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ABSTRACT  
Query optimizers in current database management systems 

(DBMS) often face problems such as intolerably long 

optimization time and/or poor optimization results when 

optimizing complex subqueries using classical techniques [1]. 
There are computational environments where metadata 

acquisition and support is very expensive. A ubiquitous 

computing environment is an appropriate example where 

classical query optimization techniques are not useful any 

more. To tackle this challenge, we present a new similarity-

based optimization technique using case-based reasoning in 

this paper[2]. The key idea is to identify cases of similar 

subqueries that often appear in a complex query and share the 

optimization result within each case in the query [3]. An 

efficient algorithm to identify similar queries in a given query 

and optimize the query based on similarity is presented. Our 

experimental results demonstrate that the proposed technique 

is quite promising in optimizing complex subqueries in a 

DBMS. It is possible to learn from each new experience in 

order to suggest better solutions to solve future queries.  
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1. INTRODUCTION 
Subquery optimization is the process of selecting the most 

efficient query evaluation plan from among the option 

available for processing a given subquery. For appropriate 

performance of query processing it is expected from the 

system to construct a query evaluation plan that minimizes the 

cost of query evaluation which can be done through subquery 

optimizer. Subquery optimizers examine all expression which 

is equivalent to the new subquery and select the suitable 

cheapest plan [1]. The area of query optimization in database 

field is very vast. It has been studied in a great variety of 

contexts and from many different angles which provides many 

miscellaneous solutions. Most of these approaches were based 

on classical subquery optimization, where dependency on 

metadata is very high. Moreover, classical subquery 

optimization techniques typically generate query execution 

plans that are optimized according to a single dimension, 

query execution time, this characteristic hampers the efficient 

information access. Due to this dependency it may not work 

effectively in all type of computational environment. An 

example of this type of environments is ubiquitous computing 

environment that integrates information from autonomous, 

heterogeneous, and dynamic computational tools and 

applications as well as electronic devices located in a 

distributed fashion. Ubiquitous environment is one where 

information technology become pervasive, embedded in 

environment, heterogeneous, sovereign and invisible to users. 

According to this vision network will be saturated by 

computation and wireless communication capacity which will 

be gracefully integrated with user. Metadata for subquery 

processing attainment and preservation is not feasible in 

ubiquitous environment. Thus environment must provide a set 

of procedures to retrieve information from minimized 

resources. Additionally, resources used in this environment 

have physical limitations that restrict their suitable operations 

like distributed in different locations, limited storage and 

processing capability, power supply etc. [2].  

Here we propose a subquery optimization approach which 

will deal with these challenges and work effectively in lack of 

metadata [1], [2]. 

2. CLASSICAL QUERY 

OPTIMIZATION 
We provide an abstraction of traditional subquery 

optimization process. The modules that participate in the 

classical subquery evaluation process are the query parser, 

query optimizer, code generator and the query executor Fig 1. 

The query parser is in charge to verify if the query is 

syntactically (well formed) and semantically correct. The 

output of this module is a tentative algebraic query tree. It is a 

sequence of algebraic operations (e.g. selection, projection 

and joins) that indicate the operations that must be performed 

on the data for solving the query. Then, a valid query must to 

be optimized; this is carried out in by the Query optimizer 

module. That estimates the best order to perform the 

operations included by the algebraic query tree and assigns to 

each algebraic operator an algorithm to execute it. The result 

is the execution plan. When the query is optimized, a 

codification of the execution tree must be performed by the 

code generator, to be executed by the last module, the query 

executor. Finally, the data that solve the query is obtained. 

Evaluation cost models used for most of classical subquery 

optimization techniques are tightly tied to metadata use.

 



International Journal of Computer Applications (0975 – 8887)  

Volume 88 – No.2, February 2014 

28 

 

Figure 1: Phases of query optimization 

  The Query Parser checks the validity of the query 

and then translates it into an internal form, usually a 

relational calculus expression or something 

equivalent. 

  The Query Optimizer examines all algebraic 

expressions that are equivalent to the given query 

and chooses the one that is estimated to be the 

cheapest [6]. 

  The Code Generator or the Interpreter transforms 

the access plan generated by the optimizer into calls 

to the query processor. 

  The Query Processor actually executes the query. 

Queries are posed to a DBMS by interactive users or by 

programs written in general-purpose programming languages 

(e.g., C/C++, Fortran, PL-1) that have queries embedded in 

them. An interactive (ad hoc) query goes through the entire 

path shown in Figure 1. On the other hand, an embedded 

query goes through the first three steps only once, when the 

program in which it is embedded is compiled (compile time). 

The code produced by the Code Generator is stored in the 

database and is simply invoked and executed by the Query 

Processor whenever control reaches that query during the 

program execution (run time). Thus, independent of the 

number of times an embedded query needs to be executed, 

optimization is not repeated until database updates make the 

access plan invalid (e.g., index deletion) or highly suboptimal 

(e.g., extensive changes in database contents) [7]. 

3. LITERATURE SURVEY 
In figure. [3] To a large extent, the success of a DBMS lies in 

the quality, functionality, and sophistication of its query 

optimizer, since that determines much of the system's 

performance. In this paper we have given a bird's eye view of 

query optimization. We have presented an abstraction of the 

architecture of a query optimizer and focused on the 

techniques currently used by most commercial systems for its 

various modules. In addition, we have provided a glimpse of 

advanced issues in query optimization, whose solutions have 

not yet found their way into practical systems, but could 

certainly do so in the future. 

In fig. [2] A wide variety of query optimization techniques as 

semantic, parametric, and query optimization via probing 

queries have been suggested. Even though these approaches 

allow the efficient query processing they are presented in the 

framework of classical query evaluation procedures that rely 

upon cost models heavily dependent of metadata (e.g. 

statistics and cardinality estimates). There exist different 

computational environments where no metadata are available. 

This characteristic hampers the efficient information access. 

In [1] Case-based reasoning (CBR) is an approach to problem 

solving that emphasizes the role of prior experience during 

future problem solving (i.e., new problems are solved by 

reusing and if necessary adapting the solutions to similar 

problems that were solved in the past). It has enjoyed 

considerable success in a wide variety of problem solving 

tasks and domains. Following a brief overview of the 

traditional problem solving cycle in CBR, we examine the 

cognitive science foundations of CBR and its relationship to 

analogical reasoning. We then review a representative 

selection of CBR research in the past few decades on aspects 

of retrieval, reuse, retention. 

 

                             Figure 2: Case based reasoning
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                Figure 3: Case based reasoning cycle 

4. CASE BASED REASONING 

APPROACH 
Unlike most problem solving methodologies in artificial 

intelligence (AI), CBR is memory based, thus reflecting 

human use of remembered problems and solutions as starting 

point for new problem solving. An observation on which 

problem solving is based in CBR, namely that similar 

problems have similar solutions, has been shown to hold in 

expectation for simple scenarios and is empirically validated 

in many real-world domains. Solving a problem by CBR 

involves obtaining a problem description, measuring the 

similarity of the current problem to previous problems stored 

in a case base (or memory) with their known solutions, 

retrieving one or more similar cases and attempting to reuse 

the solution of one of the retrieved cases, possibly after 

adapting it to account for differences in problem descriptions. 

The solution proposed by the system is then evaluated (e.g., 

by being applied to the initial problem or assessed by a 

domain expert). Following revision of the proposed solution if 

required in light of its evaluation, the problem description and 

its solution can then be retained as a new case, and the system 

has learned to solve a new problem. 

The reasoning process that must be accomplished to optimize 

a query problem is elaborate in the following 

Retrieval: This step involves retrieving of stored cases from 

case base which is relevant to a new query. Retrieval step is 

based on a similarity function in order to perform a smart 

search to retrieve the most relevant case to solve the query 

problem. Among these relevant cases, the one that minimizes 

the cost function of the problem is selected. 

Reuse: Reusing is followed by retrieval step, it is also known 

as readaptation. Reusing step is related to the adaptation 

process of the execution plan involved by the case that 

resulted relevant to solve the new query. 

Review: Reviewing step consists in verify the query by means 

of its execution. During this step measures about performance 

as well as computational resources consumption are taken. 

Retention: Finally, in the retaining step, approach to 

incremental, sustained learning, since a new experience is 

retained each time a problem has been solved, making it 

immediately available for future problems the problem and its 

solution are stored in the case base in form of a new case. 

Since this approach is based in a try and learn principle, when 

a relevant case to solve a query problem is not founded in the 

case base, is necessary to propose a new solution [5]. 

4.1 Similarity Function 
Similarity notion is useful in different steps of the case based 

reasoning process. At the retrieving step, a relevant case is 

identified by applying a similarity function. Furthermore, at 

adaptation step, the matching process depends on how much 

similar is the relevant case to the query problem. Finally, at 

the retaining step, a case is stored in the base of cases 

according to a defined classification. It is possible to know to 

which class pertains a case determining the similarity between 

the class of the query problem and the class in the case base. 

The formalization of the original definition is expressed as 

follows: 

S (a, b) = θf(A ∩ B) - αf(A - B) - βf(B - A) 

Similarity between a and b, is defined in terms of the features 

common to a and b, A ∩ B, the features that pertain to a but 

no to b, A - B, and those that pertain to b but no to a, B - A. 

The variables θ, α, and β are non-negative valued free 

parameters that determine the relative weight of these three 

components of similarity. Such variables provide the 

flexibility when modifying the importance of similarities or 

differences that in conjunction determine the similarity 

between two elements according to the area of application. 

The function f measures the silence of a particular set of 

features (also can be a single feature)[8]. 

4.1.1 Inter-class similarity: Inter-class similarity is 

defined as an increasing function of common operation 

families and as a decreasing function of distinctive families, in 

other words, families that pertain to one query but not the 

other [9]. The formalization of this definition in terms of the 
similarity between a query and a class is expressed as follows: 

S (C1, Q) = θ_(C1 ∩ Q) - α_(C1-Q) - β_(Q-C1) 

Similarity between C1 and Q, is defined in terms of operation 

families common to C1 and Q, C1 ∩ Q, the features that 

pertain to C1 but no to Q, C1 - Q, and those that pertain to Q 

but no to C1, Q - C1. The function f refers particularly to 

operation families _. According to the purpose of our work, 

these are the features that must be compared. 

4.1.2 Intra-class similarity: Intra-class similarity 

function aims to find the most similar queries with respect to a 

new query, which is desired to be optimized, within the same 

class [9]. The formalization of this definition is as follows: 

S (Q1, Q2) = θo(Q1 ∩ Q2) - αo(Q1 - Q2) - βo(Q1 - Q2) 

Similarity between Q1 and Q2 is defined in terms of the 

operations that are common to Q1 and the features that pertain 
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to Q1 but no to Q2. It is possible to establish a mapping one to 

one for each of the operations included in Q1 and Q3 

according to the comparison operator that each of them 

applies. Q1 and Q2 have two operations in common; they 

differ in the operator applied by the join operation. According 

to this simple analysis, Q3 is the most similar query with 

respect to Q1 because it contains the maximum number of 

operation mappings. 

5. SUBQUERY OPTIMIZATION USING 

CASE BASED REASONING 
The subquery optimization technique that we propose is an 

adaptation of the general case-based reasoning process. This 

technique aims to solve the problem of lack of metadata, thus 

it is feasible to be applied in different execution environments 

which can’t afford expensive acquisition and maintenance of 

metadata [11]. Since case and problem are the main units of 

knowledge in this learning approach, we select useful 

knowledge for query optimization in order to instantiate both 

concepts. According to our approach, a case represents the 

knowledge related to the experience gained from the 

optimization and evaluation of a subquery. A problem 

represents a new query, that we call query problem, which is 

submitted in some application pertaining to the ubiquitous 

environment. We propose subquery optimization strategy that 

adapts case based reasoning in order to provide optimal 

execution plans to solve new queries. This strategy recovers, 

adapts or generates execution plans using the knowledge 

acquired from the experience to optimize and execute similar 

subquery. 

 

5.1. Algorithm 
Step 1: Receive new query from user, extract subquery (Q) 

from it. 

Step 2: Generate a case on the basis of subquery (in the form 

of from, where clause)in the given query. 

Step 3: Retrieval process initiated 

Searching for the appropriate stored case (i.e. in form of 

subquery) using inter class similarity function. 

Comparing for most similar subquery with respect to new 

subquery using intra class similarity function 

On basis of above functions 

If (similar case found for Q) 

Retrieval process completed (output relevant stored case(C) 

for new query (Q)) 

Else 

{ 

New query execution plan will be generated for Q. 

Adding a new plan (in form of case) to case base and exit. 

} 

Step 4: Readapting stored case C (output of retrieval process) 

according to new query Q. 

Step 5: Review of result (execution of query accordingly and 

output is delivered). 

Step 6: Retention of case in case base for future use (on basis 

of case replacement policy). 

5.2. Example 

                Query Q 

Select o_orderpriority, COUNT(*) 

From orders as o 

Where o_orderno > 12 AND 

Exists( Select *  

           From lineitem as l 

           Where o_orderkey =  l_orderkey, 

                     l_returnflag = ’R’ ); 

 

The query Q contain a subquery having three clauses select 

from and where. As it will be the new query it will be stored 

in the case base in the form of a new learned case. As it is 

stored in the case base as learned case now for any new query 

which is similar to this query, we can reuse it from the case 

base and readapt the values according to the new query. 

 

Query Q’ 

Select o_orderpriority, COUNT(*) 

From orders as o 

Where o_orderno > 12 AND 

Exists( Select *  

           From lineitem as l 

           Where o_orderkey =  l_orderkey, 

                     l_recietdate > l_commitdate ); 

 

With reference of above example in Q and Q’ first 

comparison will be done through inter class similarity 

function which will be performed on the basis of main class 

category (From clause). Here in this example we can see that 

Q and Q’ were belonging to the same main class thus second 

step of similarity check will be perform i.e. is intra class 

similarity check to find out the most relevant case. Now 

comparison will be done on basis of sub classes based on 

where clause. 

WHERE clause of Q = o_orderkey = l_orderkey, 

l_returnflag=’R’ 

WHERE clause of Q’ = o_orderkey = l_orderkey, 

l_recietdate>l_commitdate 

As both queries contains different where clause condition 

values but Q can be considered as most relevant case for Q’. 

After completion of the retrieval process next step comes is 

reuse where we have to adapt our retrieval case according to a 

new query problem using similarity level [10]. The similarity 

level between two queries indicates which clauses of the 

relevant query must be adapted. This adaptation can be 

performed only on Select and Where clauses. Reason behind 

this is that for Select clause, interesting attributes to be 

projected can vary and for where clause, comparison 

operators or some values related to the variables can be 

modified. On the other hand, the from clause cannot be 

changed because the tables to be queried cannot be changed. 
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Figure 4: Flow chart for similarity level 

In our example similarity level between both the queries Q 

and Q’ is 2, modification will performed only in where clause 

value which is 

WHERE clause of Q = o_orderkey = l_orderkey, 

l_returnflag=’R’ 

WHERE clause of Q‟ = o_orderkey = l_orderkey, 

l_recietdate>l_commitdate 

Next is review step where proposed solution is verified 

through execution. Finally in the end retention of newly 

learned case is performed for future use. At the retaining step, 

a case is stored in case base, according to a defined 

classification. It is possible to know to which class pertains a 

case determining the similarity between the class of the query 

problem and the class in the case base. 

6. FUTURE WORK 
We propose a new query optimization technique that exploits 

case-based reasoning in order to improve query optimization 

in ubiquitous environments [3] [4]. Our approach deals with 

the challenge that the lack of metadata implies in this 

execution context. We propose a technique that is based on 

the useful knowledge (resource consumption measures) 

obtained from previous query executions [7]. In addition, we 

propose a technique that allows the configuration of the 

optimization objective according to the users and application 

requirements, even for each single query. The most important 

contributions of our work are centered in the reasoning steps 

related to retrieval and re-adaptation of the useful knowledge. 

These steps retrieve the most relevant cases and adapt a 

previous solution to the new situation.   

Currently we are working on a prototype which only runs on 

SQL but no other framework, so related work can be done to 

make it platform independent. Dynamicity management is 

also an important point to work on. However, the system 

should be able to detect those cases in its case base no longer 

relevant and thus delete them. This is a problem of knowledge  
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