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ABSTRACT
The significant advantage of modified discrete Fourier transform
(MDFT) filter banks over the conventional discrete Fourier trans-
form (DFT) filter banks is the structure inherent alias cancellation
in the former. When the number of channels is increased, the filters
in the filter bank need to be of sharp transition width. This increases
the complexity of the filters and hence that of the filter bank. Fre-
quency Response Masking (FRM) approach is known to reduce the
complexity of sharp transition width filters. This paper proposes a
method to realize MDFT filter banks using FRM with much lesser
complexity. To further reduce the complexity, the filter banks are
made totally multiplier-less. This is done by converting the coef-
ficients to the canonic signed digit (CSD) representation. Meta-
heuristic algorithms are used to improve the performance of the
CSD represented filter banks. Modified integer coded genetic algo-
rithm, differential evolution, artificial bee colony, harmony search
and gravitational search algorithms are proposed to be used for the
optimization of the proposed multiplier-less MDFT filter banks.
This design method reduces the complexity, power consumption
and chip area for the implementation of the uniform filter banks.
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1. INTRODUCTION
Filter banks play an important role in many digital signal process-
ing applications, such as audio and image coding. They are used for
the extraction of the spectral components of a signal. An M-channel
filter bank decomposes the input signal into M sub-band signals by
applying M analysis filters with different pass-bands. Thus, each
of the sub-band signals carries information of the input signal in a
particular frequency band.

Among the different filter bank structures, modulated filter banks
are the most popular, because of their simple design and ease of

implementation. There are two classes of modulated filter banks,
Discrete Fourier Transform (DFT) polyphase filter bank and Co-
sine Modulated filter bank. DFT filter bank consists of analysis and
synthesis filter banks, which are generated from the same proto-
type filter by exponential modulation. This makes the DFT filter
bank very easy to implement, but they do not have any alias can-
cellation structure. Also, for M-channel uniform filter banks, it is
required that for perfect reconstruction, the analysis and synthesis
poly-phase matrices are invertible. This disadvantage can be over-
come by modifying the DFT filter banks, which results in the Mod-
ified DFT (MDFT) filter banks [1, 2, 3]. In MDFT filter banks,
a structure inherent alias cancellation can be obtained, which re-
sults in near perfect reconstruction (PR) filter banks. MDFT filter
banks are modified complex modulated, critically sub-sampled fil-
ter banks based on the DFT filter banks.

As the number of channels increases, the transition width of the
prototype filter has to be narrow. This results in a prototype filter
of very high order. To avoid this problem, the frequency response
masking (FRM) technique [4] can be used for the design of the
prototype filter. All the analysis and synthesis filters of the MDFT
filter bank are derived from the same prototype filter. Design of
the MDFT filter banks using the frequency response masking tech-
nique is discussed in [5]. FRM reduces the number of multipliers
while designing sharp transition width filters with arbitrary band-
width. The design of FRM filter involves the design of a band edge
shaping filter, masking filter and complementary masking filter.

Multipliers in a digital filter are the main power consuming compo-
nents and they occupy large chip area. If the filter coefficients are
represented in the signed power of two (SPT) space, multipliers can
be replaced by shift and add operations [6]. Replacing multipliers
with shift and add operations results in the reduction of power con-
sumption and chip area. We can further reduce the filter complexity
by reducing the number of non-zero SPT terms, which results in
the reduction of the number of adders. Canonic signed digit (CSD)
representation [7] is a special case of the SPT space, which uses
both additions and subtractions. Because of this, only a minimum
number of non-zero SPT terms is needed to represent a decimal
number.

Representing the filter coefficients in the CSD space can bring
down the complexity of the FRM prototype filter and hence that
of the MDFT filter bank. The filter coefficients rounded to finite
precision values in the SPT space may degrade the FRM filter per-
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formance. This can cause deterioration of the MDFT filter bank
characteristics. This calls for efficient optimization techniques in
the discrete space. Classical gradient based optimization techniques
cannot be applied in the discrete space, since here the search space
contains integers. Metaheuristic algorithms are good alternatives
for this type of optimization problems since these finally can reach
a global solution if the parameters are properly selected with re-
spect to a particular design problem.

Genetic algorithm (GA) [8] is an optimization technique, which can
deal with discrete search spaces. GA models the evolution process
of natural selection, where, in each generation, candidates are mod-
ified by genetic operations like cross over, selection and mutation.
A ternary coded GA based on CSD look-up-table has been suc-
cessfully used for the optimization of FRM based reconfigurable
channel filters [9]. Operations like crossover and mutation may re-
sult in non-canonical bit strings. So, restoration algorithms [10] are
needed to approximate the non-canonical filter coefficients to the
nearest canonical representation. This increases the computational
complexity of ternary coded GA. A modified GA in which the bi-
nary representation of the indices of the CSD look-up-table entries
are used to obtain the initial seed, is reported [11], where there is no
need of restoration algorithms. Integer coded GA in which the inte-
ger indices of the look-up-table entries are used to get the solution,
is proposed by [12].

Differential evolution [13], artificial bee colony (ABC) [14], har-
mony search [15, 16] and gravitational search [17] algorithms are
some of the best known recently developed metaheuristic algo-
rithms which are found to outperform GA in most of the cases.
Integer coded artificial bee colony (ABC) algorithm is used for the
optimization of multiplier-less transmultiplexer in [18]. A modi-
fied integer coded ABC and integer coded differential evolution
(DE) algorithms for the design of CSD encoded FRM filter are
presented in [19]. In Paper [20], harmony search algorithm (HSA)
and gravitational search algorithm (GSA) are modified for the op-
timization of the multiplier-less reconfigurable filter banks. In this
paper, modified DE, ABC, HSA and GSA algorithms are used for
the design of the optimal multiplier-less FRM prototype filter and
hence the MDFT filter banks. The performances of these algo-
rithms are compared with that of GA in terms of the number of
adders needed to implement the MDFT filter bank, stop-band and
pass-band responses of the prototype filter and amplitude distortion
of the MDFT filter bank.

This paper is organized as follows. Section 2 gives an overview of
MDFT filter banks. In Section 3 the FRM approach is briefed. Sec-
tion 4 provides the description of the CSD representation. Section
5 gives a brief overview of the optimization techniques, HSA and
GSA. Section 6 gives the design of the continuous coefficient FRM
filter and MDFT filter bank. This section also discusses the design
of optimal multiplier-less MDFT filter bank using meta-heuristic
algorithms. The complexity of implementation and performance
evaluation are also presented in Section 6. Section 9 gives the con-
clusion of the paper.

2. OVERVIEW OF MDFT FILTER BANKS
In the DFT filter banks, synthesis and analysis filters are derived
from the prototype filter by complex modulation. The structure of
DFT filter banks is shown in Fig. 1 [1], in which Hk(z) and Fk(z)
represent the analysis and synthesis filters respectively and ↑ M
and ↓M represent interpolation and decimation byM respectively.
Here, the synthesis and analysis filters are derived from a linear

phase finite impulse response (FIR) prototype filter H(z) which is
band limited to 2π/M , by complex modulation. The analysis filters
are represented as

Hk(z) = H(zW k
M ) (1)

Similarly, the synthesis filters are defined as

Fk(z) = MH(zW k
M ) (2)

where WM = e−j2π/M . If the input X(z) is passed through the
filter bank, the reconstructed signal, can be defined as [1]

X̂(z) =
1

M

M−1∑
k=0

Fk(z)

M−1∑
l=0

H(zW k+l
M )X(zW l

M ) (3)

Since the prototype filter is band limited to 2π/M , all non-adjacent
alias components are ignored. Considering only adjacent alias com-
ponents, the reconstructed signal can be written as [1]

X̂(z) =
1

M

M−1∑
k=0

Fk(z)

1∑
l=−1

H(zW k+l
M )X(zW l

M ) (4)

From Eq. 4, we can see that the output contains alias components.
In the DFT filter banks, there is no inherent mechanism to cancel
out the alias signals. So the DFT filter banks do not give perfect
reconstruction due to aliasing and linear distortion. This disadvan-
tage can be removed by introducing some modifications to the DFT
filter banks which leads to the MDFT filter banks.

Fig. 1. The structure of DFT filter bank

The MDFT filter bank [1, 2, 3] can be derived from a complex mod-
ulated filter bank by decimating the sampling rate with and without
a delay of M/2 samples and using either the real or the imaginary
part, alternately, in the sub-bands. These modifications eliminate
directly adjacent alias spectra which are the main components of
aliasing in the DFT filter banks. Non-adjacent alias terms can be
kept small by designing the prototype filter with sufficiently high
stop-band attenuation. Thus MDFT filter bank gives almost perfect
reconstruction of the input signals. The structure of an M-channel
MDFT filter bank is given in Fig. 2 [1].

The alias cancellation is independent of the prototype filter design
and only depends on the structure of the MDFT filter bank. This
feature leads to a filter bank with almost PR. Aliasing happens from
M − 1 neighbouring sub-bands. Therefore, the aliasing distortion
function can be written as [3]

Talias(z) =

√√√√M−1∑
l=1

∣∣∣∣∣ 1

M

M−1∑
k=0

Fk(z)Hk(zW l
M )

∣∣∣∣∣
2

(5)
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Fig. 2. The structure of MDFT filter bank

|Talias(z)| should tend to zero at all frequencies. Thus, the MDFT
filter bank should be suitable to meet the following specifications:

—The transfer functions of adjacent channels must be approxi-
mately power complementary between their centre frequencies.
This reduces the amplitude distortion in the filter bank.

—All odd alias spectra cancel automatically, i.e., independent of
the filter characteristics in the MDFT filter bank. All other alias
spectra are suppressed by a sufficiently high stop-band attenua-
tion of the prototype filter. This reduces the aliasing distortion in
the MDFT filter bank.

—If the prototype filter is designed as a linear phase filter, all the
synthesis and analysis filters of MDFT filter bank will have linear
phase. So, the MDFT filter bank is free from phase distortions.

The power complementary property of adjacent channels and the
stop-band attenuation depend on the prototype filter design. If the
remaining small alias spectra is ignored, the overall transfer func-
tion, Tdist of the MDFT filter bank from input to output can be
obtained as [3]

Tdist(z) =
1

M

M−1∑
k=0

Fk(z)Hk(z) (6)

3. REVIEW OF FRM APPROACH
Let H(z) be the transfer function of the desired FIR low pass fil-
ter with pass-band and stop-band edge frequencies fp and fs re-
spectively. FRM FIR filter is composed of a band edge shaping
filter Ha(z), masking filter HMa(z) and complementary masking
filter HMc(z). The complementary filter Hc(z) of Ha(z) can be
expressed as given below

Hc(z) = z
−(N−1)

2 −Ha(z) (7)

Ha(z) and Hc(z) are interpolated with a factor M and are cas-
caded with the masking filters HMa(z) and HMc(z) respectively.
Thus, the transfer function of the overall FIR FRM filter H(z) [4]
is given by

H(z) = Ha(zM )HMa(z) +Hc(z
M )HMc(z) (8)

The structure of the FRM FIR filter is given in Fig. 3 [4]. The design

Fig. 3. Basic FRM filter architecture [4]

steps for the sub-filters are given below [4]:

m = bfp ∗Mc fap = fpM −m fas = fsM −m (9)

fmap = fp fmas =
m+ 1− fas

M
(10)

fmcp =
m− fap
M

fmcs = fs (11)

where bxc denotes the largest integer less than x, M is the inter-
polating factor, fp and fs respectively are the pass band and stop
band frequencies of the final filter H(z). fap and fas are the pass
band and stop band frequencies respectively of the prototype filter
Ha(z). fmap and fmcp are the pass band frequencies and fmas and
fmcs are the stop band frequencies of the masking filters HMa(z)
and HMc(z) respectively. The transition width of the overall filter
H(z) is 1

M
times the transition width of Ha(z) i.e. (fas−fap)

M
.
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4. CANONIC SIGNED DIGIT REPRESENTATION
(CSD)

Any FIR filter can be represented as

y(n) =

N−1∑
k=0

h(k)x(n− k) (12)

where N is the length of the FIR filter, h(k) are the filter coeffi-
cients and x(n) is the input signal. The FIR filter implementation
consists of multipliers, which are the main power consuming com-
ponents. If the filter coefficients are represented in the SPT space,
multipliers can be replaced by shifters and adders. The number
of non-zero bits in the filter coefficient representation decides the
number of partial product additions and hence the adders. So the
number of adders can be reduced by reducing the number of non-
zero bits in the filter coefficients. CSD representation is a unique
representation of the filter coefficients with minimum number of
non-zero bits [6, 7]. A fractional number q is represented in CSD
format as [7].

q =

W∑
i=1

ci2
R−i (13)

where ci = {-1, 1, 0} and W is the word length of the CSD number
and the integerR represents a radix-point in the range 0 < R < W .
The features of the CSD format are

—It is a unique SPT representation of a decimal number with min-
imum number of non-zero bits.

—Since, this encoding uses -1, 0 and 1 digit, it is called ternary
coding.

—No adjacent bits in the CSD representation can be non-zero i.e.
ci ∗ ci−1 = 0, where ci is the ith bit in the CSD representation.

—The maximum number of non-zero bits in the CSD representa-
tion of an n-bit number is (n + 1)/2, compared to n bits in the
2’s complement representation.

—The maximum number of adders/subtractors needed to realize
the CSD represented n-bit number will be (n+ 1)/2− 1.

5. OVERVIEW OF HARMONY SEARCH
ALGORITHM AND GRAVITATIONAL SEARCH
ALGORITHM

This section gives an overview of the harmony search algorithm
and gravitational search algorithm.

5.1 Harmony search algorithm (HSA)
Inspired by the music improvisation scheme, Z.Geem introduced
the harmony search algorithm [15, 16] for the optimization of math-
ematical problems. In the music improvisation scheme, each musi-
cian plays a note within the possible range which together makes
one harmony vector. If all the pitches make a good harmony de-
cided by an aesthetic standard, that experience is stored in the mu-
sician’s memory. The possibility to make a good harmony is in-
creased next time. On the other hand, in an optimization problem,
each decision variable selects a value from the possible range of
values which together makes a solution vector. If the solution vec-
tor has a good fitness value, that solution will be stored in the mem-
ory. The possibility to get a good solution in the next iteration will
be increased.

When a musician improvises one pitch, he follows any one of three
rules [15]: (1) playing any one pitch from his memory, (2) playing
an adjacent pitch of the pitch stored in his memory, and (3) playing
totally random pitch from the possible range. Similarly, in the HSA,
when each decision variable chooses a value, it follows any one of
three rules [15]: (1) Memory considerations in which the value is
selected from the harmony memory, (2) pitch adjustments in which
a value is chosen which is adjacent to the value from the harmony
memory, and (3) randomization in which a random value from the
possible range is selected. These three rules in HS algorithm are
based on two parameters, i.e., harmony memory considering rate
(HMCR) and pitch adjusting rate (PAR).

An important feature of HSA is that it does not require differen-
tiable fitness function. So it can handle discrete variables as well as
continuous variables. The steps of HSA are described in [20].

5.2 Gravitational search algorithm (GSA)
GSA [17] is a population based algorithm based on the law of grav-
ity and mass interactions. GSA can be considered as an artificial
world of masses. In GSA, each mass (agent) has four specifica-
tions: position, inertial mass, active gravitational mass, and passive
gravitational mass. The position of the masses constitutes the so-
lution space and the performance of each solution is measured in
terms of their masses using fitness function. The interactions of the
masses are based on the Newtonian laws of gravity and motion.
Masses attract each other by the force of gravity and objects are
moved towards the object with heavier mass, which represents the
optimum solution. The heavy masses move more slowly compared
to lighter ones. Masses obey the following laws [17]:

—Law of gravity: Each particle attracts every other particle and
the gravitational force between two particles is directly propor-
tional to the product of their masses and inversely proportional
to the distance, R, between them.

—Law of motion: The current velocity of any mass is equal to the
sum of the fraction of its previous velocity and the acceleration.
Acceleration of any mass is equal to the force acted on the system
divided by mass of inertia.

The inertial mass of an agent represents its resistance to make its
movement slow. The velocity of an agent is controlled by the grav-
itational mass and the inertial mass which are computed by the fit-
ness function. The positions of the agents are updated with every
iteration. The algorithm terminates when a fixed number of itera-
tions is reached. Once the algorithm terminates, the best fitness at
final iteration is taken and the positions of the mass of the corre-
sponding agent becomes the global solution of that problem. The
various steps of GSA algorithm are given in [20] in detail.

6. DESIGN EXAMPLE
In this work, an FRM filter is designed for the given specifications
and by modulating this filter an eight channel MDFT filter bank
is designed. The filter bank is made multiplier-less using various
metaheuristic algorithms and the performances are compared. All
the simulations are done using MATLAB 7.10.0.499 on an Intel(R)
Core(TM) i5-2400 processor operating at 3.10 GHz.

6.1 Design of continuous coefficient MDFT filter bank
The initial phase of this work is the design of the continuous coeffi-
cient sharp transition width MDFT filter bank with all the analysis
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and synthesis filters having linear phase property. All the analysis
and synthesis filters of the MDFT filter bank are derived from the
same prototype filter using complex modulation as per Eqs. 1 and
2. Hence, the problem of designing the MDFT filter bank reduces
to the problem of designing a single prototype filter. Also, the com-
plexity of implementing the MDFT filter bank is the same as the
complexity of implementing the prototype filter. When the number
of sub-channels of the MDFT filter bank needs to be very large or
when the transition-widths of the sub-channels need to be very nar-
row, the prototype filter should have sharp transition which results
in a high order filter and hence high complexity MDFT filter bank.
A substantial reduction in the complexity of the MDFT filter bank
can be achieved by designing the prototype filter using the FRM
approach as proposed in [5]. All the sub-filters of the FRM filter,
Ha(z), HMa(z) and HMc(z) are realized as per the original work
on FRM [4] using the Parks-McClellan algorithm which results in
filters with linear phase property.

Let the low pass prototype filter be designed using the following
parameters:

Pass− band(PB) edge frequency : 0.124π

Stop− band(SB) edge frequency : 0.127π

Maximum pass− band ripple : 0.004dB

Minimum stop− band attenuation : 60dB

When the prototype filter is designed using the minimax method
for this set specifications, the filter order is found to be 2326. The
number of multipliers required to implement the filter is found to
be 1164. To reduce the complexity of the filter implementation, the
prototype filter is realized as an FRM filter. The band-edges of the
sub-filters of the FRM filter are obtained as explained in Section
3 and they are designed using Parks-McClellan method [21]. The
lengths of the sub-filtersHa(z),HMa(z) andHMc(z) are obtained
as 221, 86 and 88 respectively. The total number of multipliers,
Π, required to implement an FRM filter is the sum of the number
of multipliers required to implement its sub-filters which can be
written as

Π = µa + µMa + µMc (14)

where, µa, µMa and µMc are the number of multipliers required for
the implementation of the filters Ha(z), HMa(z) and HMc(z) re-
spectively. Using Eq.14, the total number of multipliers in the FRM
filter with the above specifications is found to be 198 and hence of-
fers an 83% reduction in the complexity as compared to the tradi-
tional minimax method. The zero phase frequency response of the
continuous coefficient FRM filter is shown in Fig.4. Now, the eight
channel continuous coefficient MDFT filter bank is designed by
deriving the analysis filters and synthesis filters using the complex
modulation as given in Eqs. 1 and 2. The magnitude response of
the continuous coefficient analysis filters of the MDFT filter bank
is shown in Fig.5. The amplitude distortion of the continuous co-
efficient MDFT filter bank is shown in Fig.6. The peak amplitude
distortion of the continuous coefficient MDFT filter bank is found
to be 0.023dB. The frequency response parameters of the FRM fil-
ter and MDFT filter bank along with the complexity of implemen-
tation of the FRM filter in terms of the number of multipliers and
adders are listed in Table 1.

6.2 Design of the multiplier-less MDFT filter bank
The next step is to design the multiplier-less MDFT filter bank for
which, it is sufficient to replace the multipliers in the FRM filter im-
plementation with shifters and adders. To this end, the coefficients

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−120

−100

−80

−60

−40

−20

0

20

Normalized frequency  (ω/pi)

M
ag

ni
tu

de
 re

sp
on

se
 in

 d
B

 

 

Continuous coefficient FRM filter

Fig. 4. Magnitude response of the continuous coefficient FRM prototype
filter of the MDFT filter bank
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Fig. 5. Magnitude response of the continuous coefficient analysis filters of
the MDFT filter bank
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Fig. 6. Amplitude distortion of the continuous coefficient MDFT filter
bank

of all the sub-filters of the FRM filter are represented in the CSD
space.

6.2.1 Design of maximum precision FRM filter and MDFT filter
bank. For a given word length, if the filter coefficients are rounded
to the nearest CSD representation without any restriction in the
number of non-zero bits, it will result in the filter with maximum
precision in the CSD space for that word length. The CSD repre-
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Table 1. Frequency performance and complexity of the continuous coefficient FRM
filter and MDFT filter bank

Prototype filter
MDFT filter Complexity of

bank implementation
Pass-band Stop-band att- Amplitude Number of Number of

Parameters ripple(dB) enuation(dB) distortion(dB) multipliers adders
Continuous

0.00831 62.92 0.02296 198 195
coefficients [5]

Table 2. Frequency performance and complexity of the maximum
precision CSD represented prototype filter and MDFT filter bank

when different word-lengths are used

Prototype filter
MDFT filter

bank Number
Pass-band Stop-band Amplitude of adders

Word-length ripple attenua- distortion due to
(dB) tion (dB) (dB) SPT terms

Continuous
0.00831 62.92 0.02296 0coefficients

[5]
12 bits 0.01698 50.24 0.03576 219
14 bits 0.01103 59.81 0.02359 344
16 bits 0.00798 62.9 0.02724 467

sentation of a decimal number using n-bits of word-length cannot
have more than (n + 1)/2 non-zero bits, often it is fewer. For the
word-lengths of 12, 14 and 16 bits respectively, the maximum num-
ber of non-zero bits that will be present in the CSD representation
of a number are 6, 7 and 8 respectively. Table 2 gives the frequency
performance parameters of the maximum precision FRM prototype
filter and maximum precision MDFT filter bank and the complex-
ity of the maximum precision prototype filter when different word
lengths are used for the CSD representation. Here, all the bits are
used for the fractional part. The frequency parameters obtained for
the maximum precision prototype filter with 16 bits CSD represen-
tation are closer to those of the continuous coefficient prototype
filter when compared to those of the maximum precision prototype
filter with 12 or 14 bits of CSD representation. But the number of
adders due to the SPT terms for the maximum precision prototype
filter and MDFT filter bank with 16 bits CSD is much higher com-
pared to that of the maximum precision prototype filter and MDFT
filter bank with 14 bits CSD. Hence, we have to make some trade-
off between the filter response and complexity.

Hence, in this example, a 14 bit CSD representation is used instead
of 12 or 16 bits, in order to reduce the complexity without much
degradation of the filter performance.

6.2.2 Design of CSD rounded FRM filter and MDFT filter bank.
Now, to reduce the number of adders in the multiplier-less imple-
mentation, the filter coefficients are rounded with restricted num-
ber of SPT terms. This causes degradation in the performances of
the FRM filter and hence the MDFT filter bank. The magnitude
responses of the FRM filter and analysis filters of the MDFT filter
bank when the coefficients are CSD rounded using three SPT terms
are shown in Figs. 7 and 8 respectively. The amplitude distortion of
the CSD rounded MDFT filter bank is shown in Fig.9.

The frequency response parameters of the CSD rounded FRM fil-
ter and MDFT filter bank are given in Table 3 and are compared
with those of the maximum precision FRM filter and MDFT filter
bank respectively. The total number of adders required for the im-
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Fig. 7. Magnitude response of the continuous coefficient FRM FIR filter
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Fig. 8. Magnitude response of the continuous coefficient analysis filters of
the MDFT filter bank

plementation of the CSD rounded and maximum precision MDFT
filter bank are also compared in Table 3. It is observed from Table
3 that there is a significant reduction in the number of adders when
the MDFT filter bank is CSD rounded compared to those of the
maximum precision filter bank. But the stop-band attenuation and
pass-band ripple of the FRM filter and the amplitude distortion of
the MDFT filter bank are degraded when the filter coefficients are
CSD rounded compared to that of the maximum precision and con-
tinuous coefficient FRM filter and MDFT filter bank respectively.

6.3 Proposed design of the optimal totally
multiplier-less MDFT filter banks using
metaheuristic algorithms

To design the optimal multiplier-less MDFT filter bank, the filter
coefficients have to be suitably encoded in the CSD space and an
appropriate objective function need to be formulated first. All the
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Table 3. Frequency performance and complexity of the CSD rounded FRM filter and MDFT filter bank
SPT Prototype filter MDFT filter bank Complexity of implementation
terms Pass-band Stop-band Amplitude Number of Number of adders Total number
used ripple (dB) attenuation (dB) distortion (dB) adders due to SPT terms of adders

Maximum
precision 0.01103 59.81 0.02359 195 344 539
(7 SPTs)

CSD
rounded 0.07075 41.81 0.1408 195 287 482
(3 SPTs)
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Fig. 9. Amplitude distortion of the continuous coefficient MDFT filter
bank

filters in the MDFT filter bank are derived from the same prototype
filter. Hence, to optimize the MDFT filter bank, it is enough to mod-
ify the coefficients of the prototype filter. Then, the meta-heuristic
algorithms, such as DE, ABC, HSA and GSA algorithms are used
to improve the performance degradation due to CSD rounding of
the filter coefficients. All the algorithms are terminated when a
specified number of iterations is reached. The design of the opti-
mal multiplier-less MDFT filter bank using various metaheuristic
algorithms is analysed and the performances are compared.

6.3.1 Encoding of the optimization variables. The conversion of
the filter coefficients into the CSD space is done by encoding them
using suitable encoding techniques. One possible way is to use
the ternary encoding of the CSD equivalents of the filter coeffi-
cients [9], in which CSD representation of the closest counterpart
of each continuous coefficient of the filter is taken and they are con-
catenated to form the initial solution of the optimization problem.
Since, in this method, CSD representation is used for generating
the initial solution, the dimension of the optimization problem and
hence, the time taken for optimization will be large. Also, during
the various steps in the optimization, the ternary coded coefficients
may become invalid CSD numbers. So suitable restoration algo-
rithms have to be used to convert them back to valid CSD format
[10]. This increases the computational load of the algorithm. Hence
in this thesis, the filter coefficients are encoded such that the use
of restoration algorithms is avoided. To this end, a CSD look-up-
table consisting of four fields, namely, index, CSD representation,
decimal equivalent and number of SPT terms is created. The en-
coding method where the CSD filter coefficients are encoded as
signed integers by taking the indices corresponding to the magni-
tude of the CSD filter coefficients from the look-up-table and at-
taching the signs of the CSD filter coefficients to them is reported
in [12]. Hence it is appropriate to encode the filter coefficients us-

ing the signed indices of the corresponding look-up-table locations.
If the decimal filter coefficient is negative, then it is encoded as the
negative of the index of the location of its positive counter part
[12]. The encoding and decoding of this method is simple and so,
this encoding scheme is used in this paper.

Here, converting the filter coefficients into the CSD space is done
using a 14 bit CSD look-up-table (LUT) consisting of four fields,
namely, index, 14 bit CSD representation, decimal equivalent and
number of SPT terms is created. Since, in this example, all the filter
coefficients are fractions, all the 14 bits are used for the fractional
part. Also, since, the magnitudes of all the filter coefficients are
found to be less than 0.5, the size of the LUT is fixed to 9000 so
that LUT can cover all the filter coefficient values. The entries of a
typical 14 bit CSD look-up-table, in which all 14 bits are used for
the fractional part, is shown in Table 4.

Table 4. 14 bit CSD look-up-table entries

Index CSD Representation Decimal Equivalent
Number of
SPT Terms

6196 10-1000010-1010-1 0.3781 6

Thus, after the continuous filter coefficients are obtained, they are
directly rounded to the nearest discrete value, whose number of
SPT terms is equal to the allocated number of SPT terms as per
the CSD look-up table. The corresponding index after attaching the
sign is taken.

In this work, the joint optimization of the sub-filters of the FRM
filter Ha(z), HMa(z) and HMc(z) is done i.e., the coefficients of
the sub-filters are concatenated together to form the design vector
of the optimization problem. Since, all the sub-filters are designed
to have linear phase, only half the number of coefficients of each
filter is required to be considered and concatenated to form the ini-
tial seed. This reduces the dimension of the optimization problem.
Also, since we use the joint optimization of the sub-filters, all of
them will be simultaneously adjusted to get a better FRM filter re-
sponse and hence a better MDFT filter bank response.

Since, here, the search space consists of integers, the classical gra-
dient based optimization techniques cannot be deployed. Therefore,
the optimization based on meta-heuristic approaches are adopted
here which can be properly modified to suit the problem posed [22].
For this, a suitable objective function need to be formulated which
is detailed in the next section.

6.3.2 Formulation of the objective function for the synthesis of the
multiplier-less MDFT filter bank. The performance degradation of
the FRM filter and MDFT filter bank due to CSD rounding can
be reduced by employing metaheuristic algorithms. To this end, an
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objective function which takes care of the given design parameters
is to be formulated.

Let, Fp and Fs be the pass band error and stop band error of the
FRM low pass filter with pass-band and stop-band cut-off frequen-
cies ωp and ωs respectively and they are defined as

Fp = max
0<ω<ωp

||H(ω)| − 1| (15)

Fs = max
ωs<ω<π

|H(ω)| (16)

The pass-band error and the stop-band error are the difference be-
tween the zero phase frequency response of the optimized filter,
H(ω) and the response of the ideal filter in the pass-band and the
stop-band respectively.

The amplitude distortion function of the MDFT filter bank in the
z-domain is given in Eq.6. Let, it be represented in the frequency
domain as Tdist(ω). To have perfect reconstruction property for a
filter bank, the magnitude of the amplitude transfer function has to
be unity. So the peak error in the amplitude distortion function of
the filter bank, Fdist can be written as

Fdist = max
0<ω<π

|(Tdist(ω)− 1)| (17)

The total number of adders required to implement a CSD repre-
sented filter is the sum of adders due to SPT terms and structural
adders. The number of structural adders is fixed, which is 195 in
this case as shown in Table 3. The number of adders due to SPT
terms can be reduced by reducing the total number of SPT terms
required to represent the filter coefficients in the CSD space in-
stead of a fixed number of SPT terms for each coefficient [23].
For this, a constraint is added to the objective function using the
penalty method to reduce the average number of SPT terms in the
CSD represented filter [24]. If vH denotes the average number of
non-zero SPT terms in the filter coefficients and VH is the required
upper bound of vH , the penalty function added to the optimization
problem is given as

p(vH , VH) = max(0, vH − VH) (18)

where, VH is taken as 2.5 in this case, which is found to limit the
total number of adders to an acceptable value which is less than
the total number of adders required for implementing maximum
precision filter.

Thus, the optimization problem for the multiplier-less MDFT fil-
ter bank coefficient synthesis, is modeled as minimization of the
objective function OF which is formulated by including Fp, Fs,
Fdist and the penalty function, p(vH , VH) as given below:

Minimize OF = α1Fp+α2Fs+α3Fdist+α4p(vH , VH) (19)

where, α1, α3 are taken as 1 and α4 is taken as 0.1. Since in the
MDFT filter banks, non-adjacent aliasing components are canceled
by designing filters with high stop-band attenuation, α2 is given a
high value of 5.

6.3.3 Design of a totally multiplier-less MDFT filter bank using
DE algorithm. As explained in Section 6.3.1, the coefficients of
the sub-filters of the CSD rounded FRM filter are concatenated to-
gether to form the design vector of the optimization problem. The
initial solution is randomly perturbed to obtain the initial popula-
tion for the DE algorithm. The various steps of the modified DE
algorithm as explained in [20] are carried out. When the termina-
tion criteria is satisfied, the optimized candidate solution is taken
and CSD decoded to get the optimal sub-filter coefficients and the

optimal FRM filter. This optimal FRM filter is used as the prototype
filter for the design of the optimal MDFT filter bank. The various
parameters used for the integer coded DE optimization of the CSD
represented FRM filter are shown in Table 5.

Table 5. Parameters of integer coded DE
Population Mutation Crossover Number of

size factor ratio generations
50 0.6 0.015 1000

Table 6. Parameters of integer coded GA
Population Mutation Popkeep Number of elite Number of

size rate fraction chromosomes generations
50 0.005 0.4 5 1000

Table 7. Performance of DE optimized FRM filter and MDFT
filter bank (Average of 10 simulations)

Pass-band Stop-band Amplitude dist-
Algorithm ripple of FRM attenuation of ortion of MDFT

filter (dB) FRM filter(dB) filter bank (dB)
Integer coded

0.02166 50.08 0.03901
GA [12]
Integer

0.01728 51.60 0.03464
coded DE
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Fig. 10. Magnitude response of the FRM filter before and after using the
integer coded DE

The frequency response characteristics of the FRM filter and
MDFT filter bank obtained after 1000 iterations is given in Table 7.
It is observed that, this algorithm takes 591.7 seconds to converge
to these values. For the purpose of comparison, the performances of
the DE optimized FRM filter and MDFT filter bank are compared
with those of the integer coded genetic algorithm (GA) proposed
in [12]. Table 6 gives the parameters employed in the above GA.
The comparison of the performances of integer coded DE and GA
is given in Table 7. It is found that the MDFT filter bank designed
using the modified DE algorithm performs better than that using
the integer coded GA [12].

The magnitude response of the integer coded DE optimized FRM
filter compared with that of the continuous coefficient and CSD
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Fig. 11. Amplitude distortion of the DE optimized MDFT filter bank

rounded FRM filter is shown in Fig.10. The amplitude distortion
of the DE optimized MDFT filter bank is compared with that of
the continuous coefficient and CSD rounded MDFT filter bank in
Fig.11.

6.3.4 Design of a totally multiplier-less MDFT filter bank using
ABC algorithm. The design vector is CSD encoded and then it is
randomly perturbed to obtain the initial food sources of the ABC
algorithm. The modified ABC algorithm is explained in [20] and
the steps are carried out to find the optimal filter coefficients of
the sharp transition width FRM filter. This optimal FRM filter is
complex modulated for obtaining optimal MDFT filter bank. The
various parameters used for the integer coded ABC optimization of
the CSD rounded FRM filter are shown in Table 8. ABC algorithm
is observed to be very slow. But it gives very good values for the
pass-band ripple of the FRM filter and amplitude distortion of the
filter bank after 1000 iterations, which are almost equal to those of
the maximum precision FRM filter and maximum precision MDFT
filter bank respectively.

Table 8. Parameters of integer coded
ABC

Number of Limit Number of
employed bees generations

50 100 1000

Table 9. Performance comparison of the FRM filter and MDFT
filter bank (Average of 10 simulations)

Pass-band Stop-band Amplitude dist-
Algorithm ripple of FRM attenuation of ortion of MDFT

filter (dB) FRM filter(dB) filter bank (dB)
Integer coded

0.02166 50.08 0.03901
GA [12]
Integer

0.01138 53.55 0.02298
coded ABC

Table 9 gives the different frequency parameters of the FRM fil-
ter and MDFT filter bank obtained after 1000 iterations. This al-
gorithm takes 1145.98 seconds to converge to these values. The
comparison with integer coded GA [12] is also shown in Table 9. It
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Fig. 12. Magnitude response of the FRM filter before and after using the
integer coded ABC
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Fig. 13. Amplitude distortion of the ABC optimized MDFT filter bank

is found that the proposed optimization using modified ABC algo-
rithm performs better in terms of the frequency domain specifica-
tions of the FRM filter and MDFT filter bank compared to the in-
teger coded GA [12]. The magnitude response of the integer coded
ABC optimized FRM filter is shown in Fig.12. The amplitude dis-
tortion of the ABC optimized MDFT filter bank is shown in Fig.13.

6.3.5 Design of a totally multiplier-less MDFT filter bank using
HSA algorithm. The continuous coefficient FRM prototype filter
is designed and the initial harmony vector of the HSA algorithm
is obtained by concatenating the CSD encoded coefficients of the
model filter, masking filter and complementary masking filter. The
harmony vector is randomly perturbed to obtain the harmony mem-
ory for the HS algorithm. The various steps of the modified HS
algorithm as explained in [20] are carried out. When the termina-
tion criteria is satisfied, the best harmony vector is taken and CSD
decoded to get the optimal FRM filter and hence the MDFT filter
bank. The various parameters used for the integer coded HSA opti-
mization of the multiplier-less FRM filter are shown in Table 10.

Table 10. Parameters of integer coded HSA
Harmony Harmony memory Pitch adjusting Number of
memory considering rate rate (PAR) generations

size (HMS) (HMCR)
50 0.95 0.01 3000

9



International Journal of Computer Applications (0975 8887)
Volume 88 - No. 2, February 2014

Table 11. Performance of HSA optimized FRM filter and MDFT
filter bank (Average of 10 simulations)

Pass-band Stop-band Amplitude dist-
Algorithm ripple of FRM attenuation of ortion of MDFT

filter (dB) FRM filter(dB) filter bank (dB)
Integer coded

0.02166 50.08 0.03901
GA [12]
Integer

0.00988 55.29 0.01980
coded HSA
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Fig. 14. Magnitude response of FRM filter before and after using the inte-
ger coded HSA

Table 11 gives the different frequency parameters of the FRM filter
and MDFT filter bank obtained after 3000 iterations. This algo-
rithm takes 738.59 seconds to converge to these values. The com-
parison of the performances with the integer coded GA proposed in
[12] are also given in Table 11. As only one new solution is gener-
ated in each iteration of HSA, the number of iterations required is
larger than that required for GA. Although, HSA takes larger num-
ber of iterations, it requires less time. It is found that the design
using the modified HS algorithm outperforms that using the integer
coded GA [12]. The pass-band ripple obtained for HSA optimized
FRM filter is found to be better than that of the maximum precision
filter. Another good result of the HSA optimized MDFT filter bank
is that, its amplitude distortion is found to be even better than that
of the continuous coefficient filter bank.
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Fig. 15. Amplitude distortion of the HSA optimized MDFT filter bank

The magnitude response of the integer coded HSA optimized FRM
filter is shown in Fig.14. The amplitude distortion of the HSA op-
timized MDFT filter bank is shown in Fig. 15.

6.3.6 Design of a totally multiplier-less MDFT filter bank using
GSA algorithm. In the gravitational search (GS) algorithm, each
candidate solution is considered as a mass. Exploration and ex-
ploitation phase are carried out using the rules of gravity and mass
interaction. The integer coded GSA suitable for any discrete opti-
mization is discussed in [20] and is used here to find out the op-
timal FRM prototype filter and hence the MDFT filter bank in the
CSD space. After the algorithm terminates the heaviest mass which
gives the optimum solution is decoded to get the optimal FRM fil-
ter which is used for deriving the optimal MDFT filter bank. The
various parameters used for the integer coded GSA optimization of
the CSD represented FRM filter are shown in Table 12.

Table 12. Parameters of integer coded GSA
Number of Gravitational α Number of

agents constant, G0 generations
50 100 20 1000

Table 13. Performance of the GSA optimized FRM filter and
MDFT filter bank (Average of 10 simulations)

Pass-band Stop-band Amplitude dist-
Algorithm ripple of FRM attenuation of ortion of MDFT

filter (dB) FRM filter(dB) filter bank (dB)
Integer coded

0.02166 50.08 0.03901
GA [12]
Integer

0.00817 58.32 0.01634
coded GSA
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Fig. 16. Magnitude response of the FRM filter before and after using the
integer coded GSA

For the purpose of comparison, this algorithm is compared with
the integer coded genetic algorithm (GA) [12]. The performance
in terms of the pass band ripple and stop band attenuation of the
FRM filter and amplitude distortion of the MDFT filter bank are
compared in Table 13. It is found that the design approach using the
proposed integer coded GSA algorithm, outperforms the one using
integer coded GA [12]. The GSA algorithm takes 701.51 seconds
to converge to these values. It can be concluded from the table that
GSA algorithm gives the highest stop-band attenuation compared
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to all the other algorithms discussed here, which is a very desirable
feature in the MDFT filter banks to cancel non-adjacent aliasing
terms.
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Fig. 17. Amplitude distortion of the GSA optimized MDFT filter bank

The magnitude response of the integer coded GSA optimized FRM
filter is shown in Fig.16. In Fig.17, the amplitude distortion of the
GSA optimized MDFT filter bank is shown.

7. COMPLEXITY OF IMPLEMENTATION
The main objective of this work is to reduce the complexity of im-
plementation of the MDFT filter bank. To achieve this goal, follow-
ing measures are taken.

—All the filters are implemented as FIR linear phase filters which
means they are symmetric or anti symmetric and this property
helps to reduce the number of multipliers needed for implemen-
tation, by a factor of two. This also reduces the dimension of the
optimization variable in the optimization problem.

—Since, all the analysis and synthesis filters are derived from the
same prototype filter, the design complexity of an MDFT filter
bank is reduced to just the design complexity of the prototype
filter.

—The prototype filter is implemented using FRM approach which
reduces the complexity and hence the number of multipliers in
the implementation of the MDFT filter bank especially when
sharp transition width channels are required.

—The more complex multipliers are replaced by less complex
shifters and adders by representing the prototype filter coeffi-
cients in the SPT space resulting in multiplier-less implementa-
tion of the filter bank. Now, the hardware implementation of the
filter bank only requires shifters and adders.

—CSD representation is a special case of the SPT space, in which
minimum number of adders and shifters are used to represent a
decimal number. So the CSD system is chosen for the coefficient
representation.

—The total number of adders and shifters in the multiplier-less
MDFT filter bank can be reduced by restricting the total num-
ber of SPT terms in the CSD representation of the coefficients of
the prototype filter.

In Table 14, the complexity of implementation of the MDFT filter
bank using various optimization techniques is compared. All the
metaheuristic algorithms employed here, lead to totally multiplier-
less MDFT filter banks. All the optimization algorithms reduce the

complexity of the MDFT filter bank compared to that of the maxi-
mum precision filter bank. Thus, all the algorithms reduce the num-
ber of multipliers by 100% when compared to the continuous coef-
ficient implementation. Also, it is found that a saving of 5.75%,
8.16%, 8.16%, and 8.16% in the number of adders when com-
pared to the maximum precision multiplier-less filter bank, can be
claimed when modified DE, ABC, HSA and GSA respectively are
used. ABC, HSA and GSA result in the MDFT filter bank with the
least number of adders and hence the least complexity.

8. PERFORMANCE EVALUATION
The performances of the various algorithms are compared in terms
of the frequency characteristics of the prototype filter and MDFT
filter bank, convergence time, complexity of implementation and
average of objective function values.

The magnitude response of the continuous coefficient and CSD
rounded FRM prototype filter and the filter optimized using various
optimization approaches are shown in Fig.18. The performance in
the frequency domain for the design approaches using various opti-
mization algorithms are compared in Table 15 in terms of the pass
band and stop band attenuation of the FRM filter and the amplitude
distortion of the MDFT filter bank.
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Fig. 18. Magnitude Response of the multiplier-less FRM FIR prototype
filter after using the optimization techniques

It can be seen from the table that GSA gives the minimum pass-
band ripple for the multiplier-less FRM filter. It also gives the max-
imum stop-band attenuation for the FRM filter which is very impor-
tant for the cancellation of the non-adjacent aliasing components in
the MDFT filter bank. The amplitude distortion of the GSA opti-
mized MDFT filter bank is the least compared to all the algorithms
discussed here. The pass-band ripple of the FRM filter and ampli-
tude distortion of the MDFT filter bank designed using GSA algo-
rithm are even better than those of the continuous coefficient MDFT
filter bank.

HSA optimized FRM filter has the second least pass-band ripple
which is better than that of the maximum precision filter and is
close to the continuous coefficient filter. The stop-band attenuation
of the FRM filter obtained using HSA is second highest of all the
algorithms. Also, the amplitude distortion of the HSA optimized
MDFT filter bank is better than that of the continuous coefficient
MDFT filter bank. The optimization approaches using DE, ABC,
HSA and GSA offer better performances than those using integer
coded GA [12].
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Table 14. Complexity comparison of the MDFT filter bank using various optimization
algorithms

Number Number of Number Total Number
Optimization of SPT adders due of add- number of multi-
Techniques terms to SPT terms ers of adders pliers

Continuous coefficients [5] 0 0 195 195 198
Maximum precision

541 344 195 539 0
(7 SPTs)

CSD rounded
484 287 195 482 0

(3 SPTs)
Integer coded GA 523 326 195 521 0
Integer coded DE 498 313 195 508 0

Integer coded ABC 497 300 195 495 0
Integer coded HSA 497 300 195 495 0
Integer coded GSA 497 300 195 495 0

Table 15. Performance comparison of the FRM Filter and MDFT Filter Bank (Average
of 10 simulations)

Maximum pass- Minimum stop- Peak amplitude
Performance band ripple of the band attenuation of distortion of MDFT
parameters FRM filter (dB) the FRM filter (dB) filter bank (dB)

Continuous coefficients [5] 8.31x10−3 62.92 2.296x10−2

Maximum precision
1.103x10−2 59.81 2.359x10−2

(7 SPTs)
CSD rounded

7.075x10−2 41.81 1.408x10−1
(3 SPTs)

Integer coded GA 2.166x10−2 50.08 3.901x10−2

Integer coded DE 1.728x10−2 51.60 3.464x10−2

Integer coded ABC 1.138x10−2 53.55 2.298x10−2

Integer coded HSA 9.88x10−3 55.29 1.98x10−2

Integer coded GSA 8.17x10−3 58.32 1.63x10−2

0 100 200 300 400 500 600 700 800 900 1000
0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Number of iterations

M
in

im
u
m

 c
o
s
t

 

 

DE
ABC
GSA

Fig. 19. Comparison of evolution processes of the various optimization
techniques

The average objective function value at convergence is taken as the
measure to evaluate the performance of the various optimization
approaches for the design of the optimal MDFT filter bank. The
comparison of the objective function values is given in Table 16. It
is clear that GSA gives the minimum cost for the objective function.

One of the objectives of the design of multiplier-less filter bank is
to reduce the computation time of the design process. The total run-
time for the optimization is used as one of the measures for eval-
uating the performance of the optimization algorithm. The dimen-
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Fig. 20. Comparison of evolution processes of the various optimization
techniques

sion of the candidate solution has a significant impact on the run
time. The run time of the optimization for the various algorithms
are also tabulated in Table 16. The evolution of various algorithms
is compared in Figs. 19 and 20. It can be seen that the DE algorithm
reaches its minimum objective function value in the shortest time.

A performance matrix for the MDFT filter bank is shown in Table
17. Here, the various performance parameters such as pass-band
ripple and stop-band attenuation of the prototype filter, implemen-
tation complexity and amplitude distortion of the MDFT filter bank
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Table 17. Performance matrix of MDFT filter bank for various integer coded optimization
algorithms

Pass-band Stop-band Amplitude
Algorithm ripple of Attenuation distortion of Complexity Run-time Total score

FRM filter of FRM filter MDFT filter bank
Integer

5 5 5 3 4 22
coded GA

Integer
4 4 4 2 1 15

coded DE
Integer

3 3 3 1 4 14
coded ABC

Integer
2 2 2 1 3 10

coded HSA
Integer

1 1 1 1 2 6
coded GSA

Table 16. Comparison of the average of the final objective function
values obtained and average time for the design of the MDFT filter

bank using various optimization techniques (Average of 10
simulations)

Algorithm
Average of final obje- Number of Design
ctive function values iterations time (s)

Integer coded GA 3.524x10−2 1000 1140.82
Integer coded DE 1.942x10−2 1000 591.70

Integer coded ABC 1.489x10−2 1000 1145.98
Integer coded HSA 1.223x10−2 3000 738.59
Integer coded GSA 8.92x10−3 1000 701.51

and the run time of the algorithm are given scores; a minimum score
is given to the best performed optimization technique and a max-
imum score to the worst performed optimization technique. From
the table, it can be seen that GSA having the least total score of
6 which indicates that this algorithm will give the best performed
MDFT filter bank. In terms of the complexity, all the algorithms
result in multiplier-less MDFT filter bank. For the set of specifica-
tions used for the design of the FRM prototype filter,

—GSA gives the best pass-band ripple for the FRM filter and the
best amplitude distortion for the the MDFT filter bank, which are
even better than those of the continuous coefficient FRM filter
and MDFT filter bank.

—GSA also gives the best stop-band attenuation for the FRM filter.
—The complexity of the ABC, HSA and GSA optimized MDFT

filter bank are the least.
—GSA gives the least complex MDFT filter bank with very good

frequency characteristics for the FRM filter and MDFT filter
bank. But this algorithm takes more run-time compared to the
DE algorithm.

—DE is the fastest algorithm. But, the complexity and frequency
characteristics of the DE optimized FRM filter and filter bank
are the worse than those designed by ABC, HSA and GSA algo-
rithms.

As a conclusion it can be stated that, the design using GSA re-
sults in a multiplier-less MDFT filter bank with the least complex-
ity, and good frequency response characteristics for the FRM filter
and MDFT filter bank. For applications which require filter bank
with less complexity and less amplitude distortion, HSA or GSA
can be chosen. If the alias cancellation and speed are of primary
importance, GSA has to be selected. So, depending on the given
specifications, the appropriate algorithm can be chosen.

9. CONCLUSION
The FRM filter design technique, when applied to the design of
the sharp MDFT filter bank, leads to a reduction in the number of
filter coefficients as compared to the corresponding conventional
design of the MDFT filter banks. Design of FRM based MDFT fil-
ter banks in the canonic signed digit space is proposed in this paper
which leads to a totally multiplier-less filter bank. Various meta-
heuristic algorithms are modified and used to improve the perfor-
mance of the multiplier-less MDFT filter bank. The performances
of the algorithms are compared and it is found that, depending on
the specifications, we can choose one of these algorithms to obtain
the best performance for the multiplier-less MDFT filter bank. Thus
the proposed approach results in optimal MDFT filter banks which
are multiplier-less, have linear phase, near perfect reconstruction
and sharp transition width with low complexity.
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