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ABSTRACT 
In this paper, a fault detection and isolation system for 

nonlinear systems is presented. Fault detection and isolation is   
accomplished by using extended state observer (ESO) and  

fuzzy logic system. The major of observer-based fault 

detection methods rely on the accurate mathematical model of 

the system, but in the real world an accurate model of the 

system may not be available. The ESO is different from 

conventional observers, it does not require an accurate model 

of the system, it provides vital information for fault detection 

with only partial information of the plant. The ESO has ability 

to augment unknown dynamics combined with unknown 

external disturbance as extended state and estimate it in real 

time by using given input-output data. This paper presents a 

new sensor fault detection and isolation (FDI) via ESO and 

fuzzy logic system. A two-tank system is used as a case study. 

The simulation results confirm the simplicity and 

effectiveness of the proposed FDI technique. 

Keywords 
Fault detection and isolation, Nonlinear system, Extended 

state observer, Fuzzy logic system. 

1. INTRODUCTION 
Due to the existence of nonlinearities in engineering systems, 

fault diagnosis of nonlinear systems much more have been 

studied in recent years.  One of the most powerful approaches 

for fault detection is the model-based approach [1]. The 

presence of faults is detected by means of the residuals, the   

residuals are difference between the system outputs and model 

outputs. They are ideally zero, and when the fault occurs they 

become non-zero [2-4]. The common model-based analytical 

redundancy approaches are [5] diagnostic observers, parity 

space, parameter estimation approaches. Parity space   

approach is constructed on the linear system theories, which 

cannot easily be developed to nonlinear cases. Parameter 

estimation approach depends on the accurate dynamic models 

of the process [1]. 

Among model-based analytical redundancy methods, 

observer-based approaches is the most popular way to 

achieve high-performance fault diagnosis [4,6-8]. However, 

the model-based fault detection requires the accurate model of 

the monitored system [9]; but in the real world the accurate 

system model is often unavailable. The general conceptual 

structure of model-based fault detection is shown in Figure 

1[9].  

The extended state observer introduced in this paper is 

different from conventional observers, such as unknown input 

observer, disturbance observer and generalized observer; it 

does not require an accurate model of the system. The ESO 

requires little knowledge of the plant model, such as the order 

of the system. Because it does not use a model, it is simpler 

and easier to construct. It is also capable of filtering the 

measurement noise. 

In this paper, firstly the residuals are generated by ESO 

without detailed knowledge about the dynamic system. 

In fact, due to the measurement noise, external disturbance 

and modeling uncertainty, the residuals are never zero, even if 

there is no fault. The fuzzy logic system is a precise approach 

for handling uncertainties. Therefore, the fuzzy system can be 

applied to evaluate the residuals.  

This paper is organized as follows. Section 2 describes the 

design of ESO. Section 3 describes the two-tank system. 

Section 4 presents sensor fault detection. Section 5 presents 

fault isolation. Section 6 gives conclusions about the 

presented technique. 

 

 

Fig. 1. General conceptual scheme of fault detection 

  

2. ESO 
The concept of ESO proposed by Han  [10] as follows. 

Consider a nonlinear system that described by: 

butwyyfy n  ))(,,,()(                                                     (1) 

Then, a state space description of (1) is: 
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where ),,,( 1 wxxf n  is nonlinear functions, u  is the control 

input, y is the system output,
 

nxxx ,,, 21   are system states, 

w(t) is the external disturbance and b  is a constant.  

According to ESO theory, we define ),,,( 11 wxxfx nn   

and the new state space is: 
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f  and fth )(  are assumed unknown. The nonlinear 

extended state observer described as follows [11]: 
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where nzzz ,,, 21 
 
are estimated states and 11 ,, n   are 

observer gains, and function ),,( aeg  is defined as follows: 
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0  and a is chosen between 0 and 1,
 

),,( aeg  yields high 

gain when error is small.   is a small number used to limit 

the gain in the neighborhood of origin. Starting with linear 

gain eg )( , the pole placement method can be used for the 

initial design of this observer, before the nonlinearities are 

added to enhance the performance.  

It should be noted that (4) takes the form of the linear ESO, 

when ,1a which is given as: 
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In this paper, fault detection is performed by means of the 

linear ESO. 

2.1 Stability 
Let iii zxe  , 1,1  ni   the error equation can be 

written as:  

BhAe e                                                                             (7) 
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Obviously, the linear ESO is bounded-input bounded-output 

(BIBO) stable if h is bounded and the parameters ( 11 ,, n  ) 

are selected such that (A-LC) is Hurwits. 

In this paper, the observer gains are chosen as follows: 

1
011

1 )( 


  n
n

nn sss                                          (9)  

where 0 denotes the bandwidth of the observer. 

3. TWO-TANK SYSTEM 
The mathematical model of the two-tank system has high 

nonlinearities and is suitable to evaluate the efficiency of the 

ESO in the context of the fault detection.  

A two-tank system [12] as shown in Figure 2 was chosen for 

this study. The system consists of one pump and two tanks 

that are connected by small tubes. In this system, the 

controlled input is the flow rate of pump, and measurable 

outputs are the water levels of the two tanks. Using the 

Torricelliʾs law, the two dynamic equations are: 
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where SA  is the circular cross-sectional area of each tank; 1a  

and 2a  are flux coefficients; 1pS  and 2pS  are the circular 

cross-section area of each tube; g is the gravity acceleration; 

1q  is the flow rate of pump; 2q  is the outflow from tank 2; 1h  

and 2h  are the water level of  each tank. 

 

 

Fig. 2. Diagram of the two-tank system 

 

The ESO formulation for the two-tank model can be rewritten 

as: 
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So we have 

ubfty 0)(                                                                       (13) 

The model of (13) can be written as state space form 
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The state space observer can be written as 
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where  Thhy 21
ˆˆˆ   as the estimated output,  Tzzz 21  

(  Tzzz 12111   and  Tzzz 22212  ). 

L is the observer gain, with a chosen gain, the estimated z 

vector can be used to monitor the system outputs and the 

system dynamics in real time. As time proceeds, 1z  

approaches the system outputs (i.e. 1h  and 2h ), and 2z  

approaches the system dynamics (i.e. 1f  and 2f ).  

4. SENSOR FAULT DETECTION 
The fault detection problem is to indicate whether a fault 

occurred or not. Traditionaly, faults are considered detected if 

the abrupt chang of the outputs )( iy  exceeds the 

predetermined value [13]. When using the ESO, a fault is 

considered detected if the abrupt chang of the outputs )( 1iz  

or the abrupt chang of general system dynamics )( 2iz  

exceeds the predetermined value. 

For the two-tank system, the appropriate observer bandwidth   

is chosen as 2 . 

The tracking errors for 1h  and 2h  is very small, as shown in 

Figure 4. Interestingly, 21z  and 22z  converge to the unknown 

functions 1f  and 2f , as shown in Figure 5. 
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Fig. 3. The curve of the actual and estimated water levels 

of two-tank system 
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Fig. 4. The observer error 
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Fig. 5. The curve of the actual and estimated system 

dynamics of two-tank system 

 

4.1 Fault detection without noise 
In the simulation example, we assume that a offset fault   

, ),(7.01 cmh  in the water level sensor 1h  occurs at t=600s.  
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Fig. 6. Estimated water levels of two-tank system for fault 

detection 
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Fig. 7. Estimated system dynamics of two-tank system for 

fault detection 

 

Figure 6 shows the detected fault based on observing the 

estimated outputs, iz1  and Figure 7 shows the detected fault 

based on observing the estimated system dynamics, iz2 . 

4.2 Fault detection with noise 
Because in the real world noise is inevitable, the output 

system is corrupted by white noise. The measurement noise is 

filtered by ESO, as shown in Figure 9. 
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Fig. 8. Measured water levels of two-tank system 
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Fig. 9.  Estimated water levels of two-tank system for fault 

detection 
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Fig. 10. Estimated system dynamics of two-tank system for 

fault detection 

 

5. FAULT ISOLATION 
The fault isolation problem is to determine in which sensor 

the fault has occurred.  

The Sugeno fuzzy system used for fault isolation. The Sugeno 

fuzzy system structure has two input and two output. The 

input variables are residuals. According to the fuzzy logic, 

membership functions are defined for each of the residuals, 

1hR  and 
2hR . 

A membership function is a curve that defines how the vector 

in the input space is mapped to a membership value within 0 

and 1 [4].  

Three trapezoid membership functions are applied for the 

residuals, which are ''positive'', ''zero'' and ''negative''. Figure 

11 shows a membership function for the residual .1hR  The 

input membership functions for 1hR  and 2hR  are the same. 

The outputs of Sugeno fuzzy system are between 0 and 1, 

where ''1'' represents complete fault. 

The five if-then fuzzy rules are made by the rows of Table 1. 

For example, the fuzzy rule for a positive offset fault in the 

water level sensor 1h  is: 

IF
1hR  positive  AND

2hR  zero THEN .111  hh  
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Table 1. Effect of faults on residuals 

Faults                           Residuals 

                                         
1hR                                     

2hR                                 

11 hh                               +                                        0  

11 hh                                -                                        0 

22 hh                              0                                        +                   

22 hh                              0                                         - 

Normal situation               0                                         0 

±   , positive or negative offset of  sensor signal; + increase; -

, decrease; 0 no deflection. 

 

In the Table 1, '' hh  '' means that the water level sensor is 

faulty. 
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Fig. 11. Membership function for 1hR  
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Fig. 12. Result of the fault isolation without noise 

 

Figure 12 shows the result of the fault isolation system in the 

absence noise.  

The range of the measurement noise is [-0.9 0.9]. Although, 

the magnitude of the measurement noise is bigger than the 

magnitude of the sensor fault, fault isolation is performed 

successfully. Figure 13 shows the result of the fault isolation 

system in the presence noise. 
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Fig. 13. Result of the fault isolation with noise 

 

6. CONCLUSION 
This paper proposed a new sensor fault detection technique by 

using the ESO. The main advantage of ESO is its ability to 

augment unknown dynamics combined disturbances as an 

extended state, and estimate it in real time by using input-

output data. Unlike many other observer, the ESO does not 

require an accurate mathematical model of the system, 

therefore, its robustness against uncertainty in the plant 

dynamics and external disturbance is inherent in its structure.  

The fuzzy logic with appropriate fuzzy membership functions, 

can be applied to evaluate the residuals. By combining the 

ESO with fuzzy logic, faults could be detected with a good 

isolation performance. 
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