
International Journal of Computer Applications (0975 – 8887)

Volume 88 – No.16, February 2014

41

Recognition of Concurrent and Interleaved Activities

in a Smart Environment using Finite Automata

H. Karamath Ali
Research Scholar in Computer Science
Jamal Mohamed College (Autonomous)

Tiruchirappalli, India

D. I. George Amalarethinam, PhD
 Associate Professor & Director-MCA

Jamal Mohamed College (Autonomous)
Tiruchirappalli, India

ABSTRACT

People have to do a number of activities in their day-to-day

life. Though there are some activities that can be done only

sequentially, most of the day-to-day activities do not impose

such restriction. People very often tend to multitask with such

activities. They interleave activities or go about them

sequentially or concurrently. So, to be useful in real life

situations, an activity recognition system must be able to

recognize activities irrespective of how the user performs the

activities. This paper proposes a novel simple approach that

can be used to recognize sequential, interleaved and

concurrent activities efficiently. The proposed method is

tested with a publicly available dataset and is producing very

promising results.

General Terms
Ubiquitous computing, mutiple goals, smart environments,

proactivity.

Keywords

Pervasive computing, context awareness, activity recognition,

concurrency, interleaving, finite automata.

1. INTRODUCTION
Proactivity is vital to offering context aware services in

pervasive computing environments. To be context aware,

among other things, a system must be able to recognize the

user activities without any hindrance to the user[1]. The

system should in no way impose any restrictions on the user.

Users should be able to go about their normal routine of

activities without having to make any adjustments for the sake

of staying in a smart environment. Being allowed to freely

interleave, combine or switch over activities will be very

important for the users. So an activity recognition system

must be able to recognize activities even if they are jumbled

by the user. Users normally tend to do multiple activities

either to get their jobs or goals quickly done or to avoid

having to wait between activities. In this paper the terms

‘activity’ and ‘goal’ are used interchangeably. The

constituent steps of an activity or goal are referred to as

‘actions’ or ‘events’. Two ways of pursuing multiple goals are

concurrency and interleaving[2][3]. Concurrent goals have

some common actions. By doing the actions, the user

accomplishes a certain portion of each goal. Then the

remaining actions of the goals may be carried out in a

sequential manner. In the case of interleaving, the user

performs some actions of one goal, pauses it, performs some

actions of another goal, pauses that goal and resumes the

previous goal and so on. The non-common actions of

concurrent goals also may be finished in interleaved manner.

The various combinations of concurrency and interleaving of

actions are illustrated in fig. 1, that has been redrawn from[3].

In this paper a simple and novel method that uses an

automatically constructed finite automaton and a stack for

recognizing concurrent and interleaved goals is presented.

When tested with a publicly available data set, the method

produces highly promising recognition rate for all types of

goal compositions shown in fig. 1.

The remainder of this paper is organized as follows: Section 2

presents an overview of the related work in multiple activity

recognition; section 3 defines the problem statement; section 4

explains the proposed method; section 5 discusses the dataset

used and the experiment conducted; and section 6 presents

conclusion.

2. RELATED WORK
Xiaoyong Chai and Qiang Yang[2], proposed a two level

approach for recognizing multiple goals. The lower level

determined the constituent actions of goals by measuring

signal strength through a hand held device and using dynamic

Bayesian network. The higher level used a model set in

which models were instantiated and terminated dynamically.

Each model was a finite state machine and functioned as a

goal recognizer. Multiple-goal behavior was modeled as

transitions among some pre-defined states of these models. By

distinguishing the state of a model, it was inferred whether

one of a user's goals was present or not.

A two-level probabilistic framework – CIGAR (Concurrent

and Interleaving Goal and Activity Recognition) - to

recognize both concurrent and interleaving goals was

proposed by Derek Hao Hu and Qiang Yang[3]. Skip-chain

conditional random fields (SCCRF) were used for modeling

interleaving goals and concurrent goals were modeled by

adjusting inferred probabilities through a correlation graph.

A Genetic Algorithm based method for Interleaved Sequential

pattern detection(GAIS) from event sequences was suggested

by Marja Ruotsalainen, et al.[4]. GAIS assumed the existence

of models to detect the required kind of patterns from the

event sequences. After generating an initial population of

randomly created individuals GAIS calculated fitness value

for each individual using models in the model set. Based on

the fitness value, individuals were selected, crossed and

mutated.

Using Factorial Conditional Random Fields (FCRFs) Tsu-yu

Wu, et al.[5] designed experiments for recognition of multiple

concurrent activities in the MIT House_n data set, which

contains annotated data collected from multiple sensors in a

real living environment.

International Journal of Computer Applications (0975 – 8887)

Volume 88 – No.16, February 2014

42

Chia-chun Lian, et al.[6] also used FCRFs to model the

conversational dynamics of concurrent chatting behaviors to

accommodate co-temporal relationships among multiple

activity states. They observed that the Loopy Belief

Propagation (LBP) algorithm is inefficient, and proposed

Iterative Classification Algorithm (ICA) as the inference

method for FCRFs.

Interleaved Hidden Markov Models were used by Joseph

Modayil, et al.[7] for recognizing multitasked activities. The

model captured the dynamics of both inter and intra activities.

Geetika Singla and Diane J. Cook[8] demonstrated that

interleaved activities can be recognized by sensors in physical

environments. According to them, HMM performed better

than Naïve Bayes model.

Niels Landwehr[9] demonstrated that an inference algorithm

obtained by extending structured approximate inference

methods used with factorial hidden Markov models performs

better than a standard hidden Markov model in recognizing

multiple interleaved activities observed by a stream of sensor

outputs.

Derek Hao Hu, et al.[10] defined a goal taxonomy that

contained several classes of complexity levels and different

granularities of activities, and related the recognition accuracy

with different complexity levels or granularities. They used

skip chain CRF for recognizing multiple concurrent and

interleaving activities.

Eunju Kim, et al.[11] proposed a method named activity

pattern discovery for activity recognition by building a

hierarchical activity model. The lower-level activities, such

as sitting, standing, eating, and driving, were recognized using

a supervised learning algorithm. The higher level of the model

discovered combinations of the lower-level activities that

represent more complex activity patterns.

Rim Helaoui, et al.[12] showed how Markov logic can be

combined with common-sense background knowledge to

develop a framework for recognizing interleaved and

concurrent activities.

Jianxia Chen, et al.[13] presented a logic-based approach

using a heuristic search planner to solve the multigoal

recognition problem efficiently, without the need of plan

libraries. They first proposed the formulation of a multigoal

recognition problem based on automated planning. Then a

two level probabilistic plan recognition approach was used to

recognize concurrent and interleaving goals from observed

activity sequences.

The models used in the above mentioned works are either

computationally very expensive[11], or require manual

construction of the domain model initially. The need to devise

methods for automatic construction of hierarchy of activities

is observed by Derek Hao Hu, et al.[10]. In view of these

observations, in this work a simple and novel method for

recognizing concurrent and interleaved activities is proposed.

In the proposed method a finite automaton is constructed

automatically, as illustrated in [14], to hierarchically represent

the different action sequences possible for performing each

goal. Then interleaved and concurrent pursuance of goals are

identified by simply traversing the paths in this automaton and

retracing or backtracking whenever it is necessary to reassign

the actions to different goals. The proposed method does not

require any calculation in the recognition phase. The

traversing and retracing are accomplished by simple push and

pop operations in a stack. The method is tested using a

publicly available dataset and is found to give highly

promising recognition rate.

3. THE PROBLEM
Given are a set of goals and a set of

actions . Each goal is associated

with a fixed number of sequences of actions in . An action

in may appear in more than one action sequence in any of

the goals. A sequence of actions associated with a goal

represents the actions that need to be taken to achieve the

goal. Hence each goal may be achieved by one or more

different sequences of actions. The exact number of action

sequences possible for a goal depends upon the application

and environment. As has been said in the introduction, a user

may pursue multiple goals either in a concurrent or

interleaved manner. As the user performs the constituent

actions of the currently pursued goals, the system has to

identify the goals and the corresponding sequence of actions.

4. THE METHOD
As mentioned in the problem, each goal may be achieved by

one or more sequences of actions in A set is formed by

collecting each possible action sequence of every goal in
That is

where is the number of possible goals, is the number of

possible action sequences of the th goal and is the number

of actions in the sequence.

A DFA equivalent to is constructed using the SL-infer

algorithm [15] as explained in [14]. The SL-infer algorithm is

extended to store in each state of the DFA, a list of labels that

represent the goals corresponding to the action sequences that

will lead to the state in a path from the starting state to any

one of the final states. So given the current state, it can be

easily decided which of the goals share the action sequence

that led to the state. Obviously, in each of the final states only

A1 A2 A3 A4 A5 A6 A
7

A
1
 A

2
 A

3
 A

4
 A

5
 A

6
 A

7

A
1
 A

2
 A

3
 A

4
 A

5
 A

6
 A

7

Single goal

Non-interleaving, Non-concurrent Multiple Goals

 Interleaving, Non-concurrent Multiple Goals

A
1
 A

2
 A

3
 A

4
 A

5
 A

6
 A

7

A
1
 A

2
 A

3
 A

4
 A

5
 A

6
 A

7

Concurrent, Non-interleaving Multiple Goals

Interleaving and concurrent Multiple Goals

Action for G1 Action for G2 Action for G1 and G2

Figure 1. Concurrent and Interleaved Goals

International Journal of Computer Applications (0975 – 8887)

Volume 88 – No.16, February 2014

43

one label will get stored. This will indicate which goal is

accomplished when the final state is reached.

To scan the action sequence generated by the user, a stack

and an input buffer are used. The stack will hold, at any point

of time, the states traversed so far in the order of traversal, and

the action inputs scanned. Each action input in the stack will

be preceded and followed by the previous and current states.

The input buffer will consist of the action inputs that are yet to

be scanned. Initially, the stack will consist only of the starting

state of the automaton. The top most element in the stack will

always be the current state of the DFA. Depending upon the

current state , and the action input , which is the leftmost

element of the input buffer, the automaton performs any one

of the three actions Push, Pop and Print. ‘ ’ denotes the

transition function of the DFA. The three actions are

explained below:

i) Push : if , then is pushed into the stack

followed by .

ii) Pop : if , then the topmost two elements in the

stack (the current state and the input that led to the state) are

removed from the stack.

iii) Print : if is a final state, then the action inputs in the

stack, in the order from bottom of the stack to its top, are

printed out along with the goal label available in This

means that the user has accomplished the goal by completing

its corresponding sequence of actions.

5. DATA AND EXPERIMENT
To test the method explained above, the data set generated by

Xiaoyong Chai and Qiang Yang[2] is used. The data set was

generated in an office area by observing eight special goals of

a Professor’s activity. The office building has three entrances

and 7 hallways. The hallways are named HW1 to HW7.

When the user is in HW1 action a1 is generated, when in

HW2 action a2 is generated and so on. There is an office

room and two other rooms numbered 1 and 2. In each of the

rooms either of the two actions ‘printing’ and ‘attending

seminar’ can take place. Printing in rooms 1 and 2 generate

actions a8 and a10 respectively. Attending seminars in rooms

1 and 2 generate actions a9 and a11 respectively.

The eight goals that are observed are: seminar_print(1),

seminar_seminar(2), restarea_print(3), restarea_seminar(4),

office(5), upper-exit(6), left-exit(7) and lower-exit(8). Given

within parentheses are the labels used to represent the goals in

the dataset. There are eleven actions numbered from 1 to 11

as mentioned above. The actions are determined by measuring

the strength of signals broadcast by three access points. Each

action gives information about the location of the user. The

action sequences for each of the goals are given. Each goal is

achievable using more than one action sequence. For

example, the goal ‘lower-exit’ is achievable by three action

sequences : (a1 a3 a6 a7), (a2 a3 a6 a7) and

(a5 a4 6 a7). In this work it is assumed that the actions

performed by the user are determined from signal strength

measurements by some recognizer and are readily available

for the recognition of interleaved and concurrent multiple

goals.

As explained in section 4, a set is formed by collecting all

action sequences for all the goals, and a DFA is constructed.

The transition table of the constructed DFA is given in table 1.

There are 19 states in the DFA numbered s0 to s18. s0 is the

initial state. Each column corresponds to an action. The first

column corresponds to action1, the second to action2 and so

on. - means there is no transition from state on

action . Final states are shown by underlining.

The goal labels stored in each state by the algorithm are given

below.

s0 : 1 2 3 4 5 6 7 8

s1 : 1 2 3 4 6 7 8

s2 : 6

s3 : 1 2 3 4 7 8

s4 : 1 2 7

s5 : 7

s6 : 1

s7 : 2

s8 : 3 4 8

s9 : 8

s10 : 3

s11 : 4

Table 1. Transition Table for the DFA

 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11

s0 s1 s12 - - s14 - s17 - - - -

s1 s1 s2 s3 - - - - - - - -

s2 - - - - - - - - - - -

s3 - - s3 s4 - s8 - - - - -

s4 - - - s4 s5 - - s6 s7 - -

s5 - - - - - - - - - - -

s6 - - - - - - - - - - -

s7 - - - - - - - - - - -

s8 - - - - - s8 s9 - - s10 s11

s9 - - - - - - - - - - -

s10 - - - - - - - - - - -

s11 - - - - - - - - - - -

s12 s13 s12 s3 - - - - - - - -

s13 - - - - - - - - - - -

s14 - - - s15 s14 - - s6 s7 - -

s15 - - s16 s15 - s8 - - - - -

s16 s13 s2 s16 - - - - - - - -

s17 - - - - - s18 s17 - - s10 s11

s18 - - s16 s4 - s18 - - - - -

International Journal of Computer Applications (0975 – 8887)

Volume 88 – No.16, February 2014

44

s12 : 1 2 3 4 5 7 8

s13 : 5

s14 : 1 2 3 4 5 6 8

s15 : 3 4 5 6 8

s16 : 5 6

s17 : 1 2 3 4 5 6 7

s18 : 1 2 5 6 7

How multiple goals are identified using the DFA is illustrated

below with a sample multiple goal action sequence :

(a1 a3 a4 a8 a5)

Stack Input

s0 Push a1 a3 a4 a8 a5

s0 a1 s1 Push a3 a4 a8 a5

s0 a1 s1 a3 s3 Push a4 a8 a5

s0 a1 s1 a3 s3 a4 s4 Push a8 a5

s0 a1 s1 a3 s3 a4 s4 a8 s6 Print a5

s0 a1 s1 a3 s3 a4 s4 a8 s6 Pop a5

s0 a1 s1 a3 s3 a4 s4 Push a5

s0 a1 s1 a3 s3 a4 s4 a5 s5 Print - -

As explained in section 4, Print is invoked when the DFA

reaches a final state, and the action inputs in the stack are

printed out. So, when Print is invoked for the first time,

action sequence (a1 a3 a4 a8) is printed out. This is a

sequence to achieve goal 1. At the second invocation of Print

the sequence (a1 a3 a4 a5) is printed out. This is a sequence

for goal 7. Thus by a simple retracing using the stack, the two

goals in the concurrent multiple goal sequence are identified.

When trying to identify goals in real life situations, two

problems that normally arise are : repetition of an action input

and irrelevant action input. Repetition of an input may be

handled by allowing the DFA to remain in the current state

until some other valid input occurs or till the lapse of a

predefined duration of time after which appropriate remedial

action may be initiated. The occurrence of irrelevant inputs

can be very easily identified by simply checking the entries in

the row of the current state in the transition table. Inputs

corresponding to the empty entries in the row are irrelevant

and can be simply ignored.

For recognition of interleaved multiple goals, that is, goals

that do not have common actions, a setup similar to the one

shown above is used. But instead of a single stack, there will

be one stack for each new goal identified. Whenever a new

goal is likely to begin, a new stack is created and the likely

inputs and the corresponding states are pushed into that stack.

When it is not possible to proceed further on an input,

backtracking is done to realign the inputs to the active goals.

In addition to the stacks and an input buffer, an array, named

‘Trace’, is used to keep track of which input is assigned to

which goal. This is illustrated in the following example. The

underlined number is the next input to be considered.

Stack1 Input

s0 Push a1 a7 a3 a6 a4 a3 a2 a9

s0 a1 s1 a1 a7 a3 a6 a4 a3 a2 a9

Trace 1

The content of the array Trace indicates that the leftmost input

is assigned to first goal. The label of the actual goal it belongs

to, cannot be decided now. Since (s1, a7) is undefined,

Stack1 becomes inactive; since (s0, a7) is defined a new

stack is created and the configuration becomes as follows :

Stack1 Input

s0 a1 s1 a1 a7 a3 a6 a4 a3 a2 a9

Stack2

s0 a7 s17

Trace 1 2

Now, (s17, a3) is undefined. So, stack2 becomes inactive

and control switches to the other stack. Proceeding in this

way, the following configuration is reached, where it is not

possible to proceed further.

Stack1 Input

s0 a1 s1 a3 s3 a6 s8 a1 a7 a3 a6 a4 a3 a2 a9

Stack2

s0 a7 s17

Trace 1 2 1 1

Since both (s8, a4) and (s17, a4) are undefined, it is not

possible to proceed further. It does not mark the beginning of

a new goal because (s0, a4) also is undefined. This situation

warrants backtracking. So, the last assignment of an input to

a goal is undone, and the configuration becomes as follows.

Stack1 Input

s0 a1 s1 a3 s3 a1 a7 a3 a6 a4 a3 a2 a9

Stack2

s0 a7 s17

Trace 1 2 1

After backtracking, the alternative assignment is tried as

shown below.

Stack1 Input

s0 a1 s1 a3 s3 a1 a7 a3 a6 a4 a3 a2 a9

Stack2

s0 a7 s17 a6 s18

Trace 1 2 1 2

Proceeding in this way, the final configuration becomes as

Stack1 Input

s0 a1 s1 a3 s3 a4 s4 a9 s7 a1 a7 a3 a6 a4 a3 a2 a9 -

Stack2

s0 a7 s17 a6 s18 a3 s16 a2 s2

Trace 1 2 1 2 1 2 2 1

International Journal of Computer Applications (0975 – 8887)

Volume 88 – No.16, February 2014

45

The states s7 and s2 are final states. Also, the goal labels in s7

and s2 are 2 and 6 respectively. So it is decided that the

sequence (a1 a3 a4 a9) belongs to goal 2 and (a7 a6 a3 a2)

belongs to goal 6. The contents of Trace represent which of

the inputs belong to the first goal and which to the second

one.

Figure 2. Performance Comparison

It is obvious that in this method, no calculations are necessary

for recognizing the goals from action sequences. Simple push

and pop operations are all that the method requires for goals

recognition. The recognition rate of the presented method is

98% and 96% for single and multiple goals respectively.

Figure 2 illustrates this with recognition rates achieved by

other methods as presented in [2]. Performance of the method

presented in this paper is denoted by FA in the fig. 2.

The method has a few limitations. The data set is collected in

an office area which has a well-defined structure. So it can be

said that the method explained in this paper is suitable for

such structured areas as big shopping malls, office complexes,

hospitals, etc. Users in such areas may be provided with

navigation guidelines and help using this method. For

deciding suitability for other environments the method has to

be tested with appropriate data sets. On some irrelevant

action input, the system may have to backtrack, in the worst

case, undoing all the assignments. This may result in an

increase in the execution time.

6. CONCLUSION
In this paper a novel and simple method for finding

concurrent and interleaved goals of a user in a smart

environment is illustrated. The method does not involve any

calculation during the recognition of goals. A sequence of

simple push and pop operations is all that is required for

single and multiple goal recognition. When tested with a

dataset the proposed method gives better results than the

previous similar works. To further test the suitability of the

method for real-time environments other publicly available

data sets need to be tried with the method.

7. REFERENCES

[1] M. Satyanarayanan, “Pervasive Computing: Vision and

Challenges”, IEEE Personal Communications, August
2001, pp. 10-17.

[2] Xiaoyong Chai and Qiang Yang, “Multiple-Goal

Recognition from Low-Level Signals”, American
Association for Artificial Intelligence, 2005, pp. 3-8.

[3] Derek Hao Hu and Qiang Yang, “CIGAR: Concurrent and

Interleaving Goal and Activity Recognition”,

Proceedings of the Twenty-Third AAAI Conference on
Artificial Intelligence, 2008, pp. 1363-1368.

[4] Marja Ruotsalainen, Timo Ala-Kleemola and Ari Visa,

“GAIS: A Method for Detecting Interleaved Sequential

Patterns from Imperfect Data”, Proceedings of the IEEE

Symposium on Computational Intelligence and Data
Mining (CIDM 2007), 2007, pp. 530-535.

[5] Tsu-yu Wu and Chia-chun Lian and Jane Yung-jen Hsu,

“Joint Recognition of Multiple Concurrent Activities

using Factorial Conditional Random Fields”,

Proceedings of the 22nd Conference on Artificial
Intelligence, (AAAI), 2007.

[6] Chia-chun Lian and Jane Yung-jen Hsu, “Probabilistic

Models for Concurrent Chatting Activity Recognition”,

ACM Transactions on Intelligent Systems and

Technology (TIST), Volume 2 Issue 1, January
2011,Article No. 4, pp. 1138-1143.

[7] Joseph Modayil, Tongxin Bai and Henry Kautz,

“Improving the Recognition of Interleaved Activities”,
UbiComp’08, September 21-24, 2008, pp. 40-43.

[8] Geetika Singla and Diane J. Cook, “Interleaved Activity

Recognition for Smart Home residents”, Proceedings of

the 5th International Conference on Intelligent
Environments, 2009.

[9] Niels Landwehr, “Modeling Interleaved Hidden

Processes”, Proceedings of the 25th International
Conference on Machine Learning, 2008.

[10] Derek Hao Hu, Sinno Jialin Pan, VincentWenchen

Zheng, Nathan Nan Liu and Qiang Yang, “Real World

Activity Recognition with Multiple Goals”,
UbiComp’08, September 21-24, 2008.

[11] Eunju Kim, Sumi Helal and Diane Cook, “Human

Activity Recognition and Pattern Discovery”, IEEE

Pervasive Computing, Volume 9, issue 1, 2010, pp. 48-

53.

[12] Rim Helaoui, Mathias Niepert and Heiner

Stuckenschmidt, “Recognizing Interleaved and

Concurrent Activities: A Statistical-Relational

Approach”, Proceedings of IEEE International

Conference on Pervasive Computing and

Communications, 2011, pp. 1-9.

[13] Jianxia Chen, Yixin Chen, You Xu, Ruoyun Huang,

Zheng Chen, “A Planning Approach to the Recognition

of Multiple Goals”, International Journal Of Intelligent
Systems, vol. 28, 2013, pp. 203–216.

[14] H. Karamath Ali and D. I. George Amalarethinam,

“Automatic Construction of Finite Automata for

Recognizing User Activities in Smart Environments”,

IOSR Journal of Engineering, Volume 3, Issue 12,
December 2013, pp. 40-45.

[15] Henning Fernau, “Algorithms for learning regular

expressions from positive data”, Journal of Information

and Computation, Volume 207, Issue 4, April 2009, pp.

521-541.

20
30
40
50
60
70
80
90

100

SG BHMM MG FA

R
e
c
o

g
n

it
io

n
 r

a
te

(%
)

Method

Single Goal

Multiple Goals

IJCATM : www.ijcaonline.org

