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ABSTRACT 

Cloud Computing has attracted a lot of attention in both 

academia and industry lately. With its focus on scaling, 

collaboration, agility, availability and cost reduction, cloud 

computing offers a compelling alternative to in-house IT 

solutions. However, by “outsourcing” the computing 

infrastructure, it introduces a number of security issues. 

Specifically, since cloud computing is a shared computing 

platform, it needs to provide strong mechanisms for 

authenticating it’s users and ensuring that no confidential 

information stored on the cloud is compromised. This paper 

addresses a number of vulnerabilities in existing 

authentication mechanisms and proposes enhancements to 

mitigate these vulnerabilities. In addition, the paper studies 

how these enhancements affect performance. The results show 

that the existing vulnerabilities can be overcome by the 

proposed mechanisms. However, this results, in the worst 

case, in a six-fold increase in execution time. This can be 

considered relatively small when security is prime important.  
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1. INTRODUCTION 
Cloud computing is an evolution of traditional computing 

resources into shared utility-like services. Instead of each 

organization or business building its own in-house computing 

infrastructure, cloud computing allows a third party to provide 

this infrastructure and to rent out its services on an on-demand 

basis. This provides a number of important benefits, among 

which are increased scalability, availability, agility, 

collaboration, and cost reduction.  

Thus, cloud computing can be considered a new computing 

model where resources are provided as a service over the 

Internet or any other networking infrastructure. A cloud user 

is offered a variety of services on the cloud, including 

operating an entire operating system, storing data and using 

applications that are hosted off-site. It is based on utility 

pricing. This means that the users can get resources simply by 

paying a monthly fee, or pay per using these resources, like 

you do with utility bills (e.g. renting an apartment for a 

monthly payment). 

Cloud computing can deliver a vast array of its capabilities in 

real time using many different types of resources such as 

hardware, software, and virtual storage, once one logs onto a 

cloud [1]. In general, it describes a new delivery model of 

services based on the Internet. It uses virtualized computers 

that are dynamically provisioned and is presented as a service 

over the Internet. This is based upon SLA “Service Level 

Agreements” established between users and service providers 

through negotiations [2]. 

Currently, the three types of cloud computing offered are 

public, private and hybrid clouds. As their names imply, a 

public cloud is hosted by a third party, a private cloud is 

hosted by the entity that needs cloud services, and a hybrid is 

a combination of both.  

Three primary models of cloud computing services have 

emerged, namely SaaS “Software as a Service”, PaaS 

“Platform as a Service”, and IaaS “Infrastructure as a 

Service”. SaaS is the model in which an application is hosted 

as a service by customers who access it via the Internet [3]. 

PaaS is a model in which a platform, an OS and supporting 

APIs and software development environment, are provided 

[4]. IaaS is a model in which only the underlying 

infrastructure, networking and processing nodes, are provided. 

Everything else is up to the customer [5]. 

Cloud computing environment consists of two main entities: 

the users and the CSP “Cloud Service Provider”. Both need to 

establish a secure channel for either storing or retrieving data. 

While information is being transmitted, a secure channel 

protects data from malicious activities by an adversary trying 

to impersonate either the CSP or the user.  

Several papers such as [6, 7, 8 and 9] focus on information 

and resources protection from unauthorized users. It is of vital 

importance that a secure channel be established between the 

end user and the CSP to maintain trust and confidentiality.  

The objective is to design a secure authenticated 

communication channel between the user and the CSP. In 

order to feel safe and enjoy the usefulness and preference of 

cloud computing over many types of networks like wired and 

wireless, information should be secured taking into 

consideration CIA “Confidentiality, Integrity and 

Availability” [10, 11 and 12]. 

2. EXISTING AUTHENTICATION 

METHODS AND THEIR LIMITATIONS 
Cloud sessions must be secured. Businesses hesitate to join 

the cloud because they are not sure that it is 100% secured 

from any malicious activities. Cloud sessions can be secured 

via encryption and authentication, though authentication is 

another issue, with many options available. Many 

authentication schemes have been introduced to deal with 

secret data over insecure networks, remote login systems and 

computer networks, all of which are found within cloud 

computing systems. In this section, there is the result of our 

survey through a group of the current available authentication 

schemes. 

Most of the existing methods are vulnerable to many attacks, 

which cause insecurity to users who use systems dealing with 

these schemes. Choosing the proper authentication method 

depends mainly on the type of the entities being authenticated 
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whether public, private or hybrid and the degree of trust that 

the entities have. 

1.1. Design Methodology: 
Strong authentication guarantees the secrecy without 

revealing it and is indispensable when two entities 

communicate in untrustworthy environment like that of the 

cloud computing system [12]. Now, a group of scenarios and 

their limitations will be discussed. 

1.2. Notation: 
The following notations have been used in the coming figures: 

U:   Refers to user. 

C:   Refers to cloud service provider. 

+:   For public key. 

-:   For private key. 

Ku+:   Information and data owner’s public key. 

Ku-:   Information and data owner’s private key. 

Kc+:   CSP’S public key 

Kc-:  CSP’S private key 

⊕:  Bit-wise XOR. 

SKu,c:   Secret key shared by user and CSP. 

[U,C]:   User’s identity and CSP’S identity. 

KDC:   “Key Distribution Centre”. 

Token:  A pair of username, password and session 

key. 

KU,KDC: Secret key between user and KDC. 

KC,KDC: Secret key between CSP and KDC. 

R:   Challenge (Random number). 

Shuffler[X,Y]: Shuffling that takes place between X and 

Y bits. 

[X]HMAC: X is hashed by HMAC “Hash-based 

Message Authentication Code” algorithm. 

1.3. Scenarios: 

 

Fig 1: User and CSP use challenge – response 

authentication. 

Ru and Rc are random numbers chosen by user and CSP 

respectively as a challenge. In the second step, Ru is 

encrypted by Ku,c (shared secret key between user and CSP) 

and is called response to the challenge Ru. The previous 

process is repeated but in reverse by the cloud provider to 

perform mutual authentication. If the last step is successful, 

then user and CSP are authenticated. 

If the remainder of the conversation is not encrypted, an 

adversary can act as user after authentication is over, by using 

user’s address. Clocks of user and CSP need to be 

synchronized. An advantage is that CSP doesn’t need to 

maintain R. Shared secret mechanisms have one problem 

which is vulnerability if CSP’s data base can be read. In PKC 

“Public Key Cryptography” mechanism, encryption takes 

place using public key, and decryption using private key. 

Therefore, no shared secret key is necessary. 

 

Fig 2: User is authenticated by CSP based on encryption 

or hash. 

The above mechanism token is encrypted using CSP’s public 

key and is sent to CSP. CSP decrypts the previous message by 

using its Kc-, and sends a challenge to user to be sure whether 

he/she is the real one or not. User sends back the challenge 

with SKu,c in a function form F (SKu,c, R), where R is 

encrypted or hashed by SKu,c. However, this above scenario 

has some limitations: 

 Here authentication is not mutual; the user doesn’t 

authenticate the CSP. Through address spoofing an 

adversary can try to convince the user that the 

adversary’s address is the CSP’s address. The adversary 

can send any old challenges and ignore user’s response. 

 If the remainder of the conversation is not under 

cryptographic protection, an adversary can hijack the 

channel. 

 An attacker can mount off-line password guessing 

attack, if SKu,c is generated from password, and both R 

and F(SKu,c,R) are known. 

 

Fig 3: CSP authenticates user based on one-way PKC (a). 

For the above scenario, user sends his/her information 

(Token) encrypted by CSP’s public key (where Kc+ is known 

to user). CSP decrypts the previous step by its Kc-  and sends a 

challenge R to user. User signs R using user’s private key and 

sends it to CSP. Using the user’s public key Ku+, CSP 

decrypts the signed challenge and compares it with the one 

held in the CSP. 

Thereby, the CSP authenticates the user. In the above 

scenario, it is called one-way public key. There is a problem: 

an attacker can trick a user into signing something (forging), 
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act as CSP, wait for user to send a login request, and send a 

certain quantity as the challenge R. User will sign it using 

his/her private key, thinking it is R ! 

In the following scenario, in order to know what was sent 

earlier in an encrypted message by someone to a user, act as 

CSP, wait for user to send login request, and have the user 

decrypt the encrypted message for you. Same as the previous 

scenario, user can send encrypted token with CSP’s public 

key. CSP decrypts it by CSP’s private key. Here the 

negotiation is reversed: CSP signs a challenge with user’s 

public key and sends it to user. User decrypts the previous 

step by his/her private key and retrieves the challenge in order 

to send it back to CSP. Now, CSP authenticates user. 

 

Fig 4: Mutual authentication between CSP and user based 

on shared secret key. 

The above scenario is initialized by public key cryptography 

and the rest of it is achieved by shared secret key. User sends 

his/her credentials to CSP encrypted by CSP’s public key 

followed by challenge R2. CSP sends challenge R1 appended 

to the function containing the challenge R2 using shared secret 

key.  

User decrypts and verifies challenge R2 to authenticate CSP 

and sends function F (SKu,c , R1) containing challenge R1. 

CSP decrypts it and verifies R1.  Now both user and CSP 

authenticate each other. This above scenario has a security 

pitfall known as reflection attack. 

Reflection attack is a way of attacking a challenge-response 

mutual authentication mechanism through which an adversary 

tries to impersonate user to CSP and makes the CSP think that 

it is communicating with the user. 

 

Fig 5: Reflection attack on mutual authentication. 

In step 1 “First session or channel”: an adversary sends user’s 

identity along with R2 to CSP. CSP sends back encrypted R2 

and R1 as a challenge. The attacker needs to encrypt R1 and 

send it back to CSP, but he/she cannot! Adversary cannot 

continue any more as he/she does not have a shared secret 

key. Adversary sets up a new session. 

In step 2 “second session”, the attacker does the same as the 

first step with R1 instead R2. The CSP encrypts R1 and sends it 

with another challenge R3 back to the attacker. At this point, 

the adversary gets the encrypted R1, abandons the second 

session and resumes the first session, and then it resends the 

encrypted R1 which was originally received from in the 

second session.  

In order to solve the previous problem, there should be 

different keys and challenges, two shared keys: for example 

SKu,c and SKc,u. Therefore, CSP cannot encrypt using user’s 

key now. The challenges sent by user and CSP to each other 

should be different. Another solution is to use different time 

stamps, different keys and add identity names before 

encryption. 

 
Fig 6: Optimized mutual authentication based on PKC 

In Fig. 6, user sends his/her credentials encrypted by Kc+ 

followed by a random number R2 chosen by user as a 

challenge which is also encrypted by Kc+. CSP receives the 

encrypted message from user and starts to decrypt it using Kc- 

and retrieves R2. CSP sends R2 back followed by encrypted 

random number R1 using Ku+. User receives this message and 

verifies R2 so as to authenticate CSP. User starts to decrypt 

the encrypted part using Ku- to get R1 and forwards it back to 

CSP. CSP receives it and authenticates user. 

PKC has some limitations: neither user nor user’s workstation 

are going to remember the CSP’s public keys stored 

respectively. This problem can be solved by making a trusted 

entity to handle all users’ domain and that works also for the 

CSP. Another form of mutual authentication using PKC is as 

follows: 

 

Fig 7: Improved mutual authentication between user and 

CSP based on PKC and session key 

To achieve the above mechanism, user sends his/her 

credentials followed by Ru random number as a challenge, all 

encrypted by Kc+. CSP decrypts the previous message by Kc- 

and sends Ru, Rc and session key Ku,c, all encrypted by Ku+ . 

(Where Ru is a challenge chosen by user and Rc is chosen by 

CSP, both Ru and Rc should be different from each other). 

User will decrypt E (Ru , Rc , Ku,c) Ku+ by user’s Ku- and 

return the response of the CSP’s challenge Rc to the CSP 

encrypted by Ku,c session key. 
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The problem faced when dealing with Cloud Computing 

Environment is not only the huge number of keys but also the 

distribution of keys. If a user wants to communicate with a 

hundred people, how can he/she manage or exchange a 

hundred keys with them? Using the web is definitely not a 

secure way of dealing with a huge number of secret keys 

without hassle.  

A centralized approach by means of a Key Distributed Centre, 

manages n keys instead of n (n-1) / 2, which is clearly an 

improvement over the situation handled without any entity 

like KDC. [11] KDC will act as a trusted third party. Each 

user will establish a shared secret key with it. 

Fig 8: KDC idea 

In Fig. 8, user sends his/her identity and CSP’s identity to 

KDC. KDC sends to both user and CSP session key KU,C 

encrypted by KU,KDC respectively. There is a problem when 

user instantly sends a message after getting KU,C to the CSP 

before the CSP gets session key from KDC. This problem can 

be solved if the KDC just passes E(KU,C) KC,KDC back to the 

user. This message E(KU,C) KC,KDC is called “ticket”. That will 

help users to access CSP. User will send this ticket to the CSP 

while communicating as shown in the next scenario K. 

 

Fig 9: KDC using ticket 

3. PROPOSED MECHANISM 

“MCSAuth” 
Cloud computing is a SSO “Single Sign On” system for cloud 

users. Only registered users who have valid tickets are 

accepted by cloud systems. 

An authentication mechanism was proposed in [9] for cloud 

computing to avoid any misuse of cloud systems. This 

mechanism is said to be an improvement over SSL “Secure 

Socket Layer”, as SSL has some fallbacks like session 

hijacking and Man-in-the-Middle. 

For SSL, an adversary will only need to have a symmetric 

key, so he/she can cause replay attacks whereas in the 

mechanism proposed for cloud systems in [9], an adversary 

will need to have a ticket and a session key. This can be done 

exceeding and surpassing the protection supplied by 

cryptographic algorithms. 

The mechanism cited in [9] is more secure than the previous 

scenarios. In the next section, the mechanism in [9], together 

with its pitfalls, will be discussed in detail. Next figure shows 

the mechanism cited in [9] and the negotiations that go on 

between the nodes. There are four nodes: cloud users, AS 

“Authentication Server/Service”, TGS “Ticket Granting 

Server/Service” and CSP respectively. This system is based 

on KDC with MA “Mediated Authentication”. The 

mechanism cited in [9] can be named as “modified Kerberos”. 

AS accepts login request from cloud users. It is responsible 

for authentication between servers and cloud users by 

providing a key that can be used for securing communication 

channels. TGS is responsible for setting up secure channels by 

providing tickets which are used to convince service providers 

that the user is the one who claims to be. In the beginning, a 

user types his/her user’s ID at a workstation. Then it is sent to 

AS which will go through a group of steps. 

 
Fig 10: Modified Kerberos proposed in [9] 

A shared secret key (Key u,TGS) is used for confidentiality of 

message and discarded when the communication channel is no 

longer used. A ticket ( E( UID, Key u,TGS) Key AS,TGS) is 

formed by TGS which represents ticket 1 and is forwarded to 

the user.AS encrypts ticket 1 appended by Key u,TGS by using 

the shared secret key between AS and cloud user Key u,AS to 

form (E(Key u,TGS , Ticket 1) Key u,AS). 

By receiving the encrypted message from AS, user is asked to 

provide a password. Entering the right password will help in 

generating Key u,AS. The workstation now can decrypt the 

received message from AS and distinguish Key u,TGS. Now, 

the user’s workstation has two shared keys: Key u,TGS and Key 

u,AS. Phase 1 of authentication is finished: user is now 

connected by the workstation that he/she is currently using. 

Ticket 1 is stored temporarily at the workstation; it proves that 

the users are genuine. User will send a request to TGS in 

order to set up a secure communication channel with CSP. 
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The request helps to prove that the cloud user is genuine; it 

will contain ticket 1 and cloud ID. To avoid replay attacks by 

an adversary, a timestamp is added to the request. The time 

stamp is verified by TGS. Then it forms and sends ticket 2 ( 

E(UID, Key u,C) Key C,TGS) to CSP. Ticket 2 informs CSP about 

forthcoming communication from user. TGS sends ticket 2 to 

cloud user who forwards it back with the encrypted time 

stamp to CSP. 

CSP checks time stamps and ticket 2 which are forwarded by 

cloud user. After successful verification, CSP authenticates 

itself to user by responding with (E(t+1) Key u,C) to prove that 

the responder is CSP. 

3.1.Vulnerabilities in the above mechanism  
New attacks have emerged making the mechanism cited in [9] 

vulnerable. It is considered a malleable encryption system and 

part of it is subjected to unauthenticated encryption. The 

mechanism in [9] is subjected to an encryption oracle attack, 

MIC “Message Integrity Check” bits attack, and PO “Padding 

Oracle” attacks. It was proven in [2] that the following pitfalls 

affect the mechanism severely and open a chance for an 

adversary to attack easily.  

3.2.MCSAuth “Multiple Crypto Shuffler 

Authentication” Mechanism 
Solution must be found to counter the problems that were 

mentioned in the modified Kerberos mechanism. The goal is 

to enhance the overall security of the cloud not to counter the 

main vulnerabilities only. The more complex the mechanism 

becomes, the smaller the odds that an adversary can break or 

tamper it. MCSAuth design will be explained in the following 

section. A new node will be added called shuffler node. It 

sends information only to authorized and authenticated cloud 

workstations and AS/TGS nodes. Shuffler node is responsible 

for the transmission of shuffling tables and certain codes. It 

informs the other nodes how to reveal the shuffled message. 

Shuffler node will be connected to AS/TGS, cloud user’s 

workstation and cloud systems. 

Every user in a registered cloud will have three identifiers that 

act together as his/her credentials to help him/her log to the 

cloud system. The three elements are, User Identity, 

Password, and Registration codes given only to registered 

cloud users by cloud systems. 

MCSAuth Mechanism passes through four steps at each node 

during negotiation, based on E-M then E-S “Encode and 

MAC "Message Authentication Code" then Encrypt and 

Shuffle”. 

3.2.1. Encoding data: It is done in this way: Data is given 

a form: a confounder is added at the beginning before data 

and then a random padding is appended at its end. A 

confounder is one block of random bytes. It is like a challenge 

between nodes during negotiation to authenticate each other. 

Destination doesn’t know what random challenge to expect. It 

prevents cut-and-paste attacks, chosen plaintext attacks and 

using ciphertext as oracle since an adversary has no 

knowledge of the value of challenge. 

Random padding is done so as to disguise the size of the 

encoded data by adding a random value of random bytes as 

padding, and to indicate the value of the random bytes added 

by the last byte in padded input block. Random padding 

avoids oracle padding. 

3.2.2.  MAC: It is a piece of information added to the 

encoded data in the end and this is used to authenticate the 

encoded data. In MCSAuth, HMAC-SHA-1 is used for 

integrity checking, that can’t be forged by encryption oracle. 

An adversary can’t construct a valid ciphertext since he/she 

doesn’t know the signature key K that is used for HMAC-

SHA-1.  

3.2.3.  MCS “Multiple Crypto Systems”: To provide 

confidentiality, a hybrid encryption scheme for the encoded 

data is used. MCS scheme uses four Encryption/Decryption 

algorithms RC4, DES “Data Encryption Standard”, IDEA 

“International Data Encryption Algorithm” and AES 

“Advanced Encryption Standard”. All the gathered data about 

encryption algorithms are taken from [13, 14, 15, 16, 17, 18, 

and 19].  

A hidden code during negotiation between nodes in MCSAuth 

mechanism will benefit in using only one of four 

encryption/decryption algorithms called CS “Crypto Slot”. CS 

is 8-bit long. It uses 256 slots. Four algorithms are inserted in 

CS code in a random way where 2-bit codes discriminate 

between each algorithm and the other of the four algorithms 

instead of their name. The key K is used exclusively for both 

encryption/decryption algorithms and HMAC-SHA-1. 

3.2.4.  Shuffling Effect: To provide more complexity to 

the mechanism, diffusion takes place between the HMAC bits 

and the encrypted plaintext in a random way. The interspace 

between bits is controlled by the shuffling table. Shuffler node 

generates the shuffling tables randomly, a thing which causes 

much more confusion to any attacker.  

HMAC bits are being scrambled with ciphertext bits to avoid 

MIC static replacement attack. An attacker will not be able to 

find either HMAC or ciphertext bits. Only authorized cloud 

users and cloud system nodes will be able to de-shuffle the 

diffused message back to its original form and detach the 

encrypted plaintext from the HMAC bits. Each shuffling row 

has random values generated from a random value generator. 

SC “Shuffler Code” is a code added to the header. It is 4-bit 

long to select between 16 rows found in the shuffling table 

each with length N. The shuffling row is used in both 

shuffling and de-shuffling the HMAC bits inside the 

encrypted messages and back to their original place. 

Figures 11 and 12 show the negotiation mechanism for any 

cloud user using SSO. Servers empower cloud user 

authentication to AS/TGS and Shuffler node. Requests are 

accepted from a registered user having a valid user ID, 

registration code, password and a valid ticket.  

Shuffler node and AS/TGS are designated for handling a login 

request from a cloud user. A cloud user is authenticated and 

provided with a key that can be used to set up a secure 

channel with servers. Tickets, provided by TGS, are used to 

convince servers that the cloud user is the one who really 

he/she claims to be. Here, login is a process like typing a user 

ID and registration code at a workstation node that is found 

anywhere. Then user’s ID and registration code are sent to 

AS/TGS and Shuffler node. Note that all the messages 

between nodes are encrypted during the transmission.  

 

 

 

 

 

http://en.wikipedia.org/wiki/International_Data_Encryption_Algorithm
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Fig 11: MCSAuth mechanism phase 1. 

3.2.5. Encryption/Decryption stages: 

3.2.5.1. Stage one (Default Stage): AES is the 

beginning stage. It is used at the beginning of negotiation as 

default which is found in phase 1. 

3.2.5.2. Stage two (Middle Stage): RC4 with CTR 

“Counter”-mode is used in table transmission between 

shuffler node and the other nodes which are found in phase 

1and 2. 

3.2.5.3. Stage Three (Hybrid Stage): It is the hybrid 

stage where encryption schemes hop randomly between RC4, 

IDEA, 3-DES and AES through the negotiation between 

nodes which is found in phase 2. 

TGS generates ticket1 and transmits it to Shuffler node 

supported with keyed hash function HMAC-SHA-1. If the 

user logs with both valid user ID and registration code at the 

same time, TGS will transmit to the user the same ticket1 that 

was transmitted to shuffler node. This registration code is 

used to generate the shared secret key Keyu,TGS by taking a 

character string code and applying cryptographic hash MD5 

and then taking 128-bit string values which will be the shared 

secret key Keyu,TGS. 

After user decrypts the received message, he/she will be 

having ticket1, Keyu,S, and C1 (Confounder1). Confounders are 

used as a type of challenge between nodes. Note that almost 

all negotiated messages are checked by comparing the 

received hashed function with the generated one to ensure 

integrity. User transmits the received ticket1 and sends it with 

Cloud ID, token and C1 encrypted by Key u,S towards 

shuffler node.  

Shuffler node decrypts, checks integrity and compares the 

received ticket1 and confounder1 from user holding the old 

one which was received by TGS for that user. With all the 

previous checking passed, shuffler node generates a unique 

random table for that user and sends the table encrypted to 

user. 

This table is used only for that user. So as to continue the 

rest of negotiation, this table must be found at the other 

nodes. Shuffler node sends the same table encrypted to 

AS/TGS and CSP for such user. Cloud user, AS/TGS and 

CSP decrypts the encrypted table by their shared secret keys 

Key u,S, Key S,AS/TGS, and Key S,C respectively. Now all the 

nodes have the same table for such user. 

The hybrid stage also called phase 2, as shown in next 

figure, starts when the negotiations between nodes are 

encrypted randomly based on MCS code which was hidden 

and transmitted to all nodes through the shuffled tables.  

TGS sends ticket 2 to AS. AS, in return, sends a shuffled 

message holding ticket2 encrypted with the keyed hash 

function. AS prompts a password which will help in 

generating Key u,AS , same as before like with registration 

code and Key u,TGS. 

This password is used to generate the shared secret key 

Keyu,AS by applying it to  MD5 and then taking 128-bit 

string values which will be the shared secret key, Keyu,AS. 

User rearranges, decrypts message and checks its integrity. 

He/she now holds ticket2. User sends ticket2 back with 

Cloud ID and encrypted C2 hashed then shuffled to TGS 

requesting the cloud service. 

 Fig 12: MCSAuth mechanism phase 2. 
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TGS rearranges, decrypts message and checks hashing. It 

compares ticket2 received from user and the one held by it. If 

all passes, it transmits a request to CSP for that user holding 

ticket3, Key u,C and C3 to user.  

User and CSP rearrange, decrypt received messages and 

check their integrity. User sends ticket3 and C3 to CSP 

encrypted by Key u,C , CSP decrypts the message sent by user 

and compares C3 and ticket3 with the other received by TGS. 

If CSP comparing passes, it will open a secure communication 

channel with that user. 

4. DISCUSSION AND RESULTS 
Next section discusses MCSAuth test results which will be 

presented and discussed in detail compared with the previous 

proposed mechanism.  

4.1.Testing and Results 

The following is an explanation of experiments that were 

applied on MCSAuth and the previous proposed mechanism. 

The experiments were performed using a computer 

simulation; the simulation package that was used is Matlab 

simulink. In this section, we will report the security 

parameters results. First, we discuss some theoretical 

properties of the proposed mechanism, after which we discuss 

the actual experiments conducted. 

4.1.1. Injected message attack result: An adversary 

will have no chance to attack, if the shuffling table is still not 

compromised. Assuming the shuffling had been 

compromised, an attacker doesn’t know which one of 

encryption algorithms is being used, so MCSAuth mechanism 

is considered not vulnerable to injected message attack. 

4.1.2. MIC vulnerability parameter result: The 

proposed mechanism uses HMAC-SHA-1 keyed hash 

function in addition to that; the hashed bits are defused inside 

the encrypted plaintext. Assuming that the shuffling had been 

compromised, the adversary will not know the key used for 

hashing. If the shuffling table is still not compromised, an 

attacker should try to overcome the shuffling effect by going 

through all feasible shuffling values that are equal to a 

factorial of N-bit length.  

4.1.3. Brute force attack result: The value of brute 

force permutation concerning the proposed mechanism is 

equal to {(2RC4 Key + 2IDEA Key + 2DES Key + 2AES Key)}*(factorial 

(N))} for every single message transmitted between the nodes. 

While for the other mechanisms presented in this paper has a 

key permutation field equal to 2128. 

So, it is obvious that, compared with the time consuming 

brute force, the proposed mechanism MCSAuth is at least four 

multiplied by factorial N times longer than the other 

mechanisms. The enormous time consuming brute force 

attack for MCSAuth is due to the four encryption algorithms 

being used combined with the diffusion effect caused by 

shuffling the HMAC bits with the encrypted plaintext and this 

adds factorial N trials for each key. 

4.1.4. Unauthenticated encryption results: Certain 

messages transmitted between nodes in MCSAuth mechanism 

contain confounders which work as challenges between 

nodes.  

The idea of using confounders is to provide mutual 

authentication between nodes during negotiations through the 

encoded data prior to encryption to avoid man-in-the-middle 

attack and an unauthenticated encryption attack. In addition 

to, AS/TGS, Shuffler and cloud service nodes have the 

authority to ban any compromised nodes. 

4.1.5. Encryption Oracle result: The proposed 

mechanism is no longer malleable due to the use of diffusion 

effect. Assuming that an attacker has compromised the 

shuffling table, if he/she tries to use chosen-plaintext attack, it 

can be easily recognized through the change of HMAC bits. 

4.1.6. Oracle padding result: Two solutions are made 

in the proposed mechanism to avoid such attacks. First 

solution is by using random padding. The second one is by 

using hybrid encryption schemes and shuffling effect which 

are going to be an obstacle for an adversary. 

4.1.7. Maintainability parameter test result: It is the 

ability of the mechanism to be capable of surviving after its 

encryption algorithm has been compromised and broken 

mathematically but still renders security. The proposed 

mechanism uses four hybrid encryption schemes and hops 

randomly between them. These are considered more 

maintainable than the other traditional mechanisms introduced 

in this paper. These use only one discrete encryption scheme. 

Assuming that the shuffling effect has been compromised and 

one of the four encryption schemes was broken 

mathematically, MCSAuth will still maintain its security. 

4.2.Mechanism Metrics 

The most measurable and encountered metrics of a 

mechanism are speed, memory, message overhead and 

bottleneck of the mechanism. 

4.2.1. Speed: The computing time of the previous 

algorithm and MSCAuth are measured. Table 1, shows the 

results of the measured execution time for the previous 

mechanism and MCSAuth. For the previous mechanism, the 

execution time was measured using different encryption 

schemes like AES, DES, IDEA and RC4. The next table is a 

normalized table by the average output of AES used on the 

previous mechanism compared with the other encryption 

schemes and with the new proposed MCSAuth mechanism. 

The error margin was also calculated to represent the 

confidence interval; specifically the 95% confidence interval 

was calculated. 

Mechanism cited in [9] for cloud system was implemented 

with different encryption schemes: RC4, IDEA, DES and 

AES. RC4 is the fastest one compared with other schemes. 

However, it has several weaknesses in the keys that it uses. 

IDEA is second best in speed after RC4. It is good but 

patented. DES is faster than AES, and is considered second 

best choice, but weaker than AES. AES is the best choice for 

securing a mechanism. It is strong but complex and takes long 

in execution compared to RC4, IDEA and DES. 

Table 1, Normalized table for performance level 

comparing between modified Kerberos mechanism for 

cloud system and MCSAuth (using n= 45 and confidence 

level = 95%). 

 

PPrreevviioouuss   

pprrooppoosseedd  pprroottooccooll   

 

NNeeww  PPrrooppoosseedd  

PPrroottooccooll 

 
RRCC44 IIDDEEAA DDEESS AAEESS MMCCSS 

AAvveerraaggee   0.0123  0.0643  0.2569  1  6.1558  

EErrrroorr  MMaarrggiinn   0.0020  0.0034  0.0042  0.0045  0.0402  
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LLoowweerr  BBoouunndd   0.0103  0.0608  0.2526  0.9954  6.1156  

UUppppeerr  BBoouunndd   0.0143  0.0678  0.2611  1.0045  6.1961  

 

Fig 13:  Performance level 

Compared with different 

encryption schemes (RC4, 

IDEA, DES, and AES) 

implemented on the modified 

Kerberos mechanism. 

 

 

Fig 14:  Performance 

level Compared to 

modified Kerberos 

mechanism using  AES 

and the new proposed 

MCSAuth mechanism. 

For MCSAuth, execution time took approximately six times 

that of AES used with the previous mechanism as shown in 

previous Fig. 14.  The cause of this huge increase is due to 

more negotiation presented in MCSAuth and due to the use of 

three parameters: multiple crypto systems, shuffling tables 

and keyed hash function.  

4.2.2. Memory Analysis: Table 2 is a comparison 

presented between the memory of the previous authentication 

mechanism found at each node and the new proposed 

mechanism MCSAuth. 

The additional memory requirements of MCSAuth are due to 

the extra space for holding shuffling tables, the addition of 

more tickets, more shared secret keys between nodes 

presented, and user’s token parameter. Table 2, the memory 

analysis comparison is made for only a single cloud user and a 

single cloud service provider, the same pattern is expected to 

hold as the system scales up. 

4.2.3. Message overhead of a mechanism: In this 

experiment, we measured the message overhead of the 

previous mechanism and MSCAuth.  

Tables 3 and 4, show the number of messages transmitted and 

received for each node in the previous mechanism and 

MCSAuth mechanism. Besides, the total length of messages 

transmitted and received in bit length is added. As we can 

observe, the new proposed authentication mechanism 

MCSAuth has a large number of messages plus their length 

increased dramatically compared to the previous mechanism, 

because several issues were added: First, we added a new 

node called shuffler node which caused more negotiations. 

Second, we used shuffling tables. Third, more tickets are 

used. Fourth, more shared secret keys are presented, and last 

the use of keyed hashing function HMAC-SHA-1 is applied. 

All the issues that were added to MCSAuth give more security 

strength. 

Table 2, Memory analysis is compared between modified 

Kerberos and MCSAuth mechanism. 

 Modified 

Kerberos 

 MCSAuth 

Cloud User  168 bytes  Cloud User  7968 bytes  

AS/TGS  192 bytes  AS/TGS  8016 bytes  

 Shuffler node  7808 bytes  

Cloud Service  96 bytes  Cloud Service  7824 bytes  

 

Table 3, Message overhead for modified Kerberos 

 Modified Kerberos 

Messages 

transmitted 
bits Messages 

transmitted 

bits 

Cloud user 3 960 3 1024 

AS/TGS 3 1280 3 576 

Cloud service 1 128 2 768 

Total 7 2377 7 2368 

 

Table 4, Message overhead for MCSAuth. 

 MCSAuth 

Messages 

transmitted 
bits Messages 

transmitted 

bits 

Cloud 

User 

4 2246 5 64006 

AS/TGS 7 3785 3 62531 

Shuffler 

Node 

3 185216 4 1728 

Cloud 

Service 

1 128 3 63110 

Total 15 191375 15 191375 

 

4.2.4. Bottleneck of the mechanism: In this 

experiment, we attempted to identify the performance 

bottleneck of the mechanism. The purpose of this experiment 

is to identify an aspect of the algorithm that can be subjected 

to further optimization in order to improve performance. Next 

Table 5, Fig. 15 and Fig. 16 show the comparison of time 

taken during execution for each node between the previous 

mechanism and MCSAuth mechanism. 

We can see that processing time for cloud user in MCSAuth 

mechanism increased dramatically. The main cause of this 

increase is mainly keyed hashing function HMAC-SHA-1 that 

is used for integrity check during negotiation between nodes. 

The previous test and simulated results proved that MCSAuth 

was able to counter most of the previously mentioned 

vulnerabilities. 
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Table 5, Comparing the execution time at each node for 

each mechanism. 

Nodes RC4 IDEA 3-DES AES Nodes MCS

Auth. 

Cloud 

User 

0.0588 0.2589 1.0295 4.9282 Cloud 

User 

25.752 

AS/ 

TGS 

0.1322 0.5245 1.5576 6.2061 AS/ 

TGS 

29.584 

CSP 0.0267 0.1931 0.849 3.0995 Shuffler 

Node 

20.261 

     CSP 12.256 

5. CONCLUSION  
This thesis introduces and discusses a new authentication 

mechanism for cloud computing. Our design focuses on 

blocking any malicious attacks. This mechanism has, so far, 

proved to be effective against almost all security attacks.  

MCSAuth was introduced in an effort to counter most of the 

known vulnerabilities that were found in a previously 

proposed mechanism. For the sake of clarity, a comparison is 

presented below between MCSAuth and the previously 

proposed mechanism. From table 6, MCSAuth has proved to 

be more resilient to attacks than the previously proposed 

mechanism. Yet it has some disadvantages that were evident 

after testing, and they are:  

 MCSAuth needs a new node called shuffler node with 

powerful processing capabilities. 

 Nowadays, there are many encryption schemes that can 

replace one or two of the chosen schemes to provide 

better results. 

 All nodes especially AS/TGS and Shuffler nodes must 

have a considerable memory size, to be able to store a 

copy of tickets, shared keys, and shuffling tables. 

 Time taken by MCSAuth to open a secure 

communication channel is long compared with the other 

mechanism. The cause of this problem is the use of 

HMAC-SHA-1 during negotiations between nodes.  

  

 

  
Fig 15:  Bottleneck is compared with different encryption 

schemes used on the previous mechanism. 

 

Fig 16:  Bottleneck for MCSAuth 

Table 6, Comparison between the previously proposed 

mechanism and MCSAuth. 

Points Modified 

Kerberos 

MCSAuth 

Time attack for 

a single packet 

using brute 

force 

Let all 

encryption 

schemes use 

same key size 

called K. 

Let the brute 

force 

permutation of 

the previous 

proposed 

mechanism be 

called P =2K 

Permutation 

Let the brute force 

permutation of 

MCSAuth be called 

F = {(2K + 2K + 2K 

+ 2K)}*(factorial 

(N)) = 

(2K)*(4)*(factorial 

(N)) = 4* factorial 

(N) of P. 

MIC Problem Not introduced 

as there is no 

MIC used. 

Doesn’t exist 

Execution time Best Least 

MIC Not using Best using HMAC-

SHA-1 

Malleability Malleable Non-Malleable 

Unauthenticated 

Encryption 

Exist Doesn’t Exist 

Encryption 

Oracle 

Exist Doesn’t Exist 

Padding Oracle Exist Doesn’t Exist 

6. FUTURE WORK 
Further research is needed to optimize our design model. In 

particular, further studies should apply the model to other 

security model standards once available, apply any new 

security attacks, once available, on the designed MCSAuth 

model, design software for AS/TGS and Shuffler nodes to 

enhance and speed up the execution time of MCSAuth, 

intrusion detection algorithms can be added to MCSAuth, 

which will help in finding and eliminating any intruders. 

Besides, an updated version of MCSAuth will use more 

encryption schemes. However, a foundation for such future 

research has been established. 
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