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ABSTRACT 

An approach for improving quality and performance of 

collaborative filtering-based recommender systems is 

proposed in this paper. A slight change on similarity metric is 

proposed. To obtain more accurate similarity measurement 

between two users, similarity measurement method needs a 

well-chosen weight vector. Different weight vectors could be 

employed based on the recommender system and the taste of 

users, but only some of them are suitable. To obtain the best 

results we have to find the most suitable weight vector among 

all possible ones. A meta-heuristic algorithm has been 

introduced to find near optimal weight vector. Cuckoo 

optimization algorithm is used to obtain optimized weight 

vector. The results are promising and satisfactory. Our results 

are compared with the results of previous approaches to verify 

effectiveness of new proposed method.   
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1. INTRODUCTION 
Recommender systems (RS) are built to help users prevent 

information overload problems which makes finding desired 

information more time-consuming and sometimes exhausting 

process. They assist users when they are not experienced 

enough to make a choice among all alternatives[1]. There are 

two categories of RS in general: collaborative filtering (CF) 

and content-based filtering (CB)[2]. 

CF simply refers to collaboration of people when they help 

each other with performing filtering by recording their 

reactions to the items they have faced[3]. CF uses some of the 

information filtering techniques based on the users’ reactions 

to items or their history of purchases, but CB uses the items 

content and users’ preferences to find more items of interest. 

Hybrid RS has been introduced for combining two or more 

recommendation techniques to obtain better results with fewer 

drawbacks which each technique normally exhibits when is 

used individually[4]. One of the most common hybrid models 

is combination of CF and CB. 

Much research has been done on CF area in recent years. As 

described earlier, CF methods reflect real human’s social 

behavior from this view point that people have a tendency to 

make collective decisions instead of individual decisions (like 

choosing a book to read, a brand to buy a product from, etc.). 

People usually base their collective decisions on those with 

whom they have something in common. 

For instance, machine learning papers could be recommended 

to the persons who have shown interest in RS related papers. 

The reason would be the high interests of RS paper readers in 

machine learning field. In this situation, the common point is 

reading RS papers. Recommender systems are continuously 

observing users’ behavior to discover items that they are 

interested in or feel distaste for. Having more things in 

common increases the similarity of two users. Providing a 

good similarity measurement method will results in finding 

more similar users which causes making better 

recommendations. 

Making suggestions (recommendations), using k-nearest 

neighbor (kNN) approach in CF for certain user whom we call 

‘active user’ consists of two main steps: 

1. Finding K most similar users to the active user (who the 

RS should make recommendation for). 

2. Reasoning the most desirable unseen products as 

recommendation to the active user, based on collective 

knowledge of the K most similar users. 

Finding similarity between users is one of the most important 

parts of a kNN CF method. Researchers usually use Pearson 

correlation metric as a basis for comparison to show that how 

much they have improved RS qualities[5]. 

In the literature, different kinds of similarity measurement 

metrics have been reported, such as Cosine, Pearson 

Correlation and Mean Squared Differences. Recently a novel 

metric has introduced by Bobadilla et al. in [5] that takes 

advantage of Genetic algorithm to find near optimal similarity 

function. Their similarity method with slight changes is used 

in this paper. An enhanced prediction formula that we 

introduced in[6] along with using Cuckoo Optimization 

Algorithm (COA) instead of Genetic Algorithm (GA) is used 

in this paper. Based on the experiments made by [7], COA has 

shown to be faster and more effective in some optimization 

areas in comparison with GA and Particle Swarm 

Optimization (PSO), specifically when we are dealing with 

floating point numbers.  

2. RELATED WORKS 
There have been many similarity measurement methods 

reported in the literature. The majority of these methods are 

used in kNN method. Some of the most commonly used 

traditional methods to obtain similarity are Pearson 

correlation (COR), cosine (COS), adjusted cosine (ACOS), 

constrained correlation (CCOR), Mean Squared Differences 

(MSD) and Euclidean distance (EUC) [8].  
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Bobadilla et al. [9] introduced a new metric by combining 

Jaccard and MSD. It not only uses numerical information 

from the ratings (through MSD), but also uses the non-

numerical information via Jaccard. Bobadilla et al. [10] 

introduced a new method that uses information of all users’ 

votes instead of restricting their method to use comparison of 

two users (user to user) or two items (item to item). Bobadilla 

et al. [5] proposed a metric based on a model obtained using 

genetic algorithm. 

With emerge of web 2.0 new metrics have been introduced, in 

which new social information such as friends, followers, 

followings, etc. are used. Most of these methods take 

advantage of trust, reputation and credibility [8]. These new 

metrics are able to improve RS qualities, however not all of 

the RS could provide necessary social information, so using 

these metrics are not always feasible. There are similarity 

methods which are able to draw trust and reputation 

information out of users’ ratings, however these social 

information are not rich enough [8]. 

3. SIMILARITY METHOD 
The ability to recommend items in a kNN approach is 

accomplished by being able to find similarities between users. 

A similarity measure represents that how well two users 

resemble each other based on their ratings. 

In this paper we used the result of Bobadilla et al. [5] in the 

Eq. (1).  

     
 

     
         

   

   

   

 (1) 

Where variables   and   referred to the maximum and 

minimum possible rating that each user could give to a 

particular item, respectively. RS rates typically are in the 

range of         (therefore     and    ). Vector   is 

just another representation for two specific users' ratings, so 

we consider it as a fixed vector. Thus, the only variable in the 

formula is the weight vector,  . The length of both   and   

are equal to the recommender system rating range length, that 

is       (which in this case is 5). 

Modified form of Eq. (1) is used in this paper. Similarity 

functions normally return a real number in the range of 

      , which    means lack of similarity between two 

users, while   means a complete similarity. The output range 

of Eq. (1) is   
 

     
 

 

     
 , so we expanded it to the 

standard range by eliminating the first part of the formula. As 

a result, our final similarity function will be as follows: 

              
   

   

   

 (2) 

Each element of vector   should lie in the range of       . 
As is obvious, we can have many different variations of 

weight vector, however not all of them are useful or 

optimized. Even though we can estimate the area where the 

optimized vector may lie, it will not be a small area yet. 

Bobadilla et al. made use of a genetic algorithm to find the 

best value for each element of vector  . 

Where the optimized weight vector may have lain, depends on 

the users’ taste and their ratings. We are not able to determine 

a global or overall weight vector for all RS. Bobadilla et al. 

specified the boundary of optimal weight vector as follows: 

                                                  

                                   

4. CUCKOO OPTIMIZATION 

ALGORITHM 
In COA each individual is called “habitat”, while it’s known 

as “chromosome” in GA. Bobadilla et al. used GA to find the 

optimal weight vector. Their GA chromosomes were 

represented in binary form as strings of 0s and 1s. A 

conversion method has been used to convert weight vectors 

with real numbers into binary strings, and vice versa. 

COA has been proposed as a new evolutionary algorithm by 

Rajabioun [7]. In his experiments, COA has shown effective 

results in comparison with some other algorithms such as GA 

and PSO. So, in this paper we made use of COA instead of 

GA to find the best weight vector,  . COA uses floating point 

number array for habitats. Thus, we can use weight vectors 

directly as our habitats without any conversion. Our habitats 

look like the following: 

  

        
  

        
  

        
  

        
  

        

Figure 1 shows the flowchart of COA. 

 

4.1 Initial Population 
Bobadilla et al. seeded the 50% of the GA initial population 

with random values, and the remainder 50% with the values in 

the area where optimal vector, w, might lie. The same 

assumptions are made in our COA initial population. 

4.2 Profit Function 
Each individual has a value of profitability which is known as 

‘fitness’ in GA or ‘profit’ in COA. Recommender systems 

usually tend to have more accurate predictions, in other 

words, less Mean Absolute Error. So, the most profitable 

individual (i.e. least MAE) among all cuckoos is of interest. 

As a consequence, we used the MAE of the whole 

recommender system to assign the profit value of each 

individual. First, we set the vector w of the similarity function 

(Eq. (1)) to the individual habitat which represents a weight 

 

Fig 1: COA Flowchart 
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vector, afterwards we calculate the MAE of the RS using the 

modified similarity function. 

Our profit function is as follows: 

           
 

  
 

    
    

      

   
   

 (3) 

where    and     represent the number of training users and 

the number of training items rated by the user  , respectively. 

  
  represents our prediction of the item   for the user  , while 

  
  stands for the real rate. To obtain   

 , we use the enhanced 

prediction formula which is introduced in [6] as follows: 

  
    

              
           

             

 (4) 

where     is the average of the ratings given by the user   and 

  is described by the following equations: 

               (5) 

     
 

 
    

    

             (6) 

where   represents the collective average of active user’s and 

all other similar users’ ratings.   is a combination of the   and 

the average of rates given to the item   by all users.   and   

determine how the obtained averages should be mixed 

together and how much each one should affect the prediction. 

We have set        and       as default values, however 

these values could be varied based on the nature of RS. In this 

way, all possible values for   and   in the range of       and 

in steps of      will be examined when the training is done 

and we have obtained the optimized weight vector. 

4.3 Properties 
As other evolutionary algorithms, cuckoo optimization 

algorithm has different parameters which needs to be tuned. 

We have set all these parameters as follows: 

 Initial Cuckoos Count = 5 

The population size in the beginning.  

 Population Size = 10 

The population size during each generation. 

 KMeans Cluster Count = 1 

Number of clusters that should be made using 

KMeans algorithm.  

 Cuckoos Minimum Eggs = 3 

Minimum eggs that each cuckoo could lay. 

 Cuckoos Maximum Eggs = 5 

Maximum eggs that each cuckoo could lay. 

 Migration Coefficient = 9 

The coefficient which is used in migration formula. 

 Egg Laying Radius = 3 

Maximum distance that all eggs should be laid within. 

We have achieved these values by performing many 

experiments, however COA algorithm has shown to be rather 

stable against slight variation in most of these parameters. 

4.4 Reproduction 
In our implementation we kept the number of individuals 

immutable through generations. Taking into consideration the 

fact that each cuckoo could lay 3 to 5 eggs, the total number 

of cuckoos to be created in each generation varies between 30 

and 50 (as the population size is 10). We keep the top 10 

suitable individuals as the new population for the next 

generation. In the terms of time, as the most expensive 

operation in evolutionary algorithms is evaluating the profit 

(or fitness) of individuals, we made our comparison based on 

the number of calls to this function. The GA method evaluate 

100 individuals fitness, while in our proposed method, we 

evaluate 30 to 50 individuals profit. Consequently, our 

method is proved to be at least 2 times faster than the GA 

method. 

5. EXPERIMENTS 
Thus far, different metrics to measure the quality of 

recommender systems have been introduced. Bobadilla et al. 

in[8][11] provided different evaluation metrics. We have 

employed some of the most commonly used metrics such as 

MAE, Coverage, Precision and Recall to compare our 

proposed method with GA and Pearson Correlation. We also 

carried out our experiments on different datasets as specified 

in Table 1. 

Table 1. Specifications of the datasets used in our 

experiments 

Quantity MovieLens 100K MovieLens 1M 

Users 943 6040 

Movies 1682 3952 

Ratings 100,000 1,000,209 

 

6. RESULTS 
In this section, we show our experiments results. Fig. 2 and 

Fig. 3 show different evaluations which have been made on 

the MovieLens 100K and 1M, respectively. In all these 

figures we considered the following constrains: 

 Experiments have been done on Pearson Correlation 

(COR), Genetic Algorithm (GA) and our proposed COA 

method. 

 As evolutionary algorithms usually do not return 

constant results on different runs of the algorithm, the 

COA and GA methods have been run 10 times with 10 

iterations for each run to evaluate the best and the worst 

cases. In all figures COA-B and GA-B refer to the best 

result of COA and GA, and COA-W and GA-W refer to 

the worst results of COA and GA. 

 The constant K varies between 50 and 400 in steps of 

50. 

 To measure Precision and Recall, we have set:    , N 

(the number of recommendations) varying in the range 

of          in steps of 2,       for MovieLens 

100K,       for MovieLens 1M dataset. 

 The weight vector is obtained only by using 80% of the 

whole datasets as training users and items. The 

remaining 20% is used to measure different qualities 

and obtaining the diagrams. 

As is clear from Fig. 2(a) and Fig. 3(a), the error in proposed 

COA algorithm is lower in comparison to other methods. The 

best and worst cases are closer to each other in comparison 

with GA. In most cases, even the worst COA case is better 

than the best case of GA. The best result is achieved when we 

used K=100 in MovieLens 100K and K=150 in MovieLens 

1M. 

The best and worst cases in coverage (Fig. 2-3(b)) are close 

together which means good stability. In MovieLens 100K, 
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COA coverage is higher than COR and is close to GA-B, but 

in MovieLens 1M it’s closer to the GA-B, even though the 

COR is the best when K is less than 200.  

Fig. 2(c-d) and Fig. 3(c-d) show that our proposed method 

gives best results for precision and recall, in all cases. So, we 

can conclude that our method results in the best and worst 

cases are always better than GA and COR, however the GA-B 

is so close to COA. COA-B and COA-W are almost 

overlapped which means complete stability. 

 

 

 a) MAE for MovieLens 100K b) Coverage for MovieLens 100K 

 

 

 c) Precision for MovieLens 100K d) Recall for MovieLens 100K 

 Fig 2: Comparison of results using MovieLens 100K dataset for COA, GA and Pearson Correlation methods 
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7. CONCLUSIONS 
In this paper we have proposed a new approach to find near 

optimal similarity function and employed the enhanced 

prediction formula, which is resulted in better quality of 

results in shorter time. Our approach reaches to the high 

quality results 2 times faster than the prior method that is 

implemented with genetic algorithm. 

Evolutionary algorithms produce different results on different 

runs. In real applications with large amount of data, speed is a 

crucial factor. Our experiments have shown that the proposed 

COA method is much more stable than the GA method and 

give qualified answers in fewer runs and shorter time. 
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