
International Journal of Computer Applications (0975 – 8887)

Volume 88 – No.16, February 2014

46

Improving Results and Performance of Collaborative

Filtering-based Recommender Systems using Cuckoo

Optimization Algorithm

Majid Hatami

Faculty of Electrical and Computer Engineering
University of Tabriz, Tabriz, Iran

Saeid Pashazadeh
Faculty of Electrical and Computer Engineering

University of Tabriz, Tabriz, Iran

ABSTRACT

An approach for improving quality and performance of

collaborative filtering-based recommender systems is

proposed in this paper. A slight change on similarity metric is

proposed. To obtain more accurate similarity measurement

between two users, similarity measurement method needs a

well-chosen weight vector. Different weight vectors could be

employed based on the recommender system and the taste of

users, but only some of them are suitable. To obtain the best

results we have to find the most suitable weight vector among

all possible ones. A meta-heuristic algorithm has been

introduced to find near optimal weight vector. Cuckoo

optimization algorithm is used to obtain optimized weight

vector. The results are promising and satisfactory. Our results

are compared with the results of previous approaches to verify

effectiveness of new proposed method.

General Terms

Artificial Intelligence, Data Mining, Recommender System,

Evolutionary Algorithm.

Keywords

collaborative filtering, recommender systems, similarity

measurement, cuckoo optimization algorithm, performance

1. INTRODUCTION
Recommender systems (RS) are built to help users prevent

information overload problems which makes finding desired

information more time-consuming and sometimes exhausting

process. They assist users when they are not experienced

enough to make a choice among all alternatives[1]. There are

two categories of RS in general: collaborative filtering (CF)

and content-based filtering (CB)[2].

CF simply refers to collaboration of people when they help

each other with performing filtering by recording their

reactions to the items they have faced[3]. CF uses some of the

information filtering techniques based on the users’ reactions

to items or their history of purchases, but CB uses the items

content and users’ preferences to find more items of interest.

Hybrid RS has been introduced for combining two or more

recommendation techniques to obtain better results with fewer

drawbacks which each technique normally exhibits when is

used individually[4]. One of the most common hybrid models

is combination of CF and CB.

Much research has been done on CF area in recent years. As

described earlier, CF methods reflect real human’s social

behavior from this view point that people have a tendency to

make collective decisions instead of individual decisions (like

choosing a book to read, a brand to buy a product from, etc.).

People usually base their collective decisions on those with

whom they have something in common.

For instance, machine learning papers could be recommended

to the persons who have shown interest in RS related papers.

The reason would be the high interests of RS paper readers in

machine learning field. In this situation, the common point is

reading RS papers. Recommender systems are continuously

observing users’ behavior to discover items that they are

interested in or feel distaste for. Having more things in

common increases the similarity of two users. Providing a

good similarity measurement method will results in finding

more similar users which causes making better

recommendations.

Making suggestions (recommendations), using k-nearest

neighbor (kNN) approach in CF for certain user whom we call

‘active user’ consists of two main steps:

1. Finding K most similar users to the active user (who the

RS should make recommendation for).

2. Reasoning the most desirable unseen products as

recommendation to the active user, based on collective

knowledge of the K most similar users.

Finding similarity between users is one of the most important

parts of a kNN CF method. Researchers usually use Pearson

correlation metric as a basis for comparison to show that how

much they have improved RS qualities[5].

In the literature, different kinds of similarity measurement

metrics have been reported, such as Cosine, Pearson

Correlation and Mean Squared Differences. Recently a novel

metric has introduced by Bobadilla et al. in [5] that takes

advantage of Genetic algorithm to find near optimal similarity

function. Their similarity method with slight changes is used

in this paper. An enhanced prediction formula that we

introduced in[6] along with using Cuckoo Optimization

Algorithm (COA) instead of Genetic Algorithm (GA) is used

in this paper. Based on the experiments made by [7], COA has

shown to be faster and more effective in some optimization

areas in comparison with GA and Particle Swarm

Optimization (PSO), specifically when we are dealing with

floating point numbers.

2. RELATED WORKS
There have been many similarity measurement methods

reported in the literature. The majority of these methods are

used in kNN method. Some of the most commonly used

traditional methods to obtain similarity are Pearson

correlation (COR), cosine (COS), adjusted cosine (ACOS),

constrained correlation (CCOR), Mean Squared Differences

(MSD) and Euclidean distance (EUC) [8].

International Journal of Computer Applications (0975 – 8887)

Volume 88 – No.16, February 2014

47

Bobadilla et al. [9] introduced a new metric by combining

Jaccard and MSD. It not only uses numerical information

from the ratings (through MSD), but also uses the non-

numerical information via Jaccard. Bobadilla et al. [10]

introduced a new method that uses information of all users’

votes instead of restricting their method to use comparison of

two users (user to user) or two items (item to item). Bobadilla

et al. [5] proposed a metric based on a model obtained using

genetic algorithm.

With emerge of web 2.0 new metrics have been introduced, in

which new social information such as friends, followers,

followings, etc. are used. Most of these methods take

advantage of trust, reputation and credibility [8]. These new

metrics are able to improve RS qualities, however not all of

the RS could provide necessary social information, so using

these metrics are not always feasible. There are similarity

methods which are able to draw trust and reputation

information out of users’ ratings, however these social

information are not rich enough [8].

3. SIMILARITY METHOD
The ability to recommend items in a kNN approach is

accomplished by being able to find similarities between users.

A similarity measure represents that how well two users

resemble each other based on their ratings.

In this paper we used the result of Bobadilla et al. [5] in the

Eq. (1).

 (1)

Where variables and referred to the maximum and

minimum possible rating that each user could give to a

particular item, respectively. RS rates typically are in the

range of (therefore and). Vector is

just another representation for two specific users' ratings, so

we consider it as a fixed vector. Thus, the only variable in the

formula is the weight vector, . The length of both and

are equal to the recommender system rating range length, that

is (which in this case is 5).

Modified form of Eq. (1) is used in this paper. Similarity

functions normally return a real number in the range of

 , which means lack of similarity between two

users, while means a complete similarity. The output range

of Eq. (1) is

 , so we expanded it to the

standard range by eliminating the first part of the formula. As

a result, our final similarity function will be as follows:

 (2)

Each element of vector should lie in the range of .
As is obvious, we can have many different variations of

weight vector, however not all of them are useful or

optimized. Even though we can estimate the area where the

optimized vector may lie, it will not be a small area yet.

Bobadilla et al. made use of a genetic algorithm to find the

best value for each element of vector .

Where the optimized weight vector may have lain, depends on

the users’ taste and their ratings. We are not able to determine

a global or overall weight vector for all RS. Bobadilla et al.

specified the boundary of optimal weight vector as follows:

4. CUCKOO OPTIMIZATION

ALGORITHM
In COA each individual is called “habitat”, while it’s known

as “chromosome” in GA. Bobadilla et al. used GA to find the

optimal weight vector. Their GA chromosomes were

represented in binary form as strings of 0s and 1s. A

conversion method has been used to convert weight vectors

with real numbers into binary strings, and vice versa.

COA has been proposed as a new evolutionary algorithm by

Rajabioun [7]. In his experiments, COA has shown effective

results in comparison with some other algorithms such as GA

and PSO. So, in this paper we made use of COA instead of

GA to find the best weight vector, . COA uses floating point

number array for habitats. Thus, we can use weight vectors

directly as our habitats without any conversion. Our habitats

look like the following:

Figure 1 shows the flowchart of COA.

4.1 Initial Population
Bobadilla et al. seeded the 50% of the GA initial population

with random values, and the remainder 50% with the values in

the area where optimal vector, w, might lie. The same

assumptions are made in our COA initial population.

4.2 Profit Function
Each individual has a value of profitability which is known as

‘fitness’ in GA or ‘profit’ in COA. Recommender systems

usually tend to have more accurate predictions, in other

words, less Mean Absolute Error. So, the most profitable

individual (i.e. least MAE) among all cuckoos is of interest.

As a consequence, we used the MAE of the whole

recommender system to assign the profit value of each

individual. First, we set the vector w of the similarity function

(Eq. (1)) to the individual habitat which represents a weight

Fig 1: COA Flowchart

International Journal of Computer Applications (0975 – 8887)

Volume 88 – No.16, February 2014

48

vector, afterwards we calculate the MAE of the RS using the

modified similarity function.

Our profit function is as follows:

 (3)

where and represent the number of training users and

the number of training items rated by the user , respectively.

 represents our prediction of the item for the user , while

 stands for the real rate. To obtain

 , we use the enhanced

prediction formula which is introduced in [6] as follows:

 (4)

where is the average of the ratings given by the user and

 is described by the following equations:

 (5)

 (6)

where represents the collective average of active user’s and

all other similar users’ ratings. is a combination of the and

the average of rates given to the item by all users. and

determine how the obtained averages should be mixed

together and how much each one should affect the prediction.

We have set and as default values, however

these values could be varied based on the nature of RS. In this

way, all possible values for and in the range of and

in steps of will be examined when the training is done

and we have obtained the optimized weight vector.

4.3 Properties
As other evolutionary algorithms, cuckoo optimization

algorithm has different parameters which needs to be tuned.

We have set all these parameters as follows:

 Initial Cuckoos Count = 5

The population size in the beginning.

 Population Size = 10

The population size during each generation.

 KMeans Cluster Count = 1

Number of clusters that should be made using

KMeans algorithm.

 Cuckoos Minimum Eggs = 3

Minimum eggs that each cuckoo could lay.

 Cuckoos Maximum Eggs = 5

Maximum eggs that each cuckoo could lay.

 Migration Coefficient = 9

The coefficient which is used in migration formula.

 Egg Laying Radius = 3

Maximum distance that all eggs should be laid within.

We have achieved these values by performing many

experiments, however COA algorithm has shown to be rather

stable against slight variation in most of these parameters.

4.4 Reproduction
In our implementation we kept the number of individuals

immutable through generations. Taking into consideration the

fact that each cuckoo could lay 3 to 5 eggs, the total number

of cuckoos to be created in each generation varies between 30

and 50 (as the population size is 10). We keep the top 10

suitable individuals as the new population for the next

generation. In the terms of time, as the most expensive

operation in evolutionary algorithms is evaluating the profit

(or fitness) of individuals, we made our comparison based on

the number of calls to this function. The GA method evaluate

100 individuals fitness, while in our proposed method, we

evaluate 30 to 50 individuals profit. Consequently, our

method is proved to be at least 2 times faster than the GA

method.

5. EXPERIMENTS
Thus far, different metrics to measure the quality of

recommender systems have been introduced. Bobadilla et al.

in[8][11] provided different evaluation metrics. We have

employed some of the most commonly used metrics such as

MAE, Coverage, Precision and Recall to compare our

proposed method with GA and Pearson Correlation. We also

carried out our experiments on different datasets as specified

in Table 1.

Table 1. Specifications of the datasets used in our

experiments

Quantity MovieLens 100K MovieLens 1M

Users 943 6040

Movies 1682 3952

Ratings 100,000 1,000,209

6. RESULTS
In this section, we show our experiments results. Fig. 2 and

Fig. 3 show different evaluations which have been made on

the MovieLens 100K and 1M, respectively. In all these

figures we considered the following constrains:

 Experiments have been done on Pearson Correlation

(COR), Genetic Algorithm (GA) and our proposed COA

method.

 As evolutionary algorithms usually do not return

constant results on different runs of the algorithm, the

COA and GA methods have been run 10 times with 10

iterations for each run to evaluate the best and the worst

cases. In all figures COA-B and GA-B refer to the best

result of COA and GA, and COA-W and GA-W refer to

the worst results of COA and GA.

 The constant K varies between 50 and 400 in steps of

50.

 To measure Precision and Recall, we have set: , N

(the number of recommendations) varying in the range

of in steps of 2, for MovieLens

100K, for MovieLens 1M dataset.

 The weight vector is obtained only by using 80% of the

whole datasets as training users and items. The

remaining 20% is used to measure different qualities

and obtaining the diagrams.

As is clear from Fig. 2(a) and Fig. 3(a), the error in proposed

COA algorithm is lower in comparison to other methods. The

best and worst cases are closer to each other in comparison

with GA. In most cases, even the worst COA case is better

than the best case of GA. The best result is achieved when we

used K=100 in MovieLens 100K and K=150 in MovieLens

1M.

The best and worst cases in coverage (Fig. 2-3(b)) are close

together which means good stability. In MovieLens 100K,

International Journal of Computer Applications (0975 – 8887)

Volume 88 – No.16, February 2014

49

COA coverage is higher than COR and is close to GA-B, but

in MovieLens 1M it’s closer to the GA-B, even though the

COR is the best when K is less than 200.

Fig. 2(c-d) and Fig. 3(c-d) show that our proposed method

gives best results for precision and recall, in all cases. So, we

can conclude that our method results in the best and worst

cases are always better than GA and COR, however the GA-B

is so close to COA. COA-B and COA-W are almost

overlapped which means complete stability.

 a) MAE for MovieLens 100K b) Coverage for MovieLens 100K

 c) Precision for MovieLens 100K d) Recall for MovieLens 100K

 Fig 2: Comparison of results using MovieLens 100K dataset for COA, GA and Pearson Correlation methods

International Journal of Computer Applications (0975 – 8887)

Volume 88 – No.16, February 2014

50

7. CONCLUSIONS
In this paper we have proposed a new approach to find near

optimal similarity function and employed the enhanced

prediction formula, which is resulted in better quality of

results in shorter time. Our approach reaches to the high

quality results 2 times faster than the prior method that is

implemented with genetic algorithm.

Evolutionary algorithms produce different results on different

runs. In real applications with large amount of data, speed is a

crucial factor. Our experiments have shown that the proposed

COA method is much more stable than the GA method and

give qualified answers in fewer runs and shorter time.

8. REFERENCES
[1] Resnick, P., & Varian, H. R. 1997. Recommender

systems. Communications of the ACM, 40(3), 56-58.

[2] Park, D. H., Kim, H. K., Choi, I. Y., & Kim, J. K. 2012.

A literature review and classification of recommender

systems research. Expert Systems with Applications,

39(11), 10059-10072.

[3] Goldberg, D., Nichols, D., Oki, B. M., & Terry, D. 1992.

Using collaborative filtering to weave an information

tapestry. Communications of the ACM, 35(12), 61-70.

[4] Burke, R. 2002. Hybrid recommender systems: Survey

and experiments. User modeling and user-adapted

interaction, 12(4), 331-370.

[5] Bobadilla, J., Ortega, F., Hernando, A., & Alcalá, J.

2011. Improving collaborative filtering recommender

system results and performance using genetic algorithms.

Knowledge-based systems, 24(8), 1310-1316.

[6] Hatami, M., Pashazadeh, S. 2014. Enhancing prediction

in collaborative filtering-based recommender systems.

International Journal of Computer Sciences and

Engineering, 2(1), 48-51.

a) MAE for MovieLens 1M b) Coverage for MovieLens 1M

c) Precision for MovieLens 1M d) Recall for MovieLens 1M

Fig 3: Comparison of results using MovieLens 1M dataset for COA, GA and Pearson Correlation methods

International Journal of Computer Applications (0975 – 8887)

Volume 88 – No.16, February 2014

51

[7] Rajabioun, R. 2011. Cuckoo optimization algorithm.

Applied Soft Computing, 11(8), 5508-5518.

[8] Bobadilla, J., Ortega, F., Hernando, A., & Gutiérrez, A.

2013. Recommender systems survey. Knowledge-Based

Systems.

[9] Bobadilla, J., Serradilla, F., & Bernal, J. 2010. A new

collaborative filtering metric that improves the behavior

of recommender systems. Knowledge-Based Systems,

23(6), 520-528.

[10] Bobadilla, J., Ortega, F., & Hernando, A. 2012. A

collaborative filtering similarity measure based on

singularities. Information Processing & Management,

48(2), 204-217.

[11] Bobadilla, J., Hernando, A., Ortega, F., & Bernal, J.

2011. A framework for collaborative filtering

recommender systems. Expert Systems with

Applications, 38(12), 14609-14623.

IJCATM : www.ijcaonline.org

