
International Journal of Computer Applications (0975 – 8887)

Volume 88 – No.2, February 2014

27

A Framework to Subquery Optimization using Case-

based Reasoning

Pragya Shukla
Associate Professor

IET, DAVV
Khandwa Road, Indore

Sakshi Mathur
ME Student

IET Girls hostel, DAVV
Khandwa Road, Indore

ABSTRACT
Query optimizers in current database management systems

(DBMS) often face problems such as intolerably long

optimization time and/or poor optimization results when

optimizing complex subqueries using classical techniques [1].
There are computational environments where metadata

acquisition and support is very expensive. A ubiquitous

computing environment is an appropriate example where

classical query optimization techniques are not useful any

more. To tackle this challenge, we present a new similarity-

based optimization technique using case-based reasoning in

this paper[2]. The key idea is to identify cases of similar

subqueries that often appear in a complex query and share the

optimization result within each case in the query [3]. An

efficient algorithm to identify similar queries in a given query

and optimize the query based on similarity is presented. Our

experimental results demonstrate that the proposed technique

is quite promising in optimizing complex subqueries in a

DBMS. It is possible to learn from each new experience in

order to suggest better solutions to solve future queries.

Keywords
Classical query optimization techniques, ubiquitous

computing environment, metadata, case-based reasoning,

similarity function

1. INTRODUCTION
Subquery optimization is the process of selecting the most

efficient query evaluation plan from among the option

available for processing a given subquery. For appropriate

performance of query processing it is expected from the

system to construct a query evaluation plan that minimizes the

cost of query evaluation which can be done through subquery

optimizer. Subquery optimizers examine all expression which

is equivalent to the new subquery and select the suitable

cheapest plan [1]. The area of query optimization in database

field is very vast. It has been studied in a great variety of

contexts and from many different angles which provides many

miscellaneous solutions. Most of these approaches were based

on classical subquery optimization, where dependency on

metadata is very high. Moreover, classical subquery

optimization techniques typically generate query execution

plans that are optimized according to a single dimension,

query execution time, this characteristic hampers the efficient

information access. Due to this dependency it may not work

effectively in all type of computational environment. An

example of this type of environments is ubiquitous computing

environment that integrates information from autonomous,

heterogeneous, and dynamic computational tools and

applications as well as electronic devices located in a

distributed fashion. Ubiquitous environment is one where

information technology become pervasive, embedded in

environment, heterogeneous, sovereign and invisible to users.

According to this vision network will be saturated by

computation and wireless communication capacity which will

be gracefully integrated with user. Metadata for subquery

processing attainment and preservation is not feasible in

ubiquitous environment. Thus environment must provide a set

of procedures to retrieve information from minimized

resources. Additionally, resources used in this environment

have physical limitations that restrict their suitable operations

like distributed in different locations, limited storage and

processing capability, power supply etc. [2].

Here we propose a subquery optimization approach which

will deal with these challenges and work effectively in lack of

metadata [1], [2].

2. CLASSICAL QUERY

OPTIMIZATION
We provide an abstraction of traditional subquery

optimization process. The modules that participate in the

classical subquery evaluation process are the query parser,

query optimizer, code generator and the query executor Fig 1.

The query parser is in charge to verify if the query is

syntactically (well formed) and semantically correct. The

output of this module is a tentative algebraic query tree. It is a

sequence of algebraic operations (e.g. selection, projection

and joins) that indicate the operations that must be performed

on the data for solving the query. Then, a valid query must to

be optimized; this is carried out in by the Query optimizer

module. That estimates the best order to perform the

operations included by the algebraic query tree and assigns to

each algebraic operator an algorithm to execute it. The result

is the execution plan. When the query is optimized, a

codification of the execution tree must be performed by the

code generator, to be executed by the last module, the query

executor. Finally, the data that solve the query is obtained.

Evaluation cost models used for most of classical subquery

optimization techniques are tightly tied to metadata use.

International Journal of Computer Applications (0975 – 8887)

Volume 88 – No.2, February 2014

28

Figure 1: Phases of query optimization

 The Query Parser checks the validity of the query

and then translates it into an internal form, usually a

relational calculus expression or something

equivalent.

 The Query Optimizer examines all algebraic

expressions that are equivalent to the given query

and chooses the one that is estimated to be the

cheapest [6].

 The Code Generator or the Interpreter transforms

the access plan generated by the optimizer into calls

to the query processor.

 The Query Processor actually executes the query.

Queries are posed to a DBMS by interactive users or by

programs written in general-purpose programming languages

(e.g., C/C++, Fortran, PL-1) that have queries embedded in

them. An interactive (ad hoc) query goes through the entire

path shown in Figure 1. On the other hand, an embedded

query goes through the first three steps only once, when the

program in which it is embedded is compiled (compile time).

The code produced by the Code Generator is stored in the

database and is simply invoked and executed by the Query

Processor whenever control reaches that query during the

program execution (run time). Thus, independent of the

number of times an embedded query needs to be executed,

optimization is not repeated until database updates make the

access plan invalid (e.g., index deletion) or highly suboptimal

(e.g., extensive changes in database contents) [7].

3. LITERATURE SURVEY
In figure. [3] To a large extent, the success of a DBMS lies in

the quality, functionality, and sophistication of its query

optimizer, since that determines much of the system's

performance. In this paper we have given a bird's eye view of

query optimization. We have presented an abstraction of the

architecture of a query optimizer and focused on the

techniques currently used by most commercial systems for its

various modules. In addition, we have provided a glimpse of

advanced issues in query optimization, whose solutions have

not yet found their way into practical systems, but could

certainly do so in the future.

In fig. [2] A wide variety of query optimization techniques as

semantic, parametric, and query optimization via probing

queries have been suggested. Even though these approaches

allow the efficient query processing they are presented in the

framework of classical query evaluation procedures that rely

upon cost models heavily dependent of metadata (e.g.

statistics and cardinality estimates). There exist different

computational environments where no metadata are available.

This characteristic hampers the efficient information access.

In [1] Case-based reasoning (CBR) is an approach to problem

solving that emphasizes the role of prior experience during

future problem solving (i.e., new problems are solved by

reusing and if necessary adapting the solutions to similar

problems that were solved in the past). It has enjoyed

considerable success in a wide variety of problem solving

tasks and domains. Following a brief overview of the

traditional problem solving cycle in CBR, we examine the

cognitive science foundations of CBR and its relationship to

analogical reasoning. We then review a representative

selection of CBR research in the past few decades on aspects

of retrieval, reuse, retention.

 Figure 2: Case based reasoning

International Journal of Computer Applications (0975 – 8887)

Volume 88 – No.2, February 2014

29

 Figure 3: Case based reasoning cycle

4. CASE BASED REASONING

APPROACH
Unlike most problem solving methodologies in artificial

intelligence (AI), CBR is memory based, thus reflecting

human use of remembered problems and solutions as starting

point for new problem solving. An observation on which

problem solving is based in CBR, namely that similar

problems have similar solutions, has been shown to hold in

expectation for simple scenarios and is empirically validated

in many real-world domains. Solving a problem by CBR

involves obtaining a problem description, measuring the

similarity of the current problem to previous problems stored

in a case base (or memory) with their known solutions,

retrieving one or more similar cases and attempting to reuse

the solution of one of the retrieved cases, possibly after

adapting it to account for differences in problem descriptions.

The solution proposed by the system is then evaluated (e.g.,

by being applied to the initial problem or assessed by a

domain expert). Following revision of the proposed solution if

required in light of its evaluation, the problem description and

its solution can then be retained as a new case, and the system

has learned to solve a new problem.

The reasoning process that must be accomplished to optimize

a query problem is elaborate in the following

Retrieval: This step involves retrieving of stored cases from

case base which is relevant to a new query. Retrieval step is

based on a similarity function in order to perform a smart

search to retrieve the most relevant case to solve the query

problem. Among these relevant cases, the one that minimizes

the cost function of the problem is selected.

Reuse: Reusing is followed by retrieval step, it is also known

as readaptation. Reusing step is related to the adaptation

process of the execution plan involved by the case that

resulted relevant to solve the new query.

Review: Reviewing step consists in verify the query by means

of its execution. During this step measures about performance

as well as computational resources consumption are taken.

Retention: Finally, in the retaining step, approach to

incremental, sustained learning, since a new experience is

retained each time a problem has been solved, making it

immediately available for future problems the problem and its

solution are stored in the case base in form of a new case.

Since this approach is based in a try and learn principle, when

a relevant case to solve a query problem is not founded in the

case base, is necessary to propose a new solution [5].

4.1 Similarity Function
Similarity notion is useful in different steps of the case based

reasoning process. At the retrieving step, a relevant case is

identified by applying a similarity function. Furthermore, at

adaptation step, the matching process depends on how much

similar is the relevant case to the query problem. Finally, at

the retaining step, a case is stored in the base of cases

according to a defined classification. It is possible to know to

which class pertains a case determining the similarity between

the class of the query problem and the class in the case base.

The formalization of the original definition is expressed as

follows:

S (a, b) = θf(A ∩ B) - αf(A - B) - βf(B - A)

Similarity between a and b, is defined in terms of the features

common to a and b, A ∩ B, the features that pertain to a but

no to b, A - B, and those that pertain to b but no to a, B - A.

The variables θ, α, and β are non-negative valued free

parameters that determine the relative weight of these three

components of similarity. Such variables provide the

flexibility when modifying the importance of similarities or

differences that in conjunction determine the similarity

between two elements according to the area of application.

The function f measures the silence of a particular set of

features (also can be a single feature)[8].

4.1.1 Inter-class similarity: Inter-class similarity is

defined as an increasing function of common operation

families and as a decreasing function of distinctive families, in

other words, families that pertain to one query but not the

other [9]. The formalization of this definition in terms of the
similarity between a query and a class is expressed as follows:

S (C1, Q) = θ_(C1 ∩ Q) - α_(C1-Q) - β_(Q-C1)

Similarity between C1 and Q, is defined in terms of operation

families common to C1 and Q, C1 ∩ Q, the features that

pertain to C1 but no to Q, C1 - Q, and those that pertain to Q

but no to C1, Q - C1. The function f refers particularly to

operation families _. According to the purpose of our work,

these are the features that must be compared.

4.1.2 Intra-class similarity: Intra-class similarity

function aims to find the most similar queries with respect to a

new query, which is desired to be optimized, within the same

class [9]. The formalization of this definition is as follows:

S (Q1, Q2) = θo(Q1 ∩ Q2) - αo(Q1 - Q2) - βo(Q1 - Q2)

Similarity between Q1 and Q2 is defined in terms of the

operations that are common to Q1 and the features that pertain

International Journal of Computer Applications (0975 – 8887)

Volume 88 – No.2, February 2014

30

to Q1 but no to Q2. It is possible to establish a mapping one to

one for each of the operations included in Q1 and Q3

according to the comparison operator that each of them

applies. Q1 and Q2 have two operations in common; they

differ in the operator applied by the join operation. According

to this simple analysis, Q3 is the most similar query with

respect to Q1 because it contains the maximum number of

operation mappings.

5. SUBQUERY OPTIMIZATION USING

CASE BASED REASONING
The subquery optimization technique that we propose is an

adaptation of the general case-based reasoning process. This

technique aims to solve the problem of lack of metadata, thus

it is feasible to be applied in different execution environments

which can’t afford expensive acquisition and maintenance of

metadata [11]. Since case and problem are the main units of

knowledge in this learning approach, we select useful

knowledge for query optimization in order to instantiate both

concepts. According to our approach, a case represents the

knowledge related to the experience gained from the

optimization and evaluation of a subquery. A problem

represents a new query, that we call query problem, which is

submitted in some application pertaining to the ubiquitous

environment. We propose subquery optimization strategy that

adapts case based reasoning in order to provide optimal

execution plans to solve new queries. This strategy recovers,

adapts or generates execution plans using the knowledge

acquired from the experience to optimize and execute similar

subquery.

5.1. Algorithm
Step 1: Receive new query from user, extract subquery (Q)

from it.

Step 2: Generate a case on the basis of subquery (in the form

of from, where clause)in the given query.

Step 3: Retrieval process initiated

Searching for the appropriate stored case (i.e. in form of

subquery) using inter class similarity function.

Comparing for most similar subquery with respect to new

subquery using intra class similarity function

On basis of above functions

If (similar case found for Q)

Retrieval process completed (output relevant stored case(C)

for new query (Q))

Else

{

New query execution plan will be generated for Q.

Adding a new plan (in form of case) to case base and exit.

}

Step 4: Readapting stored case C (output of retrieval process)

according to new query Q.

Step 5: Review of result (execution of query accordingly and

output is delivered).

Step 6: Retention of case in case base for future use (on basis

of case replacement policy).

5.2. Example

 Query Q

Select o_orderpriority, COUNT(*)

From orders as o

Where o_orderno > 12 AND

Exists(Select *

 From lineitem as l

 Where o_orderkey = l_orderkey,

 l_returnflag = ’R’);

The query Q contain a subquery having three clauses select

from and where. As it will be the new query it will be stored

in the case base in the form of a new learned case. As it is

stored in the case base as learned case now for any new query

which is similar to this query, we can reuse it from the case

base and readapt the values according to the new query.

Query Q’

Select o_orderpriority, COUNT(*)

From orders as o

Where o_orderno > 12 AND

Exists(Select *

 From lineitem as l

 Where o_orderkey = l_orderkey,

 l_recietdate > l_commitdate);

With reference of above example in Q and Q’ first

comparison will be done through inter class similarity

function which will be performed on the basis of main class

category (From clause). Here in this example we can see that

Q and Q’ were belonging to the same main class thus second

step of similarity check will be perform i.e. is intra class

similarity check to find out the most relevant case. Now

comparison will be done on basis of sub classes based on

where clause.

WHERE clause of Q = o_orderkey = l_orderkey,

l_returnflag=’R’

WHERE clause of Q’ = o_orderkey = l_orderkey,

l_recietdate>l_commitdate

As both queries contains different where clause condition

values but Q can be considered as most relevant case for Q’.

After completion of the retrieval process next step comes is

reuse where we have to adapt our retrieval case according to a

new query problem using similarity level [10]. The similarity

level between two queries indicates which clauses of the

relevant query must be adapted. This adaptation can be

performed only on Select and Where clauses. Reason behind

this is that for Select clause, interesting attributes to be

projected can vary and for where clause, comparison

operators or some values related to the variables can be

modified. On the other hand, the from clause cannot be

changed because the tables to be queried cannot be changed.

International Journal of Computer Applications (0975 – 8887)

Volume 88 – No.2, February 2014

31

Figure 4: Flow chart for similarity level

In our example similarity level between both the queries Q

and Q’ is 2, modification will performed only in where clause

value which is

WHERE clause of Q = o_orderkey = l_orderkey,

l_returnflag=’R’

WHERE clause of Q‟ = o_orderkey = l_orderkey,

l_recietdate>l_commitdate

Next is review step where proposed solution is verified

through execution. Finally in the end retention of newly

learned case is performed for future use. At the retaining step,

a case is stored in case base, according to a defined

classification. It is possible to know to which class pertains a

case determining the similarity between the class of the query

problem and the class in the case base.

6. FUTURE WORK
We propose a new query optimization technique that exploits

case-based reasoning in order to improve query optimization

in ubiquitous environments [3] [4]. Our approach deals with

the challenge that the lack of metadata implies in this

execution context. We propose a technique that is based on

the useful knowledge (resource consumption measures)

obtained from previous query executions [7]. In addition, we

propose a technique that allows the configuration of the

optimization objective according to the users and application

requirements, even for each single query. The most important

contributions of our work are centered in the reasoning steps

related to retrieval and re-adaptation of the useful knowledge.

These steps retrieve the most relevant cases and adapt a

previous solution to the new situation.

Currently we are working on a prototype which only runs on

SQL but no other framework, so related work can be done to

make it platform independent. Dynamicity management is

also an important point to work on. However, the system

should be able to detect those cases in its case base no longer

relevant and thus delete them. This is a problem of knowledge

7. REFERENCES
[1] Lourdes Ang´elica Mart´ınez-Medina and Christophe

Bibineau and Jose Luis Zechinelli-Martini, Query

optimization using case-based reasoning in ubiquitous

environments in Mexican International Conference on

Computer Science, 2009.

[2] Silberschatz- Korth- Sudarshan, “Database System

Concepts”, Fourth Edition copyright © by Foxit

Software Company, 2004

 [3] Syedur Rahman1 , A. M. Ahsan Feroz2, Md.

Kamruzzaman3 and Meherun Nesa Faruque4,” Analyze

Database Optimization Techniques”, IJCSNS

International Journal of Computer Science and Network

Security, VOL.10 No.8, August 2010.

[4] L. D. Mantaras, R. McSherry, and et al, “Retrieval, reuse,

revision and retention in case-based reasoning,” Knowl.

Eng. Rev., vol. 20, no. 3, pp. 215–240, 2005.

[5] A. Aamodt and E. Plaza, “Case-based reasoning:

Foundational issues, methodological variations, and

system approaches,” AI Communications, vol. 7, no. 1,

pp. 39–59, 1994.

[6] Y. Ioannidis, “Query optimization,” ACM Comput. Surv.,

vol. 28, no. 1, pp. 121–123, 1996..

[7] M. Franklin, “Challenges in ubiquitous data management,”

in Informatics - 10 Years Back. 10 Years Ahead., R.

Wilhelm, Ed. Springer-Verlag, 2001, pp. 24–33.

[8] M. Gu, X. Tong, and A. Aamodt, “Comparing similarity

calculation methods in conversational cbr,” in In:

Proceedings of the 2005 IEEE International Conference

on Information Reuse and Integration, 2005, pp. 427–

432.

[9] A. Tversky and I. Gati, “Studies of similarity,” 1978.

[10] R. Bergmann and A. Stahl, “Similarity measures for

object oriented case representations,” in In: Proceedings

of the 4th European Workshop on Advances in Case-

Based Reasoning B, B. Smyth and P. Cunningham, Eds.

Springer Verlag, 1998.

[11] Christiane Gresse von Wangenheim, “Case Based

Reasoning- A Short Introduction” in University of Italy

in 2000

LEVEL 0: No match

found.

New sub query received

LEVEL 1: From clause matching

between case base and new case.

LEVEL 2: Select and where clause

matching.

LEVEL 3: Exact match

found.

IJCATM : www.ijcaonline.org

