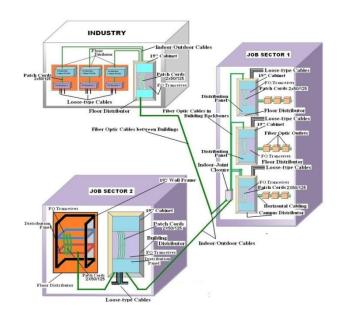
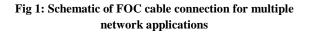
# Performance Analysis and Monitoring of Different Designed Optical Fiber Cables

Sumant Ku Mohapatra Assistant Professor Trident Academy of Technology Bhubaneswar, Odisha, India Ramya Ranjan Choudhury Assistant Professor Trident Academy of Technology Bhubaneswar, Odisha, India Rabindra Bhojray Associate Professor Trident Academy of Technology Bhubaneswar, Odisha, India

# ABSTRACT


To achieve greater flexibility and commercial performance like minimum laser bandwidth, attenuation, fast Ethernet performance different types of optical fiber cables are used for fiber optic communication channel. These FOC cables maximizes the rapid surface processing as well as very easy to install in a very small space in fiber patch panels with communication closets, medical laser power delivery, outdoor telecommunication networks on trunk or inter-exchange telecommunication networks on high voltage routes. overhead lines, undersea and electro-optical applications. This paper reviews a tabular comparative analysis for different optical fiber cables that utilizes indoor/outdoor and special type cables. Also these fiber optic cable design have attracted for high R & D works due to their different features and wide applications.


# **Keywords**

FOC cable, Loose Tube, Crush resistance, Core diameter.

# 1. INTRODUCTION

Now-a-days optical fiber cables in the research field are characterized by a low optical loss, high flexibility and commercial cost. From a long history of research optical fiber cables are designed for unprotected environment and data cable in distribution networks. But Now-a-days for commercial point of view optical fiber cables are characterized for a best resource. The selection [12] of a FOC cable is vital in the field of application whether it is useful for low to high fiber count requirements or factory floor automation and harsh environment installation. In this paper representation of ultra high density [4] rollable optical fiber ribbons, stranded tube ribbon cable, single-tube ribbon and single armour optical fiber cable is described. Also the analysid of the structural design of the vital features of Gel-Free, Arid-core, Self-supporting and Drop-type FOC cables are monitored. In this article emphasis is given on different recent and oldest commercial FOC cables according to their fiber counts, advantages and widely used applications for high data transmission. It is impossible to overview the descriptive information in this specific area due to limitation of pages given and also many excellent reviews have already appeared. In this article several available fiber counts and inter-core diameters of different FOC cables are discussed.





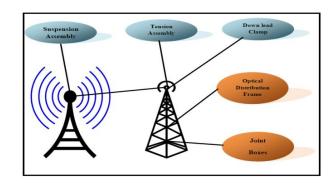



Fig 2: Schematic of FOC cable connection for data distribution applications

Advantages

Applications

# 2. DIFFERENT DESIGNED OPTICAL FIBER CABLES (AVAILABLE FIBER COUNTS)

| Cable Type                                                                   | Standard    | Data Rate | IEEE Standard Max.<br>Distance |
|------------------------------------------------------------------------------|-------------|-----------|--------------------------------|
| Multi-mode: 850 nm; 50/125µm or 62.5/125µm 2 km                              | 10Base-FL   | 10 Mbps   | 2 km                           |
| Multi-mode: 1300 nm; 50/125µm or 62.5/125µm 2 km                             | 100Base-FX  | 100 Mbps  | 2 km                           |
| Multi-mode: 850 nm; 50/125µm or 62.5/125µm                                   | 100Base-SX  | 100 Mbps  | 300m                           |
| Single-mode: 1310nm, 1550nm, 9/125µm                                         | 100Base-LX  | 100 Mbps  | 100 km                         |
| Multi-mode: 850 nm; 62.5/125µm, 50/125µm                                     | 1000Base-SX | 1000 Mbps | 220 m, 550 m                   |
| Multi-mode: 1300 nm; 50/125µm or 62.5/125µm<br>Single-mode; 1310 nm; 9/125µm | 1000Base-LX | 1000 Mbps | 550 m<br>2 km                  |
| Single-mode: 1550 nm; 9/125µm                                                | 1000Base-LH | 1000 Mbps | 70km                           |

#### Table 1. IEEE standards defined for various data rate(Mbps) w.r.t maximum distance(km)

| Internal Core<br>diameters)                                                                                           | Cross                                                                                                                                                                                         | -Sectional view | Advantages                                                                                                                                                          | Applications                                                                                                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.Dri –Lite Loose-<br>Tube Single Jacket<br>All Dielectric Optical<br>Fiber Cable<br>(12fiber/10.9,<br>288fiber/20.5) | Optical Fiber in<br>Gel-Free Buffer Tube<br>Water-Blocking Tape<br>Central Strength Member<br>Dielectric Water-Blocking<br>Strength Member<br>Rip Cord<br>UV Resisistant Jacket               |                 | <ul> <li>It reduces cable preparation &amp; Installation time.</li> <li>High fiber density.</li> <li>Multiple network applications.</li> </ul>                      | <ul> <li>Local loop, metro, long-<br/>haul &amp; broadband<br/>network.</li> <li>Underground duct &amp;<br/>lashed aerial antenna.</li> <li>Trunk, distribution &amp;<br/>feeder cable.</li> </ul> |
| 2.Dri –Lite Loose-<br>Tube Single Jacket<br>Single Armor Optical<br>Fiber Cable<br>(12fiber/12.2,<br>288fiber/22.7)   | Corrugated Steel Armour –<br>Optical Fiber in Gel-Free –<br>Buffer Tube<br>Water-Blocking Tape –<br>Central Strength Member –<br>Dielectric Water-Blocking<br>Strength Member –<br>Rip Cord – |                 | <ul> <li>Multiple network<br/>applications.</li> <li>Improves<br/>compressive<br/>strength &amp; rodent<br/>protection.</li> <li>High fiber<br/>density.</li> </ul> | <ul> <li>Trunk, distribution &amp; feeder cable.</li> <li>Local loop, metro, long-haul &amp; broadband network.</li> <li>Direct bury , underground duct &amp; lashed aerial.</li> </ul>            |
|                                                                                                                       | INT Destate of Leeberg                                                                                                                                                                        |                 |                                                                                                                                                                     |                                                                                                                                                                                                    |

#### Table 2. Performance Analysis of different designed FOC cables (6 > 100 < 300 available fiber counts)

**Cross-Sectional view** 

FOC Cable (Fiber counts/

| All Dielectric Optical<br>Fiber Cable<br>(12fiber/10.9,<br>288fiber/20.5)                                                | Water-Blocking Tape<br>Central Strength Member<br>Dielectric Water-Blocking<br>Strength Member<br>Rip Cord<br>UV Resisistant Jacket                                                                                                     | <ul> <li>Installation time.</li> <li>High fiber<br/>density.</li> <li>Multiple network<br/>applications.</li> </ul>                                                                                                                | network.<br>•Underground duct &<br>lashed aerial antenna.<br>•Trunk, distribution &<br>feeder cable.                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.Dri –Lite Loose-<br>Tube Single Jacket<br>Single Armor Optical<br>Fiber Cable<br>(12fiber/12.2,<br>288fiber/22.7)      | Corrugated Steel Armour<br>Optical Fiber in Gel-Free<br>Buffer Tube<br>Water-Blocking Tape<br>Central Strength Member<br>Dielectric Water-Blocking<br>Strength Member<br>Rip Cord<br>UV Resisistant Jacket                              | <ul> <li>Multiple network<br/>applications.</li> <li>Improves<br/>compressive<br/>strength &amp; rodent<br/>protection.</li> <li>High fiber<br/>density.</li> </ul>                                                                | <ul> <li>Trunk, distribution &amp; feeder cable.</li> <li>Local loop, metro, longhaul &amp; broadband network.</li> <li>Direct bury , underground duct &amp; lashed aerial.</li> </ul>             |
| <b>3.</b> Dri –Lite Loose-<br>Tube Double Jacket<br>Non-Armor Optical<br>Fiber Cable<br>(12fiber/13.5,<br>288fiber/22.9) | Dielectric Water-Blocking Strength<br>Member<br>Optical Fiber in<br>Gel-Free Buffer Tube<br>Central Strength Member<br>Water-Blocking Tape<br>Rip Cord<br>UV Resisistant Jacket<br>Inner/Outer Jacket                                   | <ul> <li>It reduces cable<br/>preparation &amp;<br/>installation time</li> <li>High fiber<br/>density.</li> <li>Metallic option<br/>offers ease of<br/>location, dielectric<br/>design eliminates<br/>grounding issues.</li> </ul> | <ul> <li>Local loop, metro, longhaul &amp; broadband<br/>network.</li> <li>Underground duct &amp;<br/>lashed aerial antenna.</li> <li>Trunk, distribution &amp;<br/>feeder cable.</li> </ul>       |
| 4.Dri –Lite Loose-<br>Tube Double Jacket<br>Double Armor<br>Optical Fiber Cable<br>(12fiber/17.5,<br>216fiber/25.6)      | Corrugated Steel Inner/Outer<br>Armour —<br>Optical Fiber in _<br>Gel-Free Buffer Tube<br>Water-Blocking Tape —<br>Central Strength Member _<br>Dielectric Water-Blocking _<br>Strength Member<br>Rip Cord _<br>UV Resisistant Jacket _ | <ul> <li>Reduces the<br/>number of tools<br/>required.</li> <li>Improves<br/>compressive<br/>strength &amp; rodent<br/>protection.</li> </ul>                                                                                      | <ul> <li>Local loop, metro, long-<br/>haul &amp; broadband<br/>network.</li> <li>Underground duct &amp;<br/>lashed aerial antenna.</li> <li>Trunk, distribution &amp;<br/>feeder cable.</li> </ul> |

Volume 88 – No.16, February 2014

| 5.Dri –Lite Loose-                         | Corrugated Steel Armour —                                     |   | •Reduces the                           | •Local loop, metro, long-                        |
|--------------------------------------------|---------------------------------------------------------------|---|----------------------------------------|--------------------------------------------------|
| Tube Double Jacket                         | Dielectric Water-Blocking                                     |   | number of tools                        | haul & broadband                                 |
| Single Armor                               | Strength Member                                               |   | required.                              | network.                                         |
| Optical Fiber Cable                        | Optical Fiber in<br>Gel-Free Buffer Tube                      |   | •It reduces cable                      | •Underground duct &                              |
| (12fiber/14.5<br>288fiber/25)              | Central Strength Member                                       |   | preparation & installation time.       | lashed aerial antenna.<br>•Trunk, distribution & |
|                                            | Water-Blocking Tape                                           |   | •Multiple network                      | feeder cable.                                    |
|                                            | Rip Cord                                                      |   | applications.                          |                                                  |
|                                            | UV Resisistant Jacket Inner/Outer                             |   |                                        |                                                  |
|                                            | Jacket 🦳                                                      |   |                                        |                                                  |
| 6.Dri –Lite Loose-                         | Corrugated Steel Armour                                       |   | •Speeds fiber                          | •Local loop, metro, long-                        |
| Tube Triple Jacket                         | Optical Fiber in —                                            |   | access & cleanup                       | haul & broadband                                 |
| Double Armor                               | Gel-Free Buffer Tube                                          |   | •Improves                              | network.                                         |
| Optical Fiber Cable (12fiber/20.3,         | Water-Blocking Tape                                           |   | compressive strength & rodent.         | •Underground duct & lashed aerial antenna.       |
| (12fiber/27)                               | Central Strength Member —                                     |   | •Multiple network                      | •Trunk, distribution &                           |
| ,                                          | Dielectric Water-Blocking —<br>Strength Member                |   | applications.                          | feeder cable.                                    |
|                                            | Rip Cord —                                                    |   |                                        |                                                  |
|                                            | UV Resisistant Jacket                                         |   |                                        |                                                  |
|                                            | Inner/Outer Jacket                                            |   |                                        |                                                  |
| 7.Loose-Tube Single                        | Corrugated Steel Armour                                       |   | <ul> <li>Non-sticky gel</li> </ul>     | •Local loop, metro, long-                        |
| Jacket Single Armor<br>Optical Fiber Cable | Optical Fiber in PFM<br>PFM Gel-Filled Buffer Tube            |   | speeds fiber.                          | haul & broadband                                 |
| (6fiber/12.2,                              | Water-Blocking Tape                                           |   | access & clean up<br>•Multiple network | •Underground duct &                              |
| 288fibe/22.7)                              |                                                               |   | application.                           | lashed aerial antenna.                           |
|                                            | Central Strength Member                                       |   | •Reduces the                           | •Trunk, distribution &                           |
|                                            | Dielectric Water-Blocking<br>Strength Member                  |   | number of tools                        | feeder cable.                                    |
|                                            | Rip Cords                                                     |   | required.                              |                                                  |
|                                            | UV Resisistant Jacket                                         |   |                                        |                                                  |
| 8.Loose-Tube Single Jacket All dielectric  | Optical fiber Ribbon<br>PFM Gel-Tube                          |   | •Non-sticky gel speeds fiber access    | •Local loop, metro, long-<br>haul & broadband    |
| Optical Fiber Cable                        | Barbaudes (particular) 199 (december) 1992(2019) 4741-1981-15 |   | & clean up.                            | network.                                         |
| (6fiber/10.3,                              | Water-Blocking Tape                                           |   | •Metallic option                       | •Underground duct &                              |
| 288fiber/18.9)                             | Central Strength Member                                       |   | offers ease of                         | lashed aerial antenna.                           |
|                                            | Dielectric Water-Blocking —<br>Strength Member                |   | location, and dielectric design.       | •Trunk, distribution & feeder cable.             |
|                                            | Rip Cords ——                                                  |   | dioloculie design.                     | lecter cable.                                    |
|                                            | UV Resisistant Jacket                                         |   |                                        |                                                  |
|                                            |                                                               |   |                                        |                                                  |
| 9.Loose-Tube Double Jacket Non-Armor       | Dielectric Water-Blocking<br>Strength Member                  |   | •Non-sticky gel speeds fiber.          | •Local loop, metro, long-<br>haul & broadband    |
| Optical Fiber Cable                        | Optical fiber in                                              |   | access & clean up                      | network.                                         |
| (6fiber/10.3,                              | PFM Gel-Tube                                                  |   | •High fiber                            | •Underground duct &                              |
| 288fiber/18.9)                             | Central Strength Member ——                                    |   | density.                               | lashed aerial antenna.                           |
|                                            |                                                               |   | •Multiple network applications.        | •Trunk, distribution & feeder cable.             |
|                                            | Water-Blocking Tape ——                                        |   |                                        |                                                  |
|                                            | Rip Cords                                                     |   |                                        |                                                  |
|                                            | UV Resisistant Jacket ——                                      |   |                                        |                                                  |
| 10.Loose Tube                              | Corrugated Steel Armour —                                     |   | •Used as data                          | •Low smoke, halogen free                         |
| Double Jacket                              | Optical Fiber in                                              |   | cable in                               | and self-extinguishing.                          |
| Double armor Optical<br>Fiber Cable        | Gel-Free Buffer Tube                                          |   | distribution<br>networks.              | •Easy stripping and no                           |
| (6fiber/17.5,                              | Water-Blocking Tape —                                         |   | •Used for high                         | need for cleaning the fibers.                    |
| 216fiber/25.6)                             | Central Strength Member —<br>Dielectric Water-Blocking —      |   | safety                                 |                                                  |
|                                            | Dielectric Water-Blocking —<br>Strength Member                | 0 | requirements in                        |                                                  |
|                                            | Rip Cords —                                                   |   | case of fire.                          |                                                  |
|                                            | UV Resisistant Jacket —                                       |   |                                        |                                                  |
|                                            |                                                               |   |                                        |                                                  |

International Journal of Computer Applications (0975 - 8887)

Volume 88 - No.16, February 2014

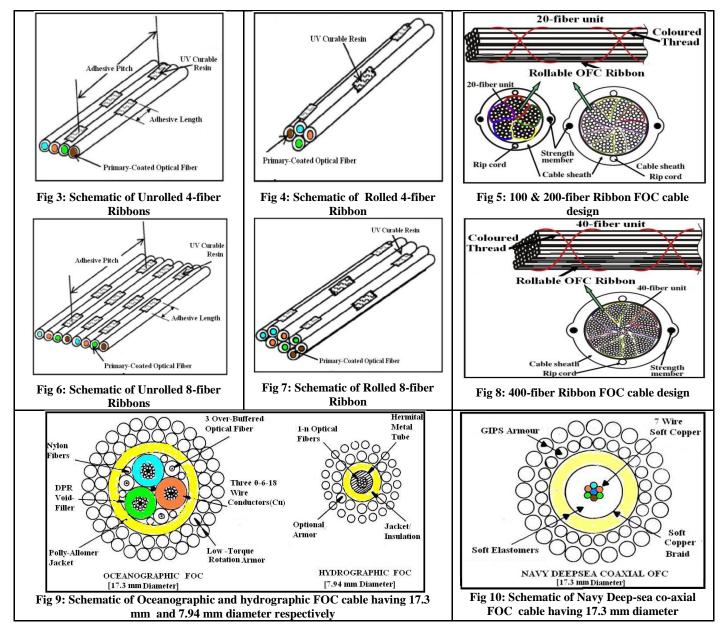

| 11.Loose Tube<br>Double Jacket Single<br>Armor Optical Fiber<br>Cable<br>(6fiber/14.1,<br>288fiber/22.9)    | Dielectric Water-Blocking<br>Strength Member<br>Optical fiber Ribbon<br>PFM Gel-Tube<br>Central Strength Member<br>Corrugated Steel Armour<br>Water-Blocking Tape<br>Rip Cords<br>UV Resisistant Jacket | <ul> <li>No need for fiber cleaning.</li> <li>Low smoke, halogen free and self-extinguishing.</li> </ul>                               | <ul> <li>Used for installation in cable ducts and high fire safety.</li> <li>Used as data cable in distribution networks.</li> </ul>            |
|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>12.</b> Loose Tube Triple<br>Jacket Double Armor<br>Optical Fiber Cable<br>(6fiber/20.3,<br>216fiber/27) | Corrugated Steel Armour<br>Optical fiber Ribbon<br>PFM Gel-Tube<br>Water-Blocking Tape<br>Central Strength Member<br>Dielectric Water-Blocking<br>Strength Member<br>Rip Cords<br>UV Resisistant Jacket | <ul> <li>Halogen free and<br/>non-corrosive fire<br/>gases.</li> <li>Longitudinal and<br/>transversal<br/>watertight cable.</li> </ul> | <ul> <li>Used for installation in<br/>indoor and outdoor areas.</li> <li>Ideal for high safety<br/>requirements in case of<br/>fire.</li> </ul> |

Table 3. Performance Analysis of different designed Ribbon-type FOC cables (12 – 1008 available fiber counts)

| FOC Cable<br>(Available fiber counts/                                                               | OFC Cable Name                                                                                                                                                                                       | Advantages                                                                                                                                                                      | Applications                                                                                                                                      |
|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Internal Core diameters)                                                                            |                                                                                                                                                                                                      |                                                                                                                                                                                 |                                                                                                                                                   |
| 1.Stranded Tube Ribbon<br>Single Armor Optical Fiber<br>Cable<br>(360fiber/31.8,<br>1008fiber/31.8) | Corrugated Steel Armour<br>Water-Blocking Tape<br>Optical fiber Ribbon<br>PFM Gel-Tube<br>Rip Cords<br>Dielectric Water-Blocking<br>Strength Member<br>UV Resisistant Jacket<br>Steel Rod            | <ul> <li>It has high fiber<br/>density and<br/>individual tube<br/>access.</li> <li>It has compressive<br/>strength, rodent<br/>protection and ease<br/>of location.</li> </ul> | <ul> <li>Used as trunk<br/>distribution and feeder<br/>cables.</li> <li>Specifically applicable<br/>for direct bury<br/>installations.</li> </ul> |
| <b>2.</b> Single Tube Ribbon Optical<br>Fiber Cable<br>(12fiber/12,<br>864fiber/24.4)               | Rigid Steel Outer<br>Strength Member<br>UV Resisistant Jacket<br>Corrugated Steel Armour<br>PFM Gel-Tube<br>Optical fiber Ribbon<br>Dielectric Water-Blocking<br>Strength Member<br>Rip Cords        | <ul> <li>Its dielectric design<br/>eliminates grounding<br/>issues.</li> <li>Its non-sticky gell<br/>allows easier and<br/>faster clean up.</li> </ul>                          | <ul> <li>Designed for outside<br/>plant direct bury<br/>installations.</li> <li>Used as lashed aerial<br/>and underground duct.</li> </ul>        |
| 3.Single Tube Ribbon Single<br>Armor Optical Fiber Cable<br>(12fiber/13,<br>432fiber/21)            | Rigid Steel Outer<br>Strength Member<br>UV Resisistant Jacket<br>Corrugated Steel Armour<br>PFM Gel-Filled Tube<br>Optical fiber Ribbon<br>Dielectric Water-Blocking<br>Strength Member<br>Rip Cords | <ul> <li>Multiple network<br/>applications</li> <li>Easier handling and<br/>reduced loss.</li> </ul>                                                                            | <ul> <li>Specifically used for<br/>lashed aerial and<br/>underground duct.</li> <li>Used for broadband.</li> </ul>                                |
| <b>4.</b> Ribbon Locate Optical Fiber<br>Cable<br>(60fiber/13,<br>216fiber/17)                      | Rigid Steel Outer<br>Strength Member<br>PFM Gel-Filled Tube<br>Locate Tape<br>Rip Cords<br>Optical fiber Ribbon<br>Dielectric Water-Blocking<br>Strength Member<br>UV Resisistant Jacket             | •Reduces preparation<br>time and labour cost.<br>•It has small outer<br>diameter and high<br>flexible tube.                                                                     | <ul> <li>Used as lashed aerial<br/>and underground duct.</li> <li>Specifically used for<br/>broadband networks.</li> </ul>                        |

Table 4. Schematic of different designed optical fiber cables having Rollable Ribbons.

Volume 88 - No.16, February 2014



| Optical fiber cable Types | Fiber Bundle                                                                                                                                                                                                                                                                                                          | Parameters                                                                                                                                                                                                       | Applications                                                                                                                                                     |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.Interconnect<br>Cable   | SIMPLEX Jacket DUPLEX<br>2.9mm<br>(0.114 in.)<br>900 Micron<br>Buffered Fiber (233 ln.)                                                                                                                                                                                                                               | <ul> <li>Operating Temperature Range<br/>: -20 to +70°C</li> <li>Crush Resistance : 200 N/cm</li> <li>Impact Resistance : 20<br/>Impacts @ 1.0 N-m</li> <li>Cyclic Flexing : 2000 cycles,<br/>min.</li> </ul>    | <ul> <li>Patch panels.</li> <li>Workstation<br/>equipment<br/>connections.</li> <li>Horizontal<br/>distribution in open<br/>office environments.</li> </ul>      |
| 2.Distribution Cable      | Aramid Strength<br>Member<br>Color<br>Coded<br>Jacket<br>(Color Coded)<br>Specified Fiber<br>(Color Coded)<br>Upjacketed<br>Upjacketed<br>Upjacketed<br>Dentral Polyester<br>Tape Barrier<br>Upjacket<br>Upjacketed<br>Dentral Polyester<br>Tape Barrier<br>Upjacket<br>Upjacket<br>Dentral Polyester<br>Tape Barrier | <ul> <li>Operating Temperature Range<br/>: -20 to +70°C</li> <li>Crush Resistance : 2000 N/cm</li> <li>Impact Resistance : 2000<br/>Impacts @ 1.6 N-m</li> <li>Cyclic Flexing : 2000 cycles,<br/>min.</li> </ul> | <ul> <li>Low to high fiber<br/>count requirements.</li> <li>In-building backbone</li> <li>Fiber-to-the-desk<br/>applications.</li> <li>Computer room.</li> </ul> |

| <b>3.</b> Breakout Style Cable                   | Color Coded<br>Thermoplastic Jacket<br>Aramid<br>Strength<br>Member<br>900 micron<br>Tight Buffered<br>Fiber<br>Central Strength<br>Member<br>2.0 mm Sub-ur                      | <ul> <li>Operating Temperature<br/>:Range : -20 to +70°C</li> <li>Crush Resistance : 2000 N/cm</li> <li>Impact Resistance : 2000<br/>Impacts @ 1.6 N-m</li> <li>Cyclic Flexing: 2000 cycles,<br/>min.</li> </ul> | <ul> <li>Low to medium fiber<br/>count requirements.</li> <li>In-building backbone<br/>or horizontal<br/>deployment.</li> </ul>                                                                          |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>4.</b> Industrial Armored Cable               | Aramid Strength<br>Member<br>Color<br>Coded<br>Jacket<br>Specified Fiber<br>(Color Coded)<br>Central E-Glass<br>Strength Member                                                  | <ul> <li>Operating Temperature<br/>Range: -20 to +70°C</li> <li>Crush Resistance : 2000 N/cm</li> <li>Impact Resistance : 2000<br/>Impacts @ 3.0 N-m</li> </ul>                                                  | <ul> <li>Industrial<br/>environments and<br/>rugged installations.</li> <li>Manufacturing<br/>plants.</li> <li>Telecommunications<br/>and data trunk.</li> </ul>                                         |
| <b>5.</b> Tactical Cable                         | Outer Jacket<br>Tight<br>Buffered<br>Fiber<br>Aramid<br>Strength Member                                                                                                          | <ul> <li>Operating Temperature<br/>Range: -55 to +85°C</li> <li>Crush Resistance : 440 N/cm</li> <li>Impact Resistance : 200<br/>Impacts @ 2.2 N-m</li> <li>Cyclic Flexing: 2000 cycles,<br/>min.</li> </ul>     | <ul> <li>ENG vehicles.</li> <li>Outdoor news,<br/>sporting or other<br/>events.</li> <li>Military<br/>communications.</li> <li>Re-deployable<br/>communications.</li> </ul>                              |
| 6.Ribbon Cable                                   | Outer Jacket                                                                                                                                                                     | <ul> <li>Operating Temperature<br/>Range: -20 to +70°C</li> <li>Crush Resistance :<br/>-2000 N/cm</li> <li>Impact Resistance : 2000<br/>Impacts @ 1.6 N-m</li> </ul>                                             | <ul><li>Inter-equipment<br/>connections.</li><li>NEBS applications.</li></ul>                                                                                                                            |
| <b>7.</b> Single Jacket, All<br>Dielectric Cable | Outer Jacket<br>Thermoplastic<br>Tube<br>Moisture<br>Blocking<br>Gel<br>Multiple<br>250 micron<br>Fibers<br>Strength Member                                                      | (Outdoor Series):<br>-40 to +70°C<br>•Crush Resistance : 2000<br>N/cm<br>•Impact Resistance : 2000<br>Impacts @ 1.6 N-m                                                                                          | <ul> <li>Medium to high fiber<br/>count requirements.</li> <li>Inter-building duct<br/>installations.</li> <li>Lashed aerial.</li> <li>Indoor/outdoor.</li> <li>Industrial outside<br/>plant.</li> </ul> |
| 8.Double Jacket, Armored<br>Cable                | Thermoplastic<br>Tube<br>Multiple<br>Stop<br>Fibers<br>Blundles<br>Fibers<br>Steel Armor<br>Aramid<br>Strength<br>Moisture<br>Blocking Gel<br>E-Glass Central<br>Strength Member | <ul> <li>Operating Temperature Range<br/>: (Outdoor)</li> <li>-40 to +70°C</li> <li>Crush Resistance : 2000<br/>N/cm</li> <li>Impact Resistance : 2000<br/>Impacts @ 1.6 N-m</li> </ul>                          | <ul> <li>Direct burial.</li> <li>Low to high fiber<br/>count requirements.</li> <li>Inter-building duct<br/>installations.</li> <li>Indoor/outdoor.</li> <li>Industrial outside<br/>plant.</li> </ul>    |
| <b>9.</b> Double Jacket, Heavy-<br>Duty Cable    | Drtical<br>Fibers<br>Gel-filled<br>Buffer Tube<br>Bielectric Central<br>Strength Member<br>Fibers<br>Binder<br>Rip Cords                                                         | <ul> <li>Operating Temperature Range<br/>: -40 to +70°C</li> <li>Crush Resistance : 2000<br/>N/cm</li> <li>Impact Resistance : 2000<br/>Impacts @ 1.6 N-m</li> </ul>                                             | <ul> <li>Direct burial.</li> <li>Harsh environments.</li> <li>Applications<br/>requiring good ozone-,<br/>moisture- and weather-<br/>resistance.</li> </ul>                                              |
| 10.Central Tube Cable                            | SINGLE ARMOR<br>Outer Jacket<br>Steel Armor<br>Fiberglass<br>Strength Member<br>Gel-filled<br>Buffer Tube<br>Optical Fibers<br>Rip Cord                                          | <ul> <li>Operating Temperature Range<br/>: -40 to +70°C</li> <li>Crush Resistance : 2000<br/>N/cm</li> <li>Impact Resistance : 2000<br/>Impacts @ 1.6 N-m</li> </ul>                                             | <ul> <li>Campus OSP<br/>backbones<br/>drop cable.</li> <li>Telecommunications<br/>and data trunk.</li> <li>Direct burial<br/>(armored only).</li> <li>Lashed aerial.</li> </ul>                          |

International Journal of Computer Applications (0975 - 8887)

Volume 88 – No.16, February 2014

| <b>11.</b> Micro Loose Tube<br>Breakout Style Cable | Polyethylene<br>Outer Jacket<br>900 micron<br>Mini Tube<br>Gel-filled<br>Buffer | <ul> <li>Operating Temperature Range<br/>: -20 to +70°C</li> <li>Crush Resistance : -600 N/cm</li> <li>Impact Resistance : 20<br/>Impacts @ 1.0 N-m</li> </ul>                                                      | <ul> <li>Ducts between<br/>buildings (above or<br/>below frost lines).</li> <li>Lashed aerial.</li> <li>Telecommunications<br/>and data trunk.</li> </ul> |
|-----------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>12.</b> TrayOptic Heavy- All<br>Dielectric Cable | Outer Jacket<br>Inner Jacket<br>Binder<br>Dielectric Central<br>Strength Member | <ul> <li>Operating Temperature Range<br/>: -40 to +70°C</li> <li>Crush Resistance : 2000<br/>N/cm</li> <li>Impact Resistance : 2000<br/>impacts@ 1.6N-m</li> <li>Cyclic Flexing : 25 cycles,<br/>12 lbs.</li> </ul> | <ul> <li>Industrial and other<br/>harsh environment<br/>applications.</li> <li>Factory automation.</li> <li>Direct burial.</li> </ul>                     |

## Table 6. Performance Analysis of Special types of different designed FOC cables

| Cross-sectional View                                                                                                                                                                                                                                                                       | Application                                                                                                                                                                                                              | Advantages                                                                                                                                                                                                             | Properties                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Central Loose Tube Under Water Cable<br>Optical Fiber<br>Jelly Filled Loose Tube<br>Steel Wire Armour<br>Optional PE Inner Jacket<br>Optional Water-blocking Tape<br>Optional Ripcord<br>Corrugated Steel Tape Armour<br>PE Outer Jacket                                                | •It is used for long<br>haul communication<br>system in under<br>water condition.<br>•Junction<br>communication<br>system in under<br>water condition.                                                                   | <ul> <li>Loose tube<br/>jelly filled for<br/>superior fiber<br/>protection.</li> <li>High tensile<br/>strength design.</li> <li>Superior<br/>mechanical and<br/>environmental<br/>performance.</li> </ul>              | <ul> <li>Available Fiber Count: 2-12.</li> <li>Operating Temperature Range : -40°C to +70°C).</li> <li>Crush Resistance: 263 N/cm.</li> <li>Maximum Compressive Load: 3000 N.</li> </ul>                                                                                          |
| 2. Multi Loose Tube Under Water Cable<br>Optical Fiber<br>Jelly Filled Loose Tube<br>Jelly<br>Optional PE Inner Jacket<br>Central Strength Member<br>Filler<br>Water-blocking Tape<br>Corrugated Steel Tape<br>PE Inner Jacket<br>Steel Wire Armour<br>Optional Ripcord<br>PE Outer Jacket | <ul> <li>It is used for long<br/>haul communication<br/>system in under<br/>water condition.</li> <li>Junction<br/>communication<br/>system in under<br/>water condition.</li> </ul>                                     | <ul> <li>Superior fiber<br/>protection.</li> <li>Colored coded<br/>fibers and<br/>binders for<br/>quick and easy<br/>identification<br/>during<br/>installation.</li> <li>High tensile<br/>strength design.</li> </ul> | <ul> <li>Available Fiber Count:<br/>2-12, 26-36, 38-72.</li> <li>Operating Temperature Range: -<br/>40°C to +70°C.</li> <li>Crush Resistance:220 N/cm.</li> <li>Maximum Compressive Load:<br/>4000 N.</li> </ul>                                                                  |
| 3. Hybrid Optical Fiber Cable<br>PVC Outer Jacket<br>PVC Jacket<br>Buffererd Optical<br>Fiber<br>Central Strength<br>Member<br>Dielectric Strength<br>Member                                                                                                                               | <ul> <li>Most cost-effective cables for the varied applications.</li> <li>Eliminates the need for additional pathway space for different cable types.</li> <li>Assures compliance for all current networking.</li> </ul> | <ul> <li>Intra-building<br/>backbones and<br/>Inter-building<br/>backbone.</li> <li>Service<br/>entrance to<br/>communication<br/>closets.</li> </ul>                                                                  | <ul> <li>Available Fiber Counts:4-72.</li> <li>Flexible tight buffer material extruded over the fiber to a diameter of 900 µm for use with standard connectors.</li> <li>Operating Temperature Range: -40°C to +75°C</li> <li>Storage Temperature Range: 40°C to +75°C</li> </ul> |

# 3. ENVIRONMENTAL EFFECTS AND THEIR SOLUTIONS

Table 7. Effects and their solutions adopted for different operating environments of optical fiber cables.

| Handling Environments        | Effect on fiber optic cables                 | Necessary Steps used                                         |
|------------------------------|----------------------------------------------|--------------------------------------------------------------|
| Working in ice,              | Attenuation increased or fiber optic cable   | Loose fiber protection with excellent control of fiber extra |
| temperature and wind.        | breakage due to compression or expansion.    | length allowing elongation or compression of the cable.      |
| When hydrogen is             | Attenuation increased because FOC cable      | Hydrogen-absorbent gel filled within core of the cable.      |
| generated in metal structure | absorbs hydrogen.                            |                                                              |
| Within Moisture and Rain.    | Attenuation increased.                       | Sealing gel filled within core of the cable.                 |
| The impact of lightning.     | Cable wire may breakdown.                    | Select Aluminum Alloy wires for Thermal protection.          |
| The line short-circuits.     | Sttenuation increased.                       | To design core with high Aluminum material.                  |
| Condition of corrosion.      | Cable wire breaks and attenuation increased. | To use AA and AS wires for highly corrosive areas.           |

# 4. CONCLUSION

In this article, representation of different designed fiber optic cables for excellent applications is discussed. Analysis of different aspects of designed FOC cables on the basis of their available fiber counts, internal core diameter, benefits with respect to their applications is also clearly stated. The design of FOC cables would benefit in cable handling and should occur primarily as response to new operational capabilities offered by the fiber or to new requirements that the fiber brings with it in the future. These future scopes include the efficiency of these designed FOC cables that show their adaptability to exposure for different operating environments. The fiber cables discussed in section 2[1, 7] clearly show the application and various advantages for fiber counts less than 300. For Ribbon type FOC cables there is a vast variation of fiber counts ranging from twelve to three hundred. This tabular comparison can be extended to FOC cables of general type (not Ribbon type) beyond three hundred counts on which investigation is being carried out. From the available sources [4, 7] the schematics of ribbon FOC cables are displayed in Table 4. On the basis of available facts [12, 13] selection analysis of various FOC cables are described in tabular form in Tables 5 and 6 respectively. It is hoped that this investigation would help readers in getting a fair idea about FOC cable interior design.

### 5. REFERENCES

- [1] QUICK LINKS Superior Essex http://www.superioressex.com/comm/newsletter\_signup. aspx.
- [2] K. Hogari, Y. Yamada, K. Toge, "Novel optical fiber cables with ultra-high density", IEEE J. Light wave Technol. 26 (17) (2008) 3104–3109.
- [3] T. Horiguchi, T. Kurashima, M. Tateda, K. Ishihara, Y. Wakui, "Brillouin characterization of fiber strain in bent slot-type optical-fiber cables", IEEE J.Lightwave Technol. 10 (9) (1992) 1196–1201.
- [4] Kazuo Hogari , Yusuke Yamada, Kunihiro Toge, "Design and performance of ultra-high-density optical fiber cable with rollable optical fiber ribbons", Elsevier Optical Fiber Technology 16(2010) 257–263.
- [5] Y. Mitsunaga, Y. Katsuyama, H. Kobayashi, Y. Ishida, "Life-time design of optical cable strength", Trans. IEICE J66-B (8) (1983) 1051–1058.

- [6] Uses of Fiber Optic Cables: http://www.fosystems.com/fiber\_optic\_cables\_for\_indust rial\_applications
- [7] IEEE Standard for Qualifying Fiber Optic Cables, Connections, and Optical Fiber Splices for Use in Safety Systems in Nuclear Power Generating Stations IEEE Std 1682-2011
- [8] High Power Fiber Cables J.T. Ingram http://www.jtingram.com/broadspectrafibersolutions
- [9] Reliability and effectiveness of cable types used in technical telecommunications systems Kateeb, I. ; Peluso, M.S. ; Bikdash, M. ; Chopade, P.Southeastcon, 2012 Proceedings of IEEE Digital Object 2012, Page(s): 1-6
- [10] S. Hatano, Y. Katsuyama, T. Kokubun, K. Hogari, "Multi-hundred-fiber cable composed of optical fiber ribbons inserted tightly into slots", in: 37<sup>th</sup> International Wire & Cable Symposium, 1986, pp. 17–23.
- [11] Optical fibre cables parts 3–10: outdoor cables family specification for duct and directly buried single-mode optical fibre telecommunication cables, IEC60794-3-10, 2002.
- [12] Optical Fiber Cables Breakout Style Cable Belden: http://www..belden.com/opticalfibercables
- [13] What's Next for Wireless Networks in 2014?: http://www.commscope.com/focps
- [14] T. Haibara, M. Matsumoto, M. Miyauchi, M. Shirai, "Design fiber-holder for optical fiber ribbon splice", Trans. IEICE J70-C (8) (1987) 1164–1172.
- [15] Solutions for Telecom, Prysmian Group: http://www.prysmian.com/solutionsfortheintegrationoftel ecommunicationnetworksonhighvoltageoverhead-lines
- [16] M.H. Abderrazzaq, "Characterizing the internal strain in composite insulation under dry and wet conditions", IEEE Trans. Dielectr. Electr. Insul. 15 (5) (2008) 1353– 1359.
- [17] Hirofumi Takai, Osamu Yamauchi, "Optical fiber cable and wiring techniques for fiber to the home (FTTH)", Elsevier Optical Fiber Technology 15 (2009) 380–387

- [18] D.C. Kilper, R. Bach, D.J. Blumenthal, D. Einstein, T. Landolsi, L. Ostar, M. Preiss, A.E. Willner, "Optical performance monitoring", IEEE/OSA J. Lightwave Technol. 22 (1) (2004) 294–304.
- [19] P. Chanclou, S. Gosselin, J.F. Palacios, V.L. Alvarez, E. Zouganeli, "Overview of the optical broadband access evolution", IEEE Commun. Mag. 44 (8) (2006) 29–35.
- [20] Tsukamoto, M.; Ishida, F.; Okada "Development of low friction 8-fiber optical indoor cable with mid-span", IEEE N.Opto-Electronics and Communications Conference (OECC), 2012, Page(s): 491 – 492
- [21] Jian-Lin Qian ; Xin-Hua Shen ; Chun-Dong Zhou ; Dong Wei ; Xiao-Xia Fu "A method for the detection of cable

elastic expansion rate under different environment temperature Consumer", IEEE Electronics, Communications and Networks (CECNet), 2012

- [22] Wenzhi ; Han Xiaohui ; Ge Zhendong "19-core multi core fiber to realize high density space division multiplexing transmission", Condition Monitoring and Diagnosis (CMD), IEEE International Conference 2012, Page(s): 671 – 676
- [23] Whiting, M.; Downie, J.; Trice, J.; Vemagiri, J.; Yeary, L.; McCollum, R.; Suber, C.; Blaignan "Optical Automatic discovery of fiber optic structured cabling component locations and connectivity Wagner", R.E.F.C.E, IEEE 2012.