly-

train itself to cover all data. The H measure, as well, is a very

complex calculation and it doesn‟t always bring in the most

accurate and general results. Although RULES-3 Plus

discretised its continuous valued attributes, its discretisation

method does not follow any set rules; it is arbitrary and

doesn‟t try to find any information in the data, which inhibits

RULES-3 Plus‟ ability to learn new rules. A summary of the

rule forming procedure of RULES-3 Plus is presented below

in figure 5 [22].

Figure5: Rule forming procedure of RULE-3 Plus

3.1.5. RULES-4
RULES-4 [23] was created to address the ability to extract

rules incrementally in the RULES family byprocessing one

example at a time. Pham and Dimov developed RULES-4 in

1997 as the first incremental learning algorithm under the

RULES family. They invented it to be a variation on RULES-

3 Plus, and it has some additional advantages – namely the

ability to store training examples in the Short Term Memory

(STM) when they become available and ready. Another

advantage of RULES-4 is the ability to let the user specify the

size of the STM storage used in the creation of the rules.

When that memory is full, RULES-4 has the ability to draw

Step 1 Quantize attributes that have numerical values.

Step 2 Select an unclassified example and form array

SETAV.

Step 3 Initialize arrays PRSET and T_PRSET (PRSET and

T_PRSET will consist of mPREST expressions with null

conditions and zero H measures) and set nco=0.

Step 4 IF nco < na

 THEN nco = nco + 1 and set m = 0;

 ELSE the example itself is taken as a rule and go to

Step 7.

Step 5 DO

m=m+ 1;

Form an array of expressions (T_EXP). The

elements of this array are combinations of

expression m in PRSET with conditions from

SETAV that differ from the conditions

already included in the expression m (the

number of elements in T_EXP is: na - nco. Set

k = 1;

DO

k=k+ I;

Compute the H measure of expression k

in T_EXP;

IF its H measure is higher than the H

measure of any expression in T_PRSET

THEN replace the expression having

the lowest H measure with expression

k;

WHILE k < na - nco ;

Discard the array T_EXP;

WHILE m < mPREST

Step 6 IF there are consistent expressions in T_PRSET

THEN choose as a rule the expression that has the

highest H measure and discard the others;

Mark the examples covered by this rule as

classified;

Go to Step 7;

ELSE copy T_PRSET into PRSET;

Initialize T_PRSET and go to Step 4.

Step 7 IF there are no more unclassified examples

 THEN STOP;

 ELSE go to Step 2.

(Note: nco = number of conditions, na = number of Attributes,

T_EXP= a temporary array of expressions, mPRSET= number

of expressions stored in PRSET and its given by the user,

T_PRSET= a temporary array of partial rules of the same

dimension as PRSET).

Step 1 Define ranges for the attributes, which have

numerical values and assign labels to those ranges

Step 2 Set the minimum number of conditions (Ncmin) for

each rule

Step 3 Take an unclassified example

Step 4 Nc=Ncmin–1

Step 5 If Nc<Na then Nc=Nc+1

Step 6 Take all values or labels contained in the example

Step 7 Form objects, which are combinations of Nc values

or labels taken from the values or labels obtained in Step 6

Step 8 If at least one of the objects belongs to a unique

class then form rules with those objects; ELSE go to Step 5

Step 9 Select the rule, which classifies the highest number

of examples

Step 10 Remove examples classified by the selected rule

Step 11 If there are no more unclassified examples then

STOP; ELSE go to Step 3.

(Note: Nc = number of conditions, Na = number of

Attributes).

International Journal of Computer Applications (0975 – 8887)

 Volume 88 – No.4, February 2014

24

on RULES-3 Plus‟ knowledge to create new rules. Pham and

Dimov explain the incremental algorithm in figure 6.

Figure6: The incremental induction procedure of

RULES-4

STM always empty and it‟s initialized with a set of examined

examples. LTM contained the previously extracted rules or

some initial rules defined by the user[23].

3.1.6. RULES-5
Pham et al. [24] invented RULES-5 in 2003 which built on

the advantages of RULES-3 Plus . They tried to overcome

some insufficiencies of RULES-3 Plus algorithm in their

newly developed algorithm called RULES-5. It implements a

method to manage continuous attributes so there is no need

for quantization[24]. Choosing the condition and the

procedure of handling continues attributes are the main

process in RULES-5 algorithm. The authors explain this core

process as follows: The process of rule extraction in RuleS-5

consider only the conditions except the closest example (CE)

that is covered by the extracted rule and does not belong to

the target class. Any data set may include both continues and

discrete attributes. In order to calculate CE, a measure is used

to compute the distance between any two examples in the data

set whether it includes discrete attributes or continues ones.

The main advantage that distinguishes RULES-5 from

previous RULES algorithms is its ability to generate fewer

rules in a very accurate manner. As a result it takes shorter

training time and searching time[20].

3.1.7. RULES-6
RULES-6 was developed by Pham and Afify [25] in 2005

using RULES-3 Plus as a basis. RULES-6 is a quick way of

finding IF-THEN rules from given examples; it is also simpler

in its evaluations of rules and how it handles continuous

attributes. Because Pham and Afify developed RULES-6 to

build on and improve RULES-3 Plus by adding the ability to

handle noise in dataset, RULES-6 is both more accurate and

easier to use, and it doesn‟t suffer the same slowdowns in the

learning process because it doesn‟t get bogged down in

useless details. Making it even more effective, RULES-6 uses

simpler criteria for qualifying rules and checking continuous

values in the algorithms which led to a further improvement in

the performance of the algorithm. Figure 7 describes the

pseudo code of RULES-6. A pruned general to specific search

is carried out by Induce_One_Rule procedure to search for

rules [25].

Figure7: Pseudo code description of RULES-6

3.1.8. RULES3- EXT:
In 2010 Mathkour [26] developed a new inductive learning

algorithm called RULES3-EXT. many disadvantages exist in

RULES-3, RULES3-EXT was created to address them

efficiently. The main advantages of RULES3-EXT are as

follows: It is capable of eliminating repetitive examples,

allowing users to make changes where needed in attribute

order, if any of the extracted rules cannot fully be satisfied by

an unseen example the system can partially fire rules, and it

can work on a smaller number of required files to extract a

knowledge base two files instead of three. The main steps

which describe the induction process of RULES3-EXT

algorithm are given below in figure 8 [26].

Figure8: RULES3- EXT algorithm

3.1.9. RULES-7
RULES family has extended to Rules-7 [27], also known as

RULe Extraction System Version 7 which improves upon its

predecessor RULES-6 by fixing some of its drawbacks.

RULES7 employs a general to specific beam search on the

data set to derive the best rule. It selects sequentially a seed

example that is passed by Induce_Rules procedure to the

Induce_One_Rule procedure after calculating MS which is the

Step 1 Define ranges for the attributes, which have numerical

values and assign labels to those ranges.

Step 2 Set the minimum number of conditions (Ncmin) for

each rule.

Step 3 Take an unclassified example.

Step 4 Nc=Ncmin-1

Step 5 If Nc<Na then Nc=Nc+1

Step 6 Take all values or labels contained in the example.

Step 7 Form objects, which are combinations of Nc values or

labels taken from the values or labels obtained in Step 6.

Step 8 If at least one of the objects belongs to a unique class

then form rules with those objects; ELSE go to Step 5.

Step 9 Select the rule, which classifies the highest number of

examples.

Step 10 Remove examples classified by the selected rule.

Step 11 If there are no more unclassified examples then STOP;

ELSE go to Step 3.

 (Note: Nc: number of conditions, Na: number of attributes).

Procedure Induce_Rules (TrainingSet, BeamWidth)

RuleSet = ∅

While all the examples in the TrainingSet are not covered

Do
Take a seed example s that has not yet been covered

Rule = Induce_One_Rule (s, TrainingSet, BeamWidth)

Mark the examples covered by Rule as covered

RuleSet = RuleSet ∪ {Rule}

End While

Return RuleSet

End

Input: Short-Term Memory (STM), Long-Term Memory,

ranges of values for numerical attributes, frequency

distribution of examples among classes, one new example.

Output: STM, LTM, updated ranges of values for numerical

attributes, updated frequency distribution of examples

among classes.

Step 1 Update the frequency distribution of examples among

classes.

Step 2 Test, whether the numerical attributes are within their

existing ranges and if not update the ranges.

Step 3.Test whether there are rules in the LTM that classify

or misclassify the new example and simultaneously update

their accuracy measures (A measures) and H measures.

Step 4 Prune the LTM by removing the rules for which the

A measure is lower than a given prespecified level

(threshold).

Step 5 IF the number of examples in the STM is less than a

prespecified limit THEN add the example to the STM

ELSE IF there are no rules in the LTM that classify the new

example THEN replace an example from the STM that

belongs to the class with the largest number of presentatives

in the STM by the new example.

Step 6 For each example in the STM that is not covered by

the LTM, form a new rule by applying the rule forming

procedure of Rules-3 Plus. Add the rule to the LTM. Repeat

this step until there are no examples uncovered by the LTM.

International Journal of Computer Applications (0975 – 8887)

 Volume 88 – No.4, February 2014

25

minimum number of instances to be covered by the

ParentRule. The ParentRuleSet and ChildRuleSet both are

initialized to Null.

A rule with antecedent is created by the procedure called

SETAV marking all conditions in the rule antecedent as not

existing. BestRule (BR) is the most general rule developed by

SETAV procedure and it is included in to the ParentRuleSet

for specialization. Now the loop keeps iterating until the

ChildRuleSet is empty and there are no more rules left in it to

be copied into ParentRuleSet. The RULES-7 algorithm only

considers those rules in the ParentRuleSet which have

coverage more than MS. Once the criterion has been fulfilled,

the rule adds new “Valid” condition to it by simply change the

“exist” flag of the condition from its default value “no” to

“yes.” [27]. This rule called ChilRule (CR) and it will pass

through a check for rule duplication to make sure that

ChildRuleSet is free from any kind of duplication. Different

control structure has been used in RULES-7 to fix some flaws

in RULES-6. Since duplicate rule check has already been

carried out, algorithm does not require another step at the end

to remove duplicate rules from ChildRuleSet which helps save

significant time as compared to RULES-6[27]. A flowchart of

RULES-7 is given in figure 9.

Figure 9: A simplified description of RULES-7

3.1.10. RULES-8
In 2012 Pham [28] developed a new rule induction algorithm

called RULES-8 for handling discrete and continuous

variables without the need for any data pre-processing. It also

has the ability to deal with noisy data in the data set. RULES-

8 has been proposed to address the deficiencies of its

predecessors by selecting a candidate attribute-value instead

of a seed example to form a new rule. It chooses the candidate

attribute-value to make sure the generated rule is the best rule.

The conditions selection is based on applying specific

heuristic H measure. The conjunction of conditions is created

by incrementally appending conditions based on H measure.

This measure helps assess the information content of each

newly formed rule. There is also an improved simplification

technique applied on rules to produce more compact rule sets

and reduce the overlapping between rules.

Seed attribute-value is considered as a candidate condition

which when applied to a rule is capable of covering most

examples. Different from its predecessors in the RULES

family, RULES-8 algorithm first selects a seed attribute-value

and then employs a specialisation process to find a general

rule by incrementally adding new conditions to them. Figure

10 describes the rule forming procedure of RuLES-8

algorithm[28].

Step 1: Select randomly one uncovered attribute-value from

each attribute to form an array SETAV = [A.1 A.2 .. A.j] , then

mark them in the training set T.

Step 2: Form array expression T_EXP from SETAV

Step 3: Compute H measure for each expression in T_EXP

and sort them out according to the accuracy of expressions

and then add them to the PRSET (highest H measure). If the

H measure of the newly formed rule is higher than the H

measure on any rules in the PRSET, the new rule replaces the

rule having the lowest H measure.

Step 4: Select an expression with a potential condition (Aij)

having the highest H measure to find the seed attribute-value

(Ais)

IF the expression having the highest H measure covers

correctly all covering example

THEN the potential condition (Aij) is selected as a

seed attribute-value (Ais).

Assume that it covers n examples.

- Removes this expression from the PRSET

- Go to step 7

ELSE go to step 5

Step 5: Check uncovered attribute-values

IF there are not uncovered attribute-values THEN

Stop

ELSE check uncovered attribute-values.

IF there are uncovered attribute-values that have not

been marked

THEN go to step 1.

ELSE go to step 6.

Step 6: Form a new array SETAV by combining the potential

attribute-value with other attribute value in the same example

SETAV = [Aij + Ai1 ; Aij + Ai2 ;.. Aij + Aik].

Go to step 2.

Step 7: Form a set of conjunctions of condition SETCC by

combining is Ais with other attribute-values, SETCC = [Ais +

Ai1 ; Ais + Ai2 ;.. Ais + Aik].

Step 8: Form array rule Temporary Rule Set (T_RSET) from

SETCC.

Step 9: Compute H measure for each expression of T_RSET

and sort them out according to the consistency of expressions

and then add them to the NRSET (highest H measure). If the

H measure of the newly formed rule is higher than the H

measure on any rules in the NRSET, the new rule replaces the

rule having the lowest H measure.

Step 10: Select an expression with the conjunction of

conditions (A isc) having the highest H measure to test the

consistency. Assume that it covers m examples

IF m> n THEN A isc is considered as a new seed

attribute-value

Go to step 6

ELSE add the new rule to RuleSet

Go to Step 5

International Journal of Computer Applications (0975 – 8887)

 Volume 88 – No.4, February 2014

26

Figure 10: A pseudo-code description of RULES-8 rule

forming procedure

3.2. RULE EXTRACTOR-1
REX-1 (Rule Extractor-1) was created to acquire IF-THEN

from given examples. It is an algorithm inventive for

Inductive Learning and to dismiss the pitfalls encountered in

the RULES family algorithms. The entropy value is used to

give more value to more important attributes. The process of

rules induction in REX-1 is as follows: REX-1 calculates

basic entropy values and recalculated entropy values, then sets

the attributes in ascending order to process the lowest entropy

values first. The REX-1 algorithm is described below in figure

11 [29].

Figure11: REX-1 algorithm

4. INDUCTIVE LEARNING

APPLICATIONS
Inductive learning algorithms are domain independent and can

be used in any task involving classification or pattern

recognition. Some of them are summarized below[30].

4.1. Education
Research in data mining for its use in education is on the rise.

This new emerging field, called Educational Data Mining

(EDM). Developing methods that discover and extract

knowledge from data generating from educational

environments is the main concern of EDM[31]. Decision

Trees, Neural Networks, Naïve Bayes, K- Nearest neighbor,

and many other techniques can be used in EDM. By the

application of this technique, there is the discovery of

different knowledge kind such as classifications, association

rules, and clustering. The extracted knowledge can be used to

make a number of predictions. For instance it can be used to

predict student enrolment in a certain course, discovery of

abnormal values in the student result slips, and selection of

the most suitable course for the students based on their past

strengths and skills. Moreover, they can help advice the

students on additional courses they should take to boost their

performance [12][32].

There exist several decision trees construction algorithms and

they are widely used of all machine learning aspects

especially in EDM. Examples of the mostly used algorithms

in EDM are ID3, C4.5, CART, CHAID, QUEST, GUIDE,

CRUISE, CTREE and ASSISTANT. J. Ross Quinlan's ID3

and its successor, C4.5, are among the most widely used

decision tree algorithms in the machine learning community

[33]. C4.5 and ID3 are similar in how they act but C4.5 has

improved behaviors in comparison to ID3.ID3 algorithm

bases it selection of the best attribute information gain and on

entropy concept. C4.5 handles uncertain data. This comes at

the cost of a high rate of classification error. CART is another

well known algorithm which divides its data in to two subsets

recursively. This makes the data in one subset more

homogeneous than the data in the other subset. CART will

repeat the process of splitting till a stopping condition is

achieved or until the homogeneity norm is reached [3].

4.2. Making Credit Decisions
Loan companies often use questionnaires to collect

information about credit applicants in order to determine their

credit eligibility. This process used to be manual but has been

automated to some extent. For example, American Express

UK used a statistical decision procedure based on discriminate

analysis to reject applicants below a specific threshold while

accepting those exceeding another one. The remaining fell

into a "borderline" region and was switched to loan officers

for further review. However, loan officers were accurate in

predicting potential default by borderline applicants no more

than 50% of the time.

These findings inspired American Express UK to try methods

such as machine learning to improve decision-making

processes. Michie and his colleagues used an induction

method to produce a decision tree that made accurate

predictions about 70% of the borderline applicants. It does not

only improve the accuracy but it helps the company to provide

explanations to the applicants [34].

5. CONCLUSION AND FUTURE WORK
Inductive learning enables the system to recognize regularities

and patterns in previous knowledge or training data and

extract the general rules from them. This paper presented an

overview of main inductive learning concepts as well as brief

descriptions of existing algorithms. Many classification

algorithms have been discussed in the literature but decision

tree is the most commonly used tool due to ease of

implementation as well as being easier to understand than

other classification algorithms. The ID3, C4.5 and CART

decision tree algorithms has been explained one by one. To

exceed the results of divide-and-conquer attempts researchers

have tried to improve covering algorithms. It is preferable to

infer rules directly from the dataset itself instead of inferring

them from a decision tree. The algorithm of RULES family is

used to induce a set of classification rules from a collection of

training examples for objects belonging to one known class. A

brief description of RULES family is presented including:

RULES1, RULES2, RULES3, RULES3-Plus, RULES4,

RULES5, RULES6, RULES3-EXT, RULES7 and RULES8.

Each version has certain new features to overcome the

shortcomings of the previous versions.

Step 1 In a given example set, the entropy is computed for

each value and each attribute.

Step 2 Reformulated entropy values are computed. (The

entropy value of each attribute is multiplied with the

number of the values of the attribute).

Step 3 The reformulated entropy values are stored in

ascending manner and the example set is reformed based

on the sorting.

Step 4 Odd number (n=1) combinations of the values in

each example are selected. Any value of which entropy

equals zero for n=1 may be selected as a rule. These

values are converted into rules. The classified examples

are marked.

Step 5 Go to step 8.

Step 6 Beginning from the first unclassified example,

combinations with n values are formed by taking only one

attribute from the values of attributes.

Step 7 Each combination is applied to all of the examples

in the set of examples. From the values composed of n

combinations, those matching with only one class are

converted into a rule. The classified examples are marked.

Step 8 IF all of the examples are classified THEN go to

step 11.

Step 9 Perform n=n+1 expression.

Step 10 IF n<N THEN go to step 6.

Step 11 IF there are more than one rule representing the

same example, the most general one is selected.

Step 12 END.

(Note: N: number of Attributes, n: Number of

Combinations).

International Journal of Computer Applications (0975 – 8887)

 Volume 88 – No.4, February 2014

27

The objectives behind the research included surveying current

inductive learning methods and extending RULES family of

algorithms by developing a new simple rule induction

algorithm that overcomes certain shortcomings of its

predecessors. While I have achieved the first objective behind

the research, my future work will be primarily focused on

achieving the second goal. It is very important to invent new

algorithms or improve current ones to achieve more reliable

results. Therefore, my Initial specifications of the newly

developed rule induction algorithm but not limited to the

following: Generate a compact rule sets for discrete outputs,

Handling of discrete and continuous inputs, the ability to deal

with noisy examples without increasing the number of rules,

the ability to deal with incomplete examples, and improve

rule forming processes where possible.

6. REFERENCES
[1] H. A. ELGIBREEN and M. S. AKSOY, “RULES – TL :

A SIMPLE AND IMPROVED RULES,” J. Theor. Appl.

Inf. Technol., vol. 47, no. 1, 2013.

[2] A. H. Mohamed and M. H. S. Bin Jahabar,

“Implementation and Comparison of Inductive Learning

Algorithms on Timetabling,” Int. J. Inf. Technol., vol. 12,

no. 7, pp. 97–113, 2006.

[3] A. Trnka, “Classification and Regression Trees as a Part

of Data Mining in Six Sigma Methodology,” Proc.

World Congr. Eng. Comput. Sci., vol. I, 2010.

[4] M. R. ; Tolun and S. M. Abu-Soud, “An Inductive

Learning Algorithm for Production Rule Discovery,”

Department of Computer Engineering Middle East

Technical University. Ankara, Turkey, pp. 1–19, 2007.

[5] J. S. Deogun, V. V Raghavan, A. Sarkar, and H. Sever,

“Data Mining : Research Trends , Challenges , and

Applications,” in in in Roughs Sets and Data Mining:

Analysis of Imprecise Data, Kluwer Academic

Publishers, 1997, pp. 9–45.

[6] M. ; S. A. Holsheimer, “Data Mining - The Search for

Knowledge in Databases,” Amsterdam, The Netherlands,

1991.

[7] lan H. Witten and E. Frank, Data Mining: Practical

Machine Learning Tools and Techniques, 2nd editio.

Morgan Kaufmann, 2005.

[8] A. Bahety, “Extension and Evaluation of ID3 – Decision

Tree Algorithm.” University of Maryland, College Park,

pp. 1–8.

[9] F. Stahl, M. Bramer, and M. Adda, “PMCRI : A Parallel

Modular Classification Rule Induction Framework,” in in

Machine Learning and Data Mining in Pattern

Recognition, Springer Berlin Heidelberg, 2009, pp. 148–

162.

[10] L. A. Kurgan, K. J. Cios, and S. Dick, “Highly scalable

and robust rule learner: performance evaluation and

comparison.,” IEEE Trans. Syst. Man. Cybern. B.

Cybern., vol. 36, no. 1, pp. 32–53, Feb. 2006.

[11] T. M. Mitchell, “Decision Tree Learning,” in in Machine

Learning, Singapore: McGraw- Hill, 1997, pp. 52–80.

[12] B. K. Baradwaj and P. Saurabh, “Mining Educational

Data to Analyze Students‟ Performance,” Int. J. Adv.

Comput. Sci. Appl., vol. 2, no. 6, pp. 63–69, 2011.

[13] A. Rathee and R. prakash Mathur, “Survey on Decision

Tree Classification algorithms for the Evaluation of

Student Performance,” Int. J. Comput. Technol., vol. 4,

no. 2, pp. 244–247, 2013.

[14] R. Bhardwaj and S. Vatta, “Implementation of ID3

Algorithm,” Int. J. Adv. Res. Comput. Sci. Softw. Eng.,

vol. 3, no. 6, pp. 845–851, 2013.

[15] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J.

Stone, “Classification and regression trees,” vol. 57, no.

1. Monterey, Calif.:Wadsworth and Brooks, Feb-1984.

[16] T. Verma, S. Raj, M. A. Khan, and P. Modi, “Literacy

Rate Analysis,” Int. J. Sci. Eng. Res., vol. 3, no. 7, pp. 1–

4, 2012.

[17] S. K. Yadav and S. Pal, “Data Mining : A Prediction for

Performance Improvement of Engineering Students using

Classification,” World Comput. Sci. Inf. Technol. J., vol.

2, no. 2, pp. 51–56, 2012.

[18] X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H.

Motoda, G. J. McLachlan, A. Ng, B. Liu, P. S. Yu, Z.-H.

Zhou, M. Steinbach, D. J. Hand, and D. Steinberg, “Top

10 algorithms in data mining,” Knowl. Inf. Syst. , Spriger,

vol. 14, no. 1, pp. 1–37, Dec. 2007.

[19] D. T. Pham and M. S. Aksoy, “RULES: A simple rule

extraction system,” Expert Syst. Appl., vol. 8, no. 1, pp.

59–65, Jan. 1995.

[20] M. S. Aksoy, “A Review of RULES Family of

Algorithms,” Math. Comput. Appl., vol. 13, no. 1, pp.

51–60, 2008.

[21] M. S. Aksoy, H. Mathkour, and B. A. Alasoos,

“Performance evaluation of rules-3 induction system on

data mining,” Int. J. Innov. Comput. Inf. Control, vol. 6,

no. 8, pp. 1–8, 2010.

[22] D. T. Pham and S. S. Dimov, “AN EFFICIENT

ALGORITHM FOR AUTOMATIC KNOWLEDGE

ACQUISITION,” Pattern Recognit., vol. 30, no. 7, pp.

1137–1143, 1997.

[23] D. T. Pham and S. S. Dimov, “An algorithm for

incremental inductive learning,” Proc. Inst. Mech. Eng.

Part B J. Eng. Manuf., vol. 211, no. 3, pp. 239–249, Jan.

1997.

[24] D. T. Pham, S. Bigot, and S. S. Dimov, “RULES-5: a

rule induction algorithm for classification problems

involving continuous attributes,” Proc. Inst. Mech. Eng.

Part C J. Mech. Eng. Sci., vol. 217, no. 12, pp. 1273–

1286, Jan. 2003.

[25] D. T. Pham and a. a. Afify, “RULES-6: a simple rule

induction algorithm for supporting decision making,”

31st Annu. Conf. IEEE Ind. Electron. Soc. 2005. IECON

2005., p. 6 pp., 2005.

[26] H. I. Mathkour, “RULES3-EXT IMPROVEMENTS ON

RULES-3 INDUCTION ALGORITHM,” Math. Comput.

Appl., vol. 15, no. 3, pp. 318–324, 2010.

[27] K. Shehzad, “EDISC: A Class-Tailored Discretization

Technique for Rule-Based Classification,” IEEE Trans.

Knowl. Data Eng., vol. 24, no. 8, pp. 1435–1447, Aug.

2012.

International Journal of Computer Applications (0975 – 8887)

 Volume 88 – No.4, February 2014

28

[28] D. T. Pham, “A Novel Rule Induction Algorithm with

Improved Handling of Continuous Valued Attributes,”

Cardiff University, 2012.

[29] Ö. Akgöbek, Y. S. Aydin, E. Öztemel, and M. S. Aksoy,

“A new algorithm for automatic knowledge acquisition

in inductive learning,” Knowledge-Based Syst., vol. 19,

no. 6, pp. 388–395, Oct. 2006.

[30] M. S. Aksoy, A. Almudimigh, O. Torkul, and I. H.

Cedimoglu, “Applications of Inductive Learning to

Automated Visual Inspection,” Int. J. Comput. Appl., vol.

60, no. 14, pp. 14–18, 2012.

[31] N. Rajadhyax and R. Shirwaikar, “Data Mining on

Educational Domain.” pp. 1–6, 2010.

[32] D. A. Alhammadi and M. S. Aksoy, “Data Mining in

Education- An Experimental Study,” Int. J. Comput.

Appl., vol. 62, no. 15, pp. 31–34, 2013.

[33] R. Quinlan, “C4 . 5 : Programs for Machine Learning,”

vol. 240. Kluwer Academic Publishers, Kluwer

Academic Publishers, Boston. Manufactured in The

Netherlands., pp. 235–240, 1994.

[34] P. LANGLEY and H. A. Simon, “Applications of

Machine Learning and Rule Induction,” Palo Alto, CA,

1995.

IJCATM : www.ijcaonline.org

