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ABSTRACT
The field of application of control methodologies to gas tur-
bine holds tremendous research potential. This paper, presents the
fractional-order (FO) robust controller design for the fuel-speed
loop of a gas turbine. The aim of the controller is to maintain
the turbine speed, against the plant gain variation and disturbance.
To the best of our knowledge this is probably the first effort to
propose the design of a fractional-order controller for the speed
control of a power plant gas turbine. Nowadays the application of
fractional-order (FO ) modeling and control is the most appreciated
area for research. The Fractional Calculus field has originated from
the fundamental area of fractional calculus which is the mathemat-
ical branch dealing with differentiation and integration with arbi-
trary order of the operation. On the other hand, FO controllers have
proved their efficacy over the conventional integer-order (IO) con-
trollers by providing more flexibility in the design and also by guar-
anteeing a more robust closed-loop configuration. The proposed FO
controller is designed with the concept of Bode’s ideal loop trans-
fer function. Simulation studies clearly shows that the proposed FO
controller makes the closed loop system more robust against the
plant uncertainties and disturbances as compared to the integer or-
der PID controller.

General Terms:
Gas Turbine Control

Keywords:
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1. INTRODUCTION
In recent years, gas turbines are popularly used for power genera-
tion and the worldwide installations are also day by day increasing
. In aeronautical industry as well as mechanical drivers for large
pumps and compressors, gas turbine role is very significant. So
it is essential to know the dynamic behaviors and to understand
the nature of gas turbine. Accurate model which clearly shows the
complete dynamics is required, and which also help us to design
efficient controller for regulating gas turbine variables [9]. Studies
on the gas turbine control have been a subject of interest, since gas-

turbine engines have been widely adopted as peak load candidates
for electricity generation [2]. Especially, the compactness, multi-
ple fuel applications, the fully automatic start-up function and the
fast run-up characteristic of gas turbine systems have made them
particularly suitable for peak-load and standby power supply pur-
poses [1]. Start-up and shutdown procedures are the most challeng-
ing problems for control applications to develop new control algo-
rithms. At the same time, many variables must be monitored and
controlled to ensure safety of operation. Gas turbines usually have
the five controllers namely start controller, speed controller, load
controller, turbine’s maximum temperature limit controller and tur-
bine’s mechanical load limit controller [2] [3].
In dynamic analysis of combined cycle plants, twin shaft gas tur-
bine model, combustion turbine model, biomass-based gas turbine
plant and even in micro turbine power generation the transfer func-
tion model has been used [9]. Basically this model has speed, ex-
haust temperature are controlled variable and the manipulated vari-
able are fuel flow and inlet guide vane signal respectively as shown
in Fig.1.
To design controller for gas turbines, various methods have been
investigated by researchers. Most of these works have been ap-
plied for jet turbines, such as robust controller by [11]. However,
the area of control of gas turbine is still in its infancy. Typically,
employment of conventional PID controllers for the control of gas
turbine is widely followed. Some implementation of modern model
based control techniques like Adaptive control, MPC [8], Fuzzy
control [16], PID [18], H-infinity control [1] etc are also found in
the literature. However, looking at the pace of advancement in the
field of control systems theory, these efforts are not sufficient to
exploit the features of advanced control theory to achieve desirable
operation of a gas turbine. This is probably the first effort to propose
the design of a fractional-order controller for the speed control of a
power plant gas turbine. Recently, sudden increase in research ac-
tivities are found in the area of fractional-order (FO) modeling and
control. These fields has originated from the fundamental area of
fractional calculus, a branch of mathematics dealing with deriva-
tives and integrals with arbitrary non-integer order (real or com-
plex) [13, 14]. FO models have been found to provide a more real-
istic and compact representation to real world and man-made sys-
tems. On the other hand, FO controllers have proved their efficacy
over the conventional integer-order (IO) controllers by providing
more flexibility in the design and also by guaranteeing a more ro-
bust closed-loop performance. The proposed robust FO controller
is designed using the concept of Bode’s ideal loop transfer func-
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tion [12]. This paper is organized as follows. In Section 2, after de-
scribing the basic of gas turbine, the transfer function model of the
gas turbine between the speed and fuel flow is driven. The history
and the application of fractional-calculus is explained in Section 3.
The brief introduction to fractional-order controller and the con-
cept of Bode’s ideal transfer function is presented in in Section 4.
Section 5, gives the design procedure of robust controller and its
implementation. The simulation results are discussed in Section.6.
Finally, Section. 7 highlights the concluding remarks.

2. GAS TURBINE MODEL
Gas turbines are generally comprised of compressor, combustion
chamber, turbine, fuel system, inlet guide vane, positioner and the
control unit as shown in Fig. 1. Where the gas pressure (usually
air) is initially increased in compressor (in multi-stage compres-
sors up to 12 times) and the pressured gas is heated in combustion
chamber. Then the gas is injected with high pressure and tempera-
ture to the turbine and the thermal energy of the gas is converted in
to mechanical energy [5]. The gas turbines which consume natural
gas, diesel, biomass gas etc [1]. have been selected as an optimal
choice in power plants. Although a large amount of the input en-
ergy to these turbines has been wasted through exhaust, it can be
compensated by passing the gas via a Heat Recovery Steam Gen-
erator (HRSG) to run a steam turbine or for other purposes [5].
In power plant the accurate modeling and robust control is the
most important requirement so as to achieve the stabilize frequency
and electrical voltages when their is variations of electrical load in
transmission and distribution systems. Various mathematical and
thermodynamic models have been proposed for gas turbines. They
include, simple and applied models such as the Rowen model for
a gas power plant [4] and for a combined cycle power plant [6],
the aerothermodynamics model, the computational model, and the
thermodynamic model [9]. The history of gas turbine modeling
shows the simplified mathematical model consists of a set of al-
gebraic equations and related temperature, speed and acceleration
controllers is provided in [4, 6]. Then it is modified by adding the
influence of variable inlet guide vanes (VIGV) and this frequency-
domain model is validated. The transfer function block diagram
given in [1] of heavy duty gas turbine plant is designed, calculated
and verified the system gains, coefficients and time constant by test
and actual field experience accumulated from numerous installa-
tions in many different applications [4]. The Rowen model, whose
parameters are identified using real data of power plant gas turbine
by [1] is considered to design robust fractional-order controller. It
includes combustion chamber and a multistage axial flow compres-
sor connected to a multistage expansion turbine which drives an
electric generator. A general arrangement of heat recovery power
plant in a combined cycle is shown in Fig. 1. All the variables Tamb
(Ambient temperature), IGV (inlet guide vane position), F (fuel
flow), Tx (exhaust gas temperature),N (turbine speed) and P (pro-
duced power) are measurable. The value of these variables has been
sampled in 1 s intervals, during the time interval in which the tur-
bine has commenced loading up to reaching the nominal load. The
simplified representation of a gas turbine system with individual
transfer functions block between the important control parameter
is shown in Fig.2. Where G1(s), G2(s) and G4(s) to G7(s) have
been derived using ARX procedure explained by [8]. The linear
model is used to designed robust FO controller. The linear transfer
functions which relate the control parameters of a gas turbine are
written below and they are given in the paper [1].

Fig. 1. A general arrangement of combined cycle power plant [1].
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Fig. 2. Simplified representation of a gas turbine model.

G1 =
P

F (s)
=

0.3827s2 + 0.8935s+ 0.2562

s2 + 1.3331s+ 0.2015
, (1)

G2 =
P

N(s)
=
−0.212s2 − 0.4496s− 0.05068

s2 + 1.3331s+ 0.2015
, (2)

G4 =
Tx(s)

N(s)
=

21.98s2 + 207.6s+ 327.2

s2 + 3.266s+ 0.9384
(3)

G5 =
Tx(s)

Tamb(s)
=

0.7975s2 + 0.8849s− 1.42

s2 + 3.266s+ 0.9384
, (4)

G6 =
Tx(s)

F (s)
=

79.19s2 + 344.5s+ 372.3

s2 + 3.266s+ 0.9384
, (5)

G7 =
Tx(s)

IGV (s)
=
−119s2 + 312.3s− 148.6

s2 + 3.266s+ 0.9384
. (6)

The transfer function G3(s) has been considered as [4]

G3(s) =
1

τrs
, (7)

where τr is the rotor time constant (τr = 18.5 sec for GE9001E
model). The parameters F and IGV are control inputs which
are determined by the controller and the parameters Pd (demand
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power) and Tamb which are considered as disturbances as shown
in Fig.2. From the considered 4 inputs and 3 outputs parameters
the complete model of the system is written N

P
Tx

 = T.

 Pd
Tamb
F

IGV

 (8)

where T is the matrix transfer function of the system with 3 *4
dimensions and its elements are obtained as a function of G1 to
G7.

T =


−G3

1−G2G3
0 G1G3

1−G2G3
0

−G2G3
1−G2G3

0 G1
1−G2G3

0
−G3G4
1−G2G3

G5
G1G3G4
1−G2G3

+G6 G7

 (9)

N = T13 =

[
G1G3

1−G2G3

]
.F (10)

The linear transfer function model of the gas turbine which relate
the output speed(N) and the input fuel flow(F ) (speed loop) is
taken for the design of robust FO controller

G(s) ≡ 7.08s5 + 25.95s4 + 28.17s3 + 9.639s2 + 0.955s

342.3s6 + 915s5 + 757.8s4 + 196.4s4 + 16.82s2 + 0.18889s
.

(11)

3. FRACTIONAL CALCULUS
Fractional calculus can be defined as a more generalization of
derivatives and integrals to non-integer orders. It is not a new math-
ematical tool and the idea of its application to control theory was
described in [13]. FC allows a more compact representation and
problem solution for many systems. For realization of fractional-
order controllers (FOC), one needs to approximate the fractional-
order models. These systems have memory or hereditary proper-
ties, while the IO systems have limited memory. For practical im-
plementation of the FO models, we required to find the discrete
approximation of FO models. So it is very important to approxi-
mately describe the FO systems using a finite difference equations.
For this purpose, rational approximations are often used mainly
in continuous-time domain. In practice, direct discrete approxima-
tion is more preferred. The fundamental fractional operator is aDα

t ,
where a and t are the limits and α, (αεR) is the order of the op-
eration. There are several definitions of fractional derivatives (FD)
see [13]. Three commonly used by engineers and physicists are
the Grunwald−Letnikov (GL) definition (12), Riemann−Liouville
(RL) definition (13) and Caputo FD definition which are discussed
in [13] [14].

(1) The GL FD is defined as

aD
α
t f(t) = lim

h→0
h−α

[ t−ah ]∑
j=0

(−1)j
(
a

b

)
f(t− jh), (12)

where a and t are limits (t > a),
(
a
b

)
are the binomial coeffi-

cients.
(2) The RL FD is defined as

aD
α
t f(t) =

1

Γ(n− α)

dn

dtn

∫ t

a

f(τ)

(t− τ)α−n+1
dτ, (13)

for n − 1 < α < n, n ∈ N and Γ(·) is the gamma function,
and f(t) is locally integrable.

(3) The Caputo FD is defined as

aD
α
t f(t) =

1

Γ(n− α)

∫ t

a

f (n)(τ)

(t− τ)α−n+1
dτ, (14)

where, f (n)(τ) is the nth derivative of f(t) and n− 1 < α <
n, n ∈ N.

Note that, the Caputo FD definition (14) is more restrictive than
the RL FD, as in this case f(t) has to be n-times differentiable.
Fortunately, the technique of Laplace Transform can be extended
to fractional derivatives. So we, can use it for the analysis of linear
FO systems. The Laplace transform of the Caputo FD in (14), under
zero initial conditions, for order r ∈ R is given by

L[0D
α
t f(t)] = sαF (s), (15)

where, F (s) = L[f(t)] and L[·] denotes the Laplace transform.

4. FRACTIONAL ORDER CONTROL
The idea of fractional order operators is as old as the idea of in-
teger order ones. But from the last decades the use of fractional
order operators and operations has become more and more popular
among many research areas [13, 17, 18]. The theoretical and prac-
tical interest of these operators is nowadays well established, and
its applicability to science and engineering can be considered as
an emerging new topic. They can be thought of as somehow ideal,
in fact the useful tools for both the description of a more com-
plex reality and the enlargement of the practical applicability of the
common integer order operators. The fractional integro-differential
operators (fractional calculus) are specially interesting in automatic
control and robotics [14]. Maybe the first mention of the interest of
considering a fractional integro-differential operator in a feedback
loop, though without using the term ”fractional”, was made by, and
next in a more comprehensive way in [12]. The first application of
fractional calculus in control was started with the frequency-based
methods. The frequency response and the transient response of the
non-integer integral (in fact Bodes ideal transfer function) and its
application to control systems were introduced by [19], and more
recently in [18]. A robustness constraint is considered for forcing
the phase of the open-loop system to be flat at the gain crossover
frequency.

4.1 Bode’s Ideal Transfer Function
Design of a feedback amplifier was come up with a feedback loop.
Here a crucial issue is the performance of the closed loop should
be invariant to changes in the amplifier gain and this problem was
addressed by [12, 19], which is the ideal cutoff characteristic and
also known as ideal loop transfer function. In his study [12] on
design of feedback amplifiers he has suggested an ideal shape of
the open-loop transfer function of the form:

G(s) =
(ωc
s

)α
, α ∈ R (16)

where ωc is the gain crossover frequency, that is |G(jωc)| = 1. The
parameter α is the slope of ideal cut-off characteristics, on log-log
scale and may assume integer as well non-integer values. In fact the
transfer function G(s) is a fractional-order differentiator for α < 0
and a fractional-order integrator for α > 0. The Bode diagrams
of G(s)(1 < α < 2) are very simple. The amplitude curve is a
straight line of constant slope of −20αdB/dec, and the constant
phase margin is

ϕm = π − απ

2
.
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C(s) G proper(s)

-

+ NNsp

Fig. 3. Closed -loop configuration.

The Nyquist plot is a straight line through the origin giving a phase
margin invariant to gain changes. General characteristics are:-

Gref (s) =
kr
sα
, 1 < α < R.

|G(jωc)| = 1

Magnitude of −20αdB/dec,

ωgc = (kr)
1
α ,

the crossover frequency is a function of Kr . Phase angle curve is
a horizontal line at −απ

2
, the Nyquist curve is straight line argu-

ment at−απ
2

. Let us consider the unit feedback system with Bode’s
ideal transfer function C(s) inserted in the forward path as shown
in Fig.3. This choice of C(s) gives a closed-loop system with the
desirable property of being insensitive to gain changes. If the gain
changes the crossover frequency ωgc will vary but the phase margin
of the system remains PM =−απ

2
rad, independently of the value of

the gain. This frequency characteristic is very interesting in terms
of robustness of the system to parameter uncertainties. Clearly, this
ideal system is a fractional integrator. In fact, the fractional inte-
grator can be used as an alternative reference system for control,
considering its own properties [14]. The proposed robust fractional-
order controller for the speed-fuel loop of gas turbine is designed
using the ideal loop transfer function features.

5. ROBUST CONTROL DESIGN
Gas turbine and its transfer function model is explained in sec-
tion.2. Since the turbine speed changes cause the frequency to de-
viate. Here aim is to design a robust controller which will take
care of plants uncertainty. The mathematical model, between the
fuel-speed loop is coming strictly proper in nature, and cannot be
used directly for the design of FO controller. So we have identi-
fied its equivalent reduced-order ’proper’ (numerator and denomi-
nator polynomials having same degree) integer order transfer func-
tion model using the step response and frequency response data as
shown in Fig.4 and Fig.5 respectively.
The frequency range considered was ω = [10−3, 101]rad/sec.

Gprop(s) ≡
0.0002889s2 + 0.02939s+ 0.01289

s2 + 0.2071s+ 0.02549
(17)

Also, it is observed from the phase plot that the plant under con-
sideration has a phase margin (PM) of 92.10 at a gain crossover fre-
quency (ωgc) of 0.0625 rad/sec. The FO controller is designed to
obtain the loop transfer function C(s) Gproper(s) as Bode’s ideal
integrator, that is,

C(s)Gprop(s) =
kc
sα
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Fig. 4. Step response of the open loop system and its proper approxima-
tion.

−60

−50

−40

−30

−20

−10

0

10

20

M
ag

ni
tu

de
 (

dB
)

 

 

10
−3

10
−2

10
−1

10
0

10
1

−135

−90

−45

0

P
ha

se
 (

de
g)

Bode Diagram

Frequency  (rad/sec)

G(s)
G proper(s)

Fig. 5. Bode plots of the open loop system and its proper approximation.

where α ε R+ (positive real).The resulting closed loop system has

GM =∞, PM = π(1− α

2
), ωgc = (kc)

1
α .

In this paper, we wish to have a PM of 120o at 0.0625 rad/sec,
which gives

kc = 0.1575, α = 0.667

Thus, substituting the value of kcand α the fractional-order con-
troller obtained is

C(s) =
0.1575(0.0002889s2 + 0.02939s+ 0.01289)

s0.667(s2 + 0.2071s+ 0.02549)
. (18)

The closed loop system has infiniteGM and PM , it is independent
of process gain kc. Also, the gain crossover frequency depends only
on kc. As a consequence, the feedback system is robust and there-
fore insensitive to changes in kc. So here in addition to the conven-
tional rational integer-order (IO) transfer function of gas turbine,
there is an additional fractional-order integrator with integration or-
der equal to 0.667.
Fig. 6 shows the Bode plot of the forward path transfer function
C(s)G(s), that is nothing but FO controller applied to the origi-
nal gas turbine model. It confirms that the given FO controller has
achieved the desired closed-loop phase margin of 120o.
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Fig. 6. Bode plots with designed FO controller
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Fig. 7. Bode plots with IO Approximated controller

5.1 Controller realization
FO controller obtained using ideal loop transfer function concept is
not realizable / implementable directly. This is because the FO op-
erator (integrator) present in its denominator has an infinite mem-
ory element. This trivial issue of implementation of FO controllers
is solved by using a finite memory approximation of the FO inte-
grator [14]. There are many techniques available in the literature
which gives the continuous and discrete approximations of FO op-
erators. The most popular among these is the Oustaloup’s Recursive
Approximation (ORA) [14] which approximates an FO operator as
a chain of first-order filters within a specified frequency band. Here
we use the modified ORA which is claimed to give the best approx-
imation as compared to its counterparts. The resulting approxima-
tion of the FO controller is an integer-order transfer function with
numerator and denominator having polynomials of degree fifteen.
For the validation, the frequency response of integer-order approx-
imated controller is observed from Fig.7 and the Bode plot of IO
controller and the plant is shown in Fig.8.
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Fig. 8. Bode plots with IO Approximated controller and plant

Table 1. Comparison of open loop and closed loop response
specification

Specifications Open loop FO Controller PID Controller
Rise time(sec) 168 9.4 38.9
Settling time(sec) 301 130 225

Table 2. Comparison of open loop and closed loop response
specification for robust case

Specification Open loop FO Controller PID Controller
Settling time(sec) 301 76.5 200
Rise time(sec) 168 0.6 39.8

6. SIMULATION RESULTS
The robust fractional-order controller designed for the transfer
function model of fuel-speed loop of the gas turbine in power plant
is simulated using MATLAB/SIMULINK for unit step and pulse
type reference signal. The performance of the FO controller is ver-
ified with the original strictly proper transfer function model G(s)
of the power plat gas turbine. Further, to test its efficacy, its perfor-
mance is compared with that of the PID controller which is tuned
with MATLAB tuning block. A set point change in speed (p.u.)
is successfully tracked by the closed-loop system. Fig.9 shows the
response of proposed FO controller, which results into little over-
shoot but settles fast compared to PID see Table no.1. The settling
time reduction achieved is more than 50%, giving faster closed-
loop response. The most important requirement is, the controller
should take care of plant uncertainty. The proposed FO controller
is very robust in nature and makes the closed-loop system insen-
sitive to plant gain variation. Fig.10 the response of FO and PID
controller with 10% change in the gas turbine model parameters.
The effect of disturbances, that is demand power is considered for
the gas turbine power plant. Simulation result Fig.11 shows the ex-
cellent performance under the consideration of disturbances. Table
no.1, 2,3 gives the comparison of the time domain specification. Fi-
nally, the fractional-order controller is also tested for pulse type of
reference signal and the simulation results are satisfactory.
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Fig. 9. Closed loop response of FO and PID controller for step input.
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Fig. 10. Robust closed loop response of FO and PID controller for step
input with gain variation.

Table 3. Comparison of open loop and closed loop response
specification with disturbances

Specification Open loop FO Controller PID Controller
Settling time(sec) 301 400 440
Rise time(sec) 168 23 105

7. CONCLUSION
This paper, presents the first effort to propose fractional-order (FO)
robust controller design for the fuel-speed loop of a gas turbine.
The proposed FO controller is designed with the concept of Bode’s
ideal loop transfer function. The simulation results proves the su-
periority of the proposed controller over the well known PID con-
troller in terms of closed-loop response, robustness to parametric
changes and also in presence of power demand type disturbance.
As the controller is simulated for the original fuel-speed loop trans-
fer function model, which confirms the potential of FO controller.
Simulation studies clearly shows that the proposed FO controller
makes the closed loop system more robust against the plant un-
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Fig. 11. Closed loop response of FO and PID controller for step input with
disturbances.
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Fig. 12. Closed loop response of FO and PID controller for pulse input.

certainties and disturbances as compared to the integer order PID
controller.
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