
International Journal of Computer Applications (0975 – 8887)

Volume 88 – No.15, February 2014

33

A Framework of Source Code Comprehension for

Software Maintenance

Hnin Pwint Phyu

University of Computer Studies,
Yangon, Myanmar

Thi Thi Soe Nyunt
University of Computer Studies,

Yangon, Myanmar

ABSTRACT
In maintenance of object-oriented software, one of the most

important concepts is inheritance, which organizes classes

into a hierarchy. The presence of the inheritance increases the

number of potential dependencies within a program.

Moreover, the comprehension of an existing software system

can consume half or more of the maintenance time. The

relationships among packages, classes, access modifiers,

inherited classes and methods can affect on modification of

the software. So, the proposed system uses the concept-based

approach, Formal Concept Analysis (FCA) in order to

comprehend the overall system (software project), and

graphically visualize the modifier-based dependencies in

terms of packages, classes, methods and inheritance

relationship. The proposed system focuses on the problem

how to provide an understanding of the software. Static java

source code is analyzed in this system.

Keywords

Formal Concept Analysis, Software Maintenance, Program

Comprehension

1. INTRODUCTION
In software maintenance, it is difficult to make modifications

without understanding all relevant codes in a system. As a

software maintenance point of view, a key difficulty in the

maintenance and evolution of complex software systems

is to recognize and understand the implicit dependencies

that define contracts that must be respected by changes to

the software. The developers spend considerable time in

reading and comprehending programs in order to implement

changes. The aims of the proposed system are – (i) to save

time and effort for maintenance activities, (ii) to increase the

overall comprehensibility of the system for software

maintenance, (iii) to do reasonable estimates for modification

without doing half the software maintenance effort. There is

no clear means of identifying the required dependencies so

that FCA is proposed to describe the dependencies before

making maintenance by the developers (maintainers). The

various applications of Formal Concept Analysis to software

maintenance vary on their inputs, the concept lattices they

create, and the use to which they put the concept lattices.

2. RELATED WORK
In this section, the related work of each phase of the proposed

framework is presented. The three techniques of static

concept location in terms of their respective strengths and

weaknesses are analyzed in [4]. It discusses detail three

techniques of static techniques- pattern matching, dependency

search and information retrieval. It focuses on if the

techniques for concept location are still needed and whether

Object-Oriented structuring. It illustrates that concept location

is an important programming activity even in OO programs.

Tilley et al. [8] presents a broader overview by describing and

classifying academic papers that report the application of FCA

to software engineering and application languages for the 47

papers in the survey [2, 7]. The use of FCA in the

programming languages: C, C++, COBOL, Fortran, Java,

Modula-2, Smalltalk, and the design or specification

languages: OMT, UML and Z are surveyed. Both procedural

and OO languages are represented. The attribute values record

the size of any reported target application in KLOC (thousand

lines of code).

The Algorithm CMCG [9] finds all lower neighbors of

concept by using the rank of attributes in concept-matrix and

generates corresponding Hasse graph. It is a novel notion is

proposed for building concept lattice according to the

concept-matrix. Then, the algorithm was validated in

theorems and proofs. They implemented algorithm using

machine learning dataset.

Kuznetsov and Ob’’edkov [3] presented several algorithms

that generate the set of all formal concepts and diagram

graphs of concept lattices. Algorithmic complexity of the

algorithms is studied both theoretically (in the worst case) and

experimentally. The main parameters of a context K =(G, M,

I) seem here to be the (relative to|M|) number of objects |G|

and the (relative to |G|) number of attributes, the (relative, i.e.

compared to |G||M|) size of the relation I, average number of

attributes per object intent (resp., average number of objects

per attribute extent) is presented.

3. FORMAL CONCEPT ANALYSIS

TECHNIQUE
Formal Concept Analysis (FCA) provides a formal framework

for identifying groups of elements sharing sets of properties.

FCA is a method of exploratory data analysis that aims at the

extraction of natural clusters from object – attribute data

tables. It forms the clusters of objects having common

attributes. These clusters, called formal concepts, are naturally

interpreted as human-perceived concepts in a traditional sense

and can be partially ordered by a subconcept – superconcept

hierarchy. The hierarchical structure of formal concepts is

called a concept lattice that represents structured information.

FCA is composed of Formal Context, Formal Concept, and

Concept Lattice.

FCA produces two basic outputs from the formal context:

 concept lattice: a hierarchical structure of conceptual

clusters hidden in the data

 attribute implications: dependencies among attributes

A formal context is a triple of sets (G, M, I), where G is called

a set of objects, M is called a set of attributes, and I ⊆ G ×

M.For A ⊆ G and B ⊆ M: A'={m ∈ M | ∀g∈A (gIm)}, B' ={g

∈ G | ∀m∈B (gIm)} [10]. A formal concept of a formal

International Journal of Computer Applications (0975 – 8887)

Volume 88 – No.15, February 2014

34

context (G, M, I) is a pair(A, B), where A ⊆ G, B ⊆ M, A' =

B, and B' = A. The set A is called the extent, and the set B is

called the intent of the concept (A, B). For a context (G, M, I),

a concept X =(A, B)is less general than or equal to a concept

Y =(C, D)(or X ≤ Y)if A ⊆ C or, equivalently, D ⊆ B. For two

concepts X and Y such that X ≤ Y and there is no concept Z

with Z ≠ X, Z ≠ Y, X ≤ Z ≤ Y, the concept X is called a lower

neighbor of Y, and Y is called an upper neighbor of X. This

relationship is denoted by X p Y [3]. The (directed) graph of

this relation is called a diagram graph. A plane embedding of a

diagram graph where a concept has larger vertical coordinate

than that of any of its lower neighbors is called a line (Hasse)

diagram. The covering relations can be drawn where x<y and

there does not exist z such that x<z<y. However, the problem

of drawing line diagrams is not discussed here.

4. THE PROPOSED FRAMEWORK
The framework of the system consists of three phases as

shown in Figure 1. Each phase contains two portions. Three

main phases are Extraction phase, Relation identification

phase, and applying FCA phase. Extraction phase consists of

preprocessing step and extraction using pattern matching

technique. Relation identification phase consists of collecting

each class’s information and identifying binary relation for

constructing formal context. The last phase is applying Formal

Concept Analysis (FCA) in the proposed system. In applying

FCA, the first step is construction formal context according to

the relation of the identification phase. The next step is

computing formal concepts from the formal context. Finally,

the resulting concepts are shown in concept lattice view.

4.1 Source Code Extraction
In extraction phase, the preprocessing part processes

comments removal, split patterns, and split words. The source

code files can be preprocessed using a set of different

techniques including stop word removal, splitting identifiers,

special token elimination and stemming. The information that

the proposed system automatically extracts from software

project is described below.

 names of classes

 modifiers of classes

 names of package

 names of methods

 modifiers of methods

 inheritance relation

This information is extracted using regular expression

(pattern) matching technique. A regular expression is entered

as part of a command and is a pattern made up of symbols,

letters, and numbers that represent an input string for

matching (or sometimes not matching). Matching the string to

the specified pattern is called pattern matching. The proposed

system searches using some of regular expression features

from Table 1 and keywords of the java source code. Then, it

retrieves a list of source code elements (class names, method

(function) names, method modifier names and inheritance

relationship between classes within a software project. The

extracted information is used for identifying binary relation of

formal context. For example, the proposed system extracts the

class names with (^class) pattern.

Fig.1 Proposed System’s Framework

Table 1. Features of Regular Expression

Syntax Meaning Example

^ Pattern to be

matched at the start

of the input

^AB means the input

starts with AB. A pattern

without ‘^’, e.g., AB, can

be matched anywhere in

the input.

| OR relationship A|B denotes A or B.

. A single character

wildcard

0.0 matches 0 0 and 020

? A quantifier

denoting one or less

A? denotes A or an empty

string

* A quantifier

denoting zero or

more

A* means an arbitrary

number of As.

{} Repeat A{100} denotes 100As.

[] A class of characters [lwt] denotes a letter l, w,

or t.

[^] Anything but [^\n] denotes any

character except \n.

International Journal of Computer Applications (0975 – 8887)

Volume 88 – No.15, February 2014

35

4.2 Identification of Binary Relation
Methods are identified depending on access modifiers, levels

of accessibility between packages, and the inheritance

relation. Default, private, public and protected modifiers are

considered to set access levels for dependencies. The

inheritance relation between classes is considered as “has a”

relation by the property of inheritance [5]. The multi level

inheritance is also considered in this system for getting the

original hierarchy between classes. The identification of

binary relation procedure is shown in Figure 2.

Fig.2 Binary Relation Identification Procedure

4.3 Applying FCA
In this phase, the proposed system constructs the formal

context according to the binary relation from the identification

phase. The rows represent class names (objects) and the

columns represent method names (attributes). Table entries

being ×’s and blanks indicate whether a class has or does not

have the corresponding methods. For every input formal

context, the system finds formal concepts common in formal

context. In this case, the formal concept is computed using

proposed Concept_Computing algorithm [6].

From the formal context, the first step of the algorithm finds

independence of object sets (I) as initial concepts. The second

step of the algorithm computes iteratively the next concepts

under each concept of the concepts of the previous step. The

algorithm terminates each concept is not further divided or the

number of object set is equal to one.

The proposed algorithm is similar with the process flow of the

Bordat algorithm [1] except finding cover concepts. The

concepts are computed by object sets union and attribute sets

intersection. The proposed algorithm is considered the cover

concepts (independent) by using subset function for object

sets. So, the worst-case complexity of the proposed algorithm

is O (|G|2|M||L|) according in [3]. The subset function of the

algorithm to find (Independence) cover concepts (see Figure

3) is only presented in this paper.

Fig.3 Independence Procedure

5. SAMPLE CASE STUDY
This case study is presented in Figure 4 and Figure 5 using a

package (control) of Java Human Machine Interface

(JavaHMI) from the site of sourceforge.net. The package

consists of 6 classes (BooleanControlObserver,

ControlObserver,etc) and 46 methods (contains, run, etc). The

context (a), (b) and (c) in Figure 4 are described the formal

context of control package.

(a)

(b)

(c)

Figure.4 Formal Context of Control Package

1. for all bj M do

2. Aj Max (A);

3. end

4. for all Ak M do

5. for (k ≠ j) do

6. if (Ak Aj) then

7. I Aj;

8. go to line 16.

9. else I Aj;

10. M M Aj ;

11. Aj Ak ;

12. go to line 4.

13. end if.

14. end

15. end

16. return I{A}.

International Journal of Computer Applications (0975 – 8887)

Volume 88 – No.15, February 2014

36

Figure.5 Concept Lattice of Control Package from JavaHMI project

Table 2. Information of the Three Projects

Projects Names No of

Files

No of

Packages

No of

Classes

No of

Methods

Lines of

Code

Precision

(Exactness)

Recall

(Complete-

ness)

Prj 1 Micro

simulator

17 1 17 73 2278 1 1

Prj 2 Antlr parser 48 2 36 349 7703 0.90 1

Prj 3 Java HMI

(Human

Machine

Interface)

67 9 58 621 13082 0.96 1

The proposed system extracts the intended information from

the source package by using pattern matching and identifies

the binary relation by proposed identification procedure.

Then, it constructs formal context according to the relation.

The formal concepts are computed by the proposed algorithm

from the formal context. Finally, a hierarchical structure and

dependencies among attributes are presented in concept lattice

view. In the concept lattice, each concept is represented by a

little circle so that its extension (intension) consists of all the

objects (attributes) whose names can be reached by a

descending (ascending) path from that circle. The proposed

system is implemented FCA by using Galicia platform.

6. EXPERIMENTAL DETAILS
The three medium java projects are analyzed and the

experimental results of these are presented in this section. The

detail information of the projects and their precision and recall

result is shown in Table 2.

Fig.7 Correctness and Exactness Percentage of Extraction

International Journal of Computer Applications (0975 – 8887)

Volume 88 – No.15, February 2014

37

The precision (p) represents exactness and recall (r) represents

completeness in extraction. So, the overall extraction is shown

in Figure 7. The largest precision result of extraction is found

in project 1 as it is the simulation system that is composed of

simple and similar structure. The least precision result of

extraction is found in project 2 as it is the parser software that

is composed complex structure. However, the recall result of

extraction is linear in all projects.

7. CONCLUSION
The proposed system reduces maintenance effort by locating

the relevant codes for comprehension of the existing system.

The proposed system using FCA is to help the developers for

doing the maintenance activities easily.

In concept lattice view, the nodes represent classes contained

methods, and the edges can be seen implication of the

methods. Besides, estimation of modification for which class

is closely related with other classes, which methods changes

can affect other parts, which methods should not be changed

and so on can be made by seeing methods implication.

8. REFERENCE
[1] J. Bordat, “Calcul pratique du treillis de Galois d’une

correspondence”, Math. Sci. Hum.,1986, no. 96, pp. 31–

47.

[2] U. Dekel, “Applications of Concept Lattices to Code

Inspection and Review”, 1993.

[3] S. Kuznetsov and S. Ob’’edkov, “Comparing

Performance of Algorithms for Generating Concept

Lattices”, ICCS’01 Int’l. Workshop on Concept

Lattices−based KDD, 2001.

[4] A. Marcus, V. Rajlich, J. Buchta, M. Petrenko, and A.

Sergeyev, “Static Techniques for Concept Location in

Object-Oriented Code”, 2005.

[5] D.C.C.POO, National University of Singapore, Chee

Seong Tan, “Learn To Program Java”, Second Edition,

2005.

[6] H.P.Phyu, T.T.S.Nyunt “Concept-based Source Code

Analysis for Software Maintenance”, in Proceedings of

the 11th International Conference on Computer

Applications (iCCA, 2013), Yangon, Myanmar, February

2013, pp. 339-343.

[7] G. Snelting, F. Tip, “Reengineering Class Hierarchies

Using Concept Analysis”, ACM, 1998.

[8] T.Tilley, R. Cole, P. Becker, “A Survey of Formal

Concept Analysis Support for Software Engineering

Activities”, 2005.

[9] S. Wang, Z. Chen, D. Wang, “An Algorithm based on

Concept-Matrix for Building Concept Lattice with

Hasse”, IEEE , 2007.

[10] R. Wille, “Formal Concept Analysis as Mathematical

Theory of Concepts and Concept Hierarchies”, Springer-

Verlag Berlin Heidelberg, pp. 1– 33, 2005.

IJCATM : www.ijcaonline.org

