
International Journal of Computer Applications (0975 – 8887)

Volume 88 – No.15, February 2014

23

MCSAuth: A New Authentication Mechanism for Cloud

Systems

François S. N. Athanasios,
Electrical & Computer

Engineering, HTI
Tenth of Ramadan City, Egypt

Sherif F. Fahmy
Computer Engineering, AASTMT

Cairo, Egypt

Gamal I. Selim
Computer Engineering, AASTMT

Cairo, Egypt

ABSTRACT

Cloud Computing has attracted a lot of attention in both

academia and industry lately. With its focus on scaling,

collaboration, agility, availability and cost reduction, cloud

computing offers a compelling alternative to in-house IT

solutions. However, by “outsourcing” the computing

infrastructure, it introduces a number of security issues.

Specifically, since cloud computing is a shared computing

platform, it needs to provide strong mechanisms for

authenticating it’s users and ensuring that no confidential

information stored on the cloud is compromised. This paper

addresses a number of vulnerabilities in existing

authentication mechanisms and proposes enhancements to

mitigate these vulnerabilities. In addition, the paper studies

how these enhancements affect performance. The results show

that the existing vulnerabilities can be overcome by the

proposed mechanisms. However, this results, in the worst

case, in a six-fold increase in execution time. This can be

considered relatively small when security is prime important.

Keywords

Communication networks, Cloud Computing, Authentication,

Hybrid, Encryption, Keyed hash.

1. INTRODUCTION
Cloud computing is an evolution of traditional computing

resources into shared utility-like services. Instead of each

organization or business building its own in-house computing

infrastructure, cloud computing allows a third party to provide

this infrastructure and to rent out its services on an on-demand

basis. This provides a number of important benefits, among

which are increased scalability, availability, agility,

collaboration, and cost reduction.

Thus, cloud computing can be considered a new computing

model where resources are provided as a service over the

Internet or any other networking infrastructure. A cloud user

is offered a variety of services on the cloud, including

operating an entire operating system, storing data and using

applications that are hosted off-site. It is based on utility

pricing. This means that the users can get resources simply by

paying a monthly fee, or pay per using these resources, like

you do with utility bills (e.g. renting an apartment for a

monthly payment).

Cloud computing can deliver a vast array of its capabilities in

real time using many different types of resources such as

hardware, software, and virtual storage, once one logs onto a

cloud [1]. In general, it describes a new delivery model of

services based on the Internet. It uses virtualized computers

that are dynamically provisioned and is presented as a service

over the Internet. This is based upon SLA “Service Level

Agreements” established between users and service providers

through negotiations [2].

Currently, the three types of cloud computing offered are

public, private and hybrid clouds. As their names imply, a

public cloud is hosted by a third party, a private cloud is

hosted by the entity that needs cloud services, and a hybrid is

a combination of both.

Three primary models of cloud computing services have

emerged, namely SaaS “Software as a Service”, PaaS

“Platform as a Service”, and IaaS “Infrastructure as a

Service”. SaaS is the model in which an application is hosted

as a service by customers who access it via the Internet [3].

PaaS is a model in which a platform, an OS and supporting

APIs and software development environment, are provided

[4]. IaaS is a model in which only the underlying

infrastructure, networking and processing nodes, are provided.

Everything else is up to the customer [5].

Cloud computing environment consists of two main entities:

the users and the CSP “Cloud Service Provider”. Both need to

establish a secure channel for either storing or retrieving data.

While information is being transmitted, a secure channel

protects data from malicious activities by an adversary trying

to impersonate either the CSP or the user.

Several papers such as [6, 7, 8 and 9] focus on information

and resources protection from unauthorized users. It is of vital

importance that a secure channel be established between the

end user and the CSP to maintain trust and confidentiality.

The objective is to design a secure authenticated

communication channel between the user and the CSP. In

order to feel safe and enjoy the usefulness and preference of

cloud computing over many types of networks like wired and

wireless, information should be secured taking into

consideration CIA “Confidentiality, Integrity and

Availability” [10, 11 and 12].

2. EXISTING AUTHENTICATION

METHODS AND THEIR LIMITATIONS
Cloud sessions must be secured. Businesses hesitate to join

the cloud because they are not sure that it is 100% secured

from any malicious activities. Cloud sessions can be secured

via encryption and authentication, though authentication is

another issue, with many options available. Many

authentication schemes have been introduced to deal with

secret data over insecure networks, remote login systems and

computer networks, all of which are found within cloud

computing systems. In this section, there is the result of our

survey through a group of the current available authentication

schemes.

Most of the existing methods are vulnerable to many attacks,

which cause insecurity to users who use systems dealing with

these schemes. Choosing the proper authentication method

depends mainly on the type of the entities being authenticated

International Journal of Computer Applications (0975 – 8887)

Volume 88 – No.15, February 2014

24

whether public, private or hybrid and the degree of trust that

the entities have.

1.1. Design Methodology:
Strong authentication guarantees the secrecy without

revealing it and is indispensable when two entities

communicate in untrustworthy environment like that of the

cloud computing system [12]. Now, a group of scenarios and

their limitations will be discussed.

1.2. Notation:
The following notations have been used in the coming figures:

U: Refers to user.

C: Refers to cloud service provider.

+: For public key.

-: For private key.

Ku+: Information and data owner’s public key.

Ku-: Information and data owner’s private key.

Kc+: CSP’S public key

Kc-: CSP’S private key

⊕: Bit-wise XOR.

SKu,c: Secret key shared by user and CSP.

[U,C]: User’s identity and CSP’S identity.

KDC: “Key Distribution Centre”.

Token: A pair of username, password and session

key.

KU,KDC: Secret key between user and KDC.

KC,KDC: Secret key between CSP and KDC.

R: Challenge (Random number).

Shuffler[X,Y]: Shuffling that takes place between X and

Y bits.

[X]HMAC: X is hashed by HMAC “Hash-based

Message Authentication Code” algorithm.

1.3. Scenarios:

Fig 1: User and CSP use challenge – response

authentication.

Ru and Rc are random numbers chosen by user and CSP

respectively as a challenge. In the second step, Ru is

encrypted by Ku,c (shared secret key between user and CSP)

and is called response to the challenge Ru. The previous

process is repeated but in reverse by the cloud provider to

perform mutual authentication. If the last step is successful,

then user and CSP are authenticated.

If the remainder of the conversation is not encrypted, an

adversary can act as user after authentication is over, by using

user’s address. Clocks of user and CSP need to be

synchronized. An advantage is that CSP doesn’t need to

maintain R. Shared secret mechanisms have one problem

which is vulnerability if CSP’s data base can be read. In PKC

“Public Key Cryptography” mechanism, encryption takes

place using public key, and decryption using private key.

Therefore, no shared secret key is necessary.

Fig 2: User is authenticated by CSP based on encryption

or hash.

The above mechanism token is encrypted using CSP’s public

key and is sent to CSP. CSP decrypts the previous message by

using its Kc-, and sends a challenge to user to be sure whether

he/she is the real one or not. User sends back the challenge

with SKu,c in a function form F (SKu,c, R), where R is

encrypted or hashed by SKu,c. However, this above scenario

has some limitations:

 Here authentication is not mutual; the user doesn’t

authenticate the CSP. Through address spoofing an

adversary can try to convince the user that the

adversary’s address is the CSP’s address. The adversary

can send any old challenges and ignore user’s response.

 If the remainder of the conversation is not under

cryptographic protection, an adversary can hijack the

channel.

 An attacker can mount off-line password guessing

attack, if SKu,c is generated from password, and both R

and F(SKu,c,R) are known.

Fig 3: CSP authenticates user based on one-way PKC (a).

For the above scenario, user sends his/her information

(Token) encrypted by CSP’s public key (where Kc+ is known

to user). CSP decrypts the previous step by its Kc- and sends a

challenge R to user. User signs R using user’s private key and

sends it to CSP. Using the user’s public key Ku+, CSP

decrypts the signed challenge and compares it with the one

held in the CSP.

Thereby, the CSP authenticates the user. In the above

scenario, it is called one-way public key. There is a problem:

an attacker can trick a user into signing something (forging),

User CSP

E (Token) Kc+

R

S (R) Ku-

User CSP

E (Token) Kc+

R

F (SKu,c , R)

User CSP

Ru

Ru encrypted by Ku,c

Rc

Rc encrypted by Ku,c

Ku,c

International Journal of Computer Applications (0975 – 8887)

Volume 88 – No.15, February 2014

25

act as CSP, wait for user to send a login request, and send a

certain quantity as the challenge R. User will sign it using

his/her private key, thinking it is R !

In the following scenario, in order to know what was sent

earlier in an encrypted message by someone to a user, act as

CSP, wait for user to send login request, and have the user

decrypt the encrypted message for you. Same as the previous

scenario, user can send encrypted token with CSP’s public

key. CSP decrypts it by CSP’s private key. Here the

negotiation is reversed: CSP signs a challenge with user’s

public key and sends it to user. User decrypts the previous

step by his/her private key and retrieves the challenge in order

to send it back to CSP. Now, CSP authenticates user.

Fig 4: Mutual authentication between CSP and user based

on shared secret key.

The above scenario is initialized by public key cryptography

and the rest of it is achieved by shared secret key. User sends

his/her credentials to CSP encrypted by CSP’s public key

followed by challenge R2. CSP sends challenge R1 appended

to the function containing the challenge R2 using shared secret

key.

User decrypts and verifies challenge R2 to authenticate CSP

and sends function F (SKu,c , R1) containing challenge R1.

CSP decrypts it and verifies R1. Now both user and CSP

authenticate each other. This above scenario has a security

pitfall known as reflection attack.

Reflection attack is a way of attacking a challenge-response

mutual authentication mechanism through which an adversary

tries to impersonate user to CSP and makes the CSP think that

it is communicating with the user.

Fig 5: Reflection attack on mutual authentication.

In step 1 “First session or channel”: an adversary sends user’s

identity along with R2 to CSP. CSP sends back encrypted R2

and R1 as a challenge. The attacker needs to encrypt R1 and

send it back to CSP, but he/she cannot! Adversary cannot

continue any more as he/she does not have a shared secret

key. Adversary sets up a new session.

In step 2 “second session”, the attacker does the same as the

first step with R1 instead R2. The CSP encrypts R1 and sends it

with another challenge R3 back to the attacker. At this point,

the adversary gets the encrypted R1, abandons the second

session and resumes the first session, and then it resends the

encrypted R1 which was originally received from in the

second session.

In order to solve the previous problem, there should be

different keys and challenges, two shared keys: for example

SKu,c and SKc,u. Therefore, CSP cannot encrypt using user’s

key now. The challenges sent by user and CSP to each other

should be different. Another solution is to use different time

stamps, different keys and add identity names before

encryption.

Fig 6: Optimized mutual authentication based on PKC

In Fig. 6, user sends his/her credentials encrypted by Kc+

followed by a random number R2 chosen by user as a

challenge which is also encrypted by Kc+. CSP receives the

encrypted message from user and starts to decrypt it using Kc-

and retrieves R2. CSP sends R2 back followed by encrypted

random number R1 using Ku+. User receives this message and

verifies R2 so as to authenticate CSP. User starts to decrypt

the encrypted part using Ku- to get R1 and forwards it back to

CSP. CSP receives it and authenticates user.

PKC has some limitations: neither user nor user’s workstation

are going to remember the CSP’s public keys stored

respectively. This problem can be solved by making a trusted

entity to handle all users’ domain and that works also for the

CSP. Another form of mutual authentication using PKC is as

follows:

Fig 7: Improved mutual authentication between user and

CSP based on PKC and session key

To achieve the above mechanism, user sends his/her

credentials followed by Ru random number as a challenge, all

encrypted by Kc+. CSP decrypts the previous message by Kc-

and sends Ru, Rc and session key Ku,c, all encrypted by Ku+ .

(Where Ru is a challenge chosen by user and Rc is chosen by

CSP, both Ru and Rc should be different from each other).

User will decrypt E (Ru , Rc , Ku,c) Ku+ by user’s Ku- and

return the response of the CSP’s challenge Rc to the CSP

encrypted by Ku,c session key.

User CSP

E (Token, Ru) Kc+

E (Ru ,Rc , Ku,c) Ku+

E (Rc) Ku,c

User CSP

E (Token) Kc+ , E (R2) Kc+

R2 , E (R1) Ku+

R1

User CSP

Adversary

E (Token) Kc+ , R2

R1 , F (SKu,c , R2)

E (Token) Kc+ , R1)

R3 , F (SKu,c , R1)

F (SKu,c , R1)
Back to first

Session

Second

Session

First

Session

E (Token) Kc+ , R2

R1 , F (SKu,c , R2)

F (SKu,c , R1)

User CSP

International Journal of Computer Applications (0975 – 8887)

Volume 88 – No.15, February 2014

26

The problem faced when dealing with Cloud Computing

Environment is not only the huge number of keys but also the

distribution of keys. If a user wants to communicate with a

hundred people, how can he/she manage or exchange a

hundred keys with them? Using the web is definitely not a

secure way of dealing with a huge number of secret keys

without hassle.

A centralized approach by means of a Key Distributed Centre,

manages n keys instead of n (n-1) / 2, which is clearly an

improvement over the situation handled without any entity

like KDC. [11] KDC will act as a trusted third party. Each

user will establish a shared secret key with it.

Fig 8: KDC idea

In Fig. 8, user sends his/her identity and CSP’s identity to

KDC. KDC sends to both user and CSP session key KU,C

encrypted by KU,KDC respectively. There is a problem when

user instantly sends a message after getting KU,C to the CSP

before the CSP gets session key from KDC. This problem can

be solved if the KDC just passes E(KU,C) KC,KDC back to the

user. This message E(KU,C) KC,KDC is called “ticket”. That will

help users to access CSP. User will send this ticket to the CSP

while communicating as shown in the next scenario K.

Fig 9: KDC using ticket

3. PROPOSED MECHANISM

“MCSAuth”
Cloud computing is a SSO “Single Sign On” system for cloud

users. Only registered users who have valid tickets are

accepted by cloud systems.

An authentication mechanism was proposed in [9] for cloud

computing to avoid any misuse of cloud systems. This

mechanism is said to be an improvement over SSL “Secure

Socket Layer”, as SSL has some fallbacks like session

hijacking and Man-in-the-Middle.

For SSL, an adversary will only need to have a symmetric

key, so he/she can cause replay attacks whereas in the

mechanism proposed for cloud systems in [9], an adversary

will need to have a ticket and a session key. This can be done

exceeding and surpassing the protection supplied by

cryptographic algorithms.

The mechanism cited in [9] is more secure than the previous

scenarios. In the next section, the mechanism in [9], together

with its pitfalls, will be discussed in detail. Next figure shows

the mechanism cited in [9] and the negotiations that go on

between the nodes. There are four nodes: cloud users, AS

“Authentication Server/Service”, TGS “Ticket Granting

Server/Service” and CSP respectively. This system is based

on KDC with MA “Mediated Authentication”. The

mechanism cited in [9] can be named as “modified Kerberos”.

AS accepts login request from cloud users. It is responsible

for authentication between servers and cloud users by

providing a key that can be used for securing communication

channels. TGS is responsible for setting up secure channels by

providing tickets which are used to convince service providers

that the user is the one who claims to be. In the beginning, a

user types his/her user’s ID at a workstation. Then it is sent to

AS which will go through a group of steps.

Fig 10: Modified Kerberos proposed in [9]

A shared secret key (Key u,TGS) is used for confidentiality of

message and discarded when the communication channel is no

longer used. A ticket (E(UID, Key u,TGS) Key AS,TGS) is

formed by TGS which represents ticket 1 and is forwarded to

the user.AS encrypts ticket 1 appended by Key u,TGS by using

the shared secret key between AS and cloud user Key u,AS to

form (E(Key u,TGS , Ticket 1) Key u,AS).

By receiving the encrypted message from AS, user is asked to

provide a password. Entering the right password will help in

generating Key u,AS. The workstation now can decrypt the

received message from AS and distinguish Key u,TGS. Now,

the user’s workstation has two shared keys: Key u,TGS and Key

u,AS. Phase 1 of authentication is finished: user is now

connected by the workstation that he/she is currently using.

Ticket 1 is stored temporarily at the workstation; it proves that

the users are genuine. User will send a request to TGS in

order to set up a secure communication channel with CSP.

AS TGS

Login

U ID

U ID

U ID

E(U ID , K

U,TGS) K

AS,TGS

E(KU,TGS , E(U ID , K

U,TGS) K AS,TGS)K U,AS

Promote

Password

ed

 Password E(U ID , K U,TGS) K AS,TGS ,

C , E(t) KU,TGS

E(UID , KU,C)KC,TGS

E(C,KU,C)KU,TGS,

E(UID , KU,C)KC,TGS

E(UID , KU,C)KC,TGS , E(t)KU,C

E(t +1)KU,C

Ticket1

Ticket2

User KDC CSP

[U,C

]

E (KU,C) KU,KDC , E (KU,C) KC,KDC

E (Token) KC+ , E (KU,C) KC,KDC

Ticket

E (KU,C) KC,KDC

User
KDC

Generates Kc,KDC CSP

[U , C]

E (Ku,c) KU,KDC E (Ku,c) KC,KDC

International Journal of Computer Applications (0975 – 8887)

Volume 88 – No.15, February 2014

27

The request helps to prove that the cloud user is genuine; it

will contain ticket 1 and cloud ID. To avoid replay attacks by

an adversary, a timestamp is added to the request. The time

stamp is verified by TGS. Then it forms and sends ticket 2 (

E(UID, Key u,C) Key C,TGS) to CSP. Ticket 2 informs CSP about

forthcoming communication from user. TGS sends ticket 2 to

cloud user who forwards it back with the encrypted time

stamp to CSP.

CSP checks time stamps and ticket 2 which are forwarded by

cloud user. After successful verification, CSP authenticates

itself to user by responding with (E(t+1) Key u,C) to prove that

the responder is CSP.

3.1.Vulnerabilities in the above mechanism
New attacks have emerged making the mechanism cited in [9]

vulnerable. It is considered a malleable encryption system and

part of it is subjected to unauthenticated encryption. The

mechanism in [9] is subjected to an encryption oracle attack,

MIC “Message Integrity Check” bits attack, and PO “Padding

Oracle” attacks. It was proven in [2] that the following pitfalls

affect the mechanism severely and open a chance for an

adversary to attack easily.

3.2.MCSAuth “Multiple Crypto Shuffler

Authentication” Mechanism
Solution must be found to counter the problems that were

mentioned in the modified Kerberos mechanism. The goal is

to enhance the overall security of the cloud not to counter the

main vulnerabilities only. The more complex the mechanism

becomes, the smaller the odds that an adversary can break or

tamper it. MCSAuth design will be explained in the following

section. A new node will be added called shuffler node. It

sends information only to authorized and authenticated cloud

workstations and AS/TGS nodes. Shuffler node is responsible

for the transmission of shuffling tables and certain codes. It

informs the other nodes how to reveal the shuffled message.

Shuffler node will be connected to AS/TGS, cloud user’s

workstation and cloud systems.

Every user in a registered cloud will have three identifiers that

act together as his/her credentials to help him/her log to the

cloud system. The three elements are, User Identity,

Password, and Registration codes given only to registered

cloud users by cloud systems.

MCSAuth Mechanism passes through four steps at each node

during negotiation, based on E-M then E-S “Encode and

MAC "Message Authentication Code" then Encrypt and

Shuffle”.

3.2.1. Encoding data: It is done in this way: Data is given

a form: a confounder is added at the beginning before data

and then a random padding is appended at its end. A

confounder is one block of random bytes. It is like a challenge

between nodes during negotiation to authenticate each other.

Destination doesn’t know what random challenge to expect. It

prevents cut-and-paste attacks, chosen plaintext attacks and

using ciphertext as oracle since an adversary has no

knowledge of the value of challenge.

Random padding is done so as to disguise the size of the

encoded data by adding a random value of random bytes as

padding, and to indicate the value of the random bytes added

by the last byte in padded input block. Random padding

avoids oracle padding.

3.2.2. MAC: It is a piece of information added to the

encoded data in the end and this is used to authenticate the

encoded data. In MCSAuth, HMAC-SHA-1 is used for

integrity checking, that can’t be forged by encryption oracle.

An adversary can’t construct a valid ciphertext since he/she

doesn’t know the signature key K that is used for HMAC-

SHA-1.

3.2.3. MCS “Multiple Crypto Systems”: To provide

confidentiality, a hybrid encryption scheme for the encoded

data is used. MCS scheme uses four Encryption/Decryption

algorithms RC4, DES “Data Encryption Standard”, IDEA

“International Data Encryption Algorithm” and AES

“Advanced Encryption Standard”. All the gathered data about

encryption algorithms are taken from [13, 14, 15, 16, 17, 18,

and 19].

A hidden code during negotiation between nodes in MCSAuth

mechanism will benefit in using only one of four

encryption/decryption algorithms called CS “Crypto Slot”. CS

is 8-bit long. It uses 256 slots. Four algorithms are inserted in

CS code in a random way where 2-bit codes discriminate

between each algorithm and the other of the four algorithms

instead of their name. The key K is used exclusively for both

encryption/decryption algorithms and HMAC-SHA-1.

3.2.4. Shuffling Effect: To provide more complexity to

the mechanism, diffusion takes place between the HMAC bits

and the encrypted plaintext in a random way. The interspace

between bits is controlled by the shuffling table. Shuffler node

generates the shuffling tables randomly, a thing which causes

much more confusion to any attacker.

HMAC bits are being scrambled with ciphertext bits to avoid

MIC static replacement attack. An attacker will not be able to

find either HMAC or ciphertext bits. Only authorized cloud

users and cloud system nodes will be able to de-shuffle the

diffused message back to its original form and detach the

encrypted plaintext from the HMAC bits. Each shuffling row

has random values generated from a random value generator.

SC “Shuffler Code” is a code added to the header. It is 4-bit

long to select between 16 rows found in the shuffling table

each with length N. The shuffling row is used in both

shuffling and de-shuffling the HMAC bits inside the

encrypted messages and back to their original place.

Figures 11 and 12 show the negotiation mechanism for any

cloud user using SSO. Servers empower cloud user

authentication to AS/TGS and Shuffler node. Requests are

accepted from a registered user having a valid user ID,

registration code, password and a valid ticket.

Shuffler node and AS/TGS are designated for handling a login

request from a cloud user. A cloud user is authenticated and

provided with a key that can be used to set up a secure

channel with servers. Tickets, provided by TGS, are used to

convince servers that the cloud user is the one who really

he/she claims to be. Here, login is a process like typing a user

ID and registration code at a workstation node that is found

anywhere. Then user’s ID and registration code are sent to

AS/TGS and Shuffler node. Note that all the messages

between nodes are encrypted during the transmission.

http://en.wikipedia.org/wiki/International_Data_Encryption_Algorithm

International Journal of Computer Applications (0975 – 8887)

Volume 88 – No.15, February 2014

28

Fig 11: MCSAuth mechanism phase 1.

3.2.5. Encryption/Decryption stages:

3.2.5.1. Stage one (Default Stage): AES is the

beginning stage. It is used at the beginning of negotiation as

default which is found in phase 1.

3.2.5.2. Stage two (Middle Stage): RC4 with CTR

“Counter”-mode is used in table transmission between

shuffler node and the other nodes which are found in phase

1and 2.

3.2.5.3. Stage Three (Hybrid Stage): It is the hybrid

stage where encryption schemes hop randomly between RC4,

IDEA, 3-DES and AES through the negotiation between

nodes which is found in phase 2.

TGS generates ticket1 and transmits it to Shuffler node

supported with keyed hash function HMAC-SHA-1. If the

user logs with both valid user ID and registration code at the

same time, TGS will transmit to the user the same ticket1 that

was transmitted to shuffler node. This registration code is

used to generate the shared secret key Keyu,TGS by taking a

character string code and applying cryptographic hash MD5

and then taking 128-bit string values which will be the shared

secret key Keyu,TGS.

After user decrypts the received message, he/she will be

having ticket1, Keyu,S, and C1 (Confounder1). Confounders are

used as a type of challenge between nodes. Note that almost

all negotiated messages are checked by comparing the

received hashed function with the generated one to ensure

integrity. User transmits the received ticket1 and sends it with

Cloud ID, token and C1 encrypted by Key u,S towards

shuffler node.

Shuffler node decrypts, checks integrity and compares the

received ticket1 and confounder1 from user holding the old

one which was received by TGS for that user. With all the

previous checking passed, shuffler node generates a unique

random table for that user and sends the table encrypted to

user.

This table is used only for that user. So as to continue the

rest of negotiation, this table must be found at the other

nodes. Shuffler node sends the same table encrypted to

AS/TGS and CSP for such user. Cloud user, AS/TGS and

CSP decrypts the encrypted table by their shared secret keys

Key u,S, Key S,AS/TGS, and Key S,C respectively. Now all the

nodes have the same table for such user.

The hybrid stage also called phase 2, as shown in next

figure, starts when the negotiations between nodes are

encrypted randomly based on MCS code which was hidden

and transmitted to all nodes through the shuffled tables.

TGS sends ticket 2 to AS. AS, in return, sends a shuffled

message holding ticket2 encrypted with the keyed hash

function. AS prompts a password which will help in

generating Key u,AS , same as before like with registration

code and Key u,TGS.

This password is used to generate the shared secret key

Keyu,AS by applying it to MD5 and then taking 128-bit

string values which will be the shared secret key, Keyu,AS.

User rearranges, decrypts message and checks its integrity.

He/she now holds ticket2. User sends ticket2 back with

Cloud ID and encrypted C2 hashed then shuffled to TGS

requesting the cloud service.

 Fig 12: MCSAuth mechanism phase 2.

Password

promoted

Ticket 2 =

E(C2,UID,Key

uTGS)KeyASTGS

Ticket 2

User
AS / TGS

Shuffler
Cloud

Service

Rownumber{

Shuffled[E(K

eyuTGS,

C2,Ticket2)Ke

yuAS,HMAC]

Row number{Shuffled[(Ticket2,

CID, E(C2) KeyuTGS) HMAC]}

 Row number [Shuffling

[Ticket 3]HMAC]]

Rownumber(Shuffling[{E(

CID,KeyuC,C3) KeyuTGS

,Ticket 3}HMAC]

Row number[Shuffling { Ticket 3 , E(C3) KeyuC}HMAC]

E(C3+1) KeyuC

Ticket 3 =

E(C3,UID,CID,Keyu

C)Key C,TGS

Opening a secure channel between cloud user and CSP.

User AS / TGS

Shuffle

r

Cloud
Service

% Starting Hybrid algorithm Assume code for Hybrid is 01 10 00 11 and

repeated %

% Where 00 for AES, 10 for RC4 , 11 for IDEA, and 01 for DES %

EAES(UID,

CID)KeyS,C

ERC4(Table)

KeyS,C

(EAES(UID,CID,

KeyS,C) KeyTGS,S)

HMAC

(EAES(C1)KeyS,

TGS, Ticket1)

HMAC

EAES(C1,CID)Keyu,S ERC4(Table)Keyu,S

(Ticket1, EAES(CID, UID, C1)KeyuS)HMAC

(EAES(KeyuS,C1)KeyuTGS

EAES(Ticket1)KeyuTGS)

HMAC

Ticket1=

E(UID,Keyu,S)
KeySTGS

UID/Registration

code

UID/Registration

code

EAES(C1,UID,CID)KeyS,TGS

ERC4(Table)KeyS,TGS

International Journal of Computer Applications (0975 – 8887)

Volume 88 – No.15, February 2014

29

TGS rearranges, decrypts message and checks hashing. It

compares ticket2 received from user and the one held by it. If

all passes, it transmits a request to CSP for that user holding

ticket3, Key u,C and C3 to user.

User and CSP rearrange, decrypt received messages and

check their integrity. User sends ticket3 and C3 to CSP

encrypted by Key u,C , CSP decrypts the message sent by user

and compares C3 and ticket3 with the other received by TGS.

If CSP comparing passes, it will open a secure communication

channel with that user.

4. DISCUSSION AND RESULTS
Next section discusses MCSAuth test results which will be

presented and discussed in detail compared with the previous

proposed mechanism.

4.1.Testing and Results

The following is an explanation of experiments that were

applied on MCSAuth and the previous proposed mechanism.

The experiments were performed using a computer

simulation; the simulation package that was used is Matlab

simulink. In this section, we will report the security

parameters results. First, we discuss some theoretical

properties of the proposed mechanism, after which we discuss

the actual experiments conducted.

4.1.1. Injected message attack result: An adversary

will have no chance to attack, if the shuffling table is still not

compromised. Assuming the shuffling had been

compromised, an attacker doesn’t know which one of

encryption algorithms is being used, so MCSAuth mechanism

is considered not vulnerable to injected message attack.

4.1.2. MIC vulnerability parameter result: The

proposed mechanism uses HMAC-SHA-1 keyed hash

function in addition to that; the hashed bits are defused inside

the encrypted plaintext. Assuming that the shuffling had been

compromised, the adversary will not know the key used for

hashing. If the shuffling table is still not compromised, an

attacker should try to overcome the shuffling effect by going

through all feasible shuffling values that are equal to a

factorial of N-bit length.

4.1.3. Brute force attack result: The value of brute

force permutation concerning the proposed mechanism is

equal to {(2RC4 Key + 2IDEA Key + 2DES Key + 2AES Key)}*(factorial

(N))} for every single message transmitted between the nodes.

While for the other mechanisms presented in this paper has a

key permutation field equal to 2128.

So, it is obvious that, compared with the time consuming

brute force, the proposed mechanism MCSAuth is at least four

multiplied by factorial N times longer than the other

mechanisms. The enormous time consuming brute force

attack for MCSAuth is due to the four encryption algorithms

being used combined with the diffusion effect caused by

shuffling the HMAC bits with the encrypted plaintext and this

adds factorial N trials for each key.

4.1.4. Unauthenticated encryption results: Certain

messages transmitted between nodes in MCSAuth mechanism

contain confounders which work as challenges between

nodes.

The idea of using confounders is to provide mutual

authentication between nodes during negotiations through the

encoded data prior to encryption to avoid man-in-the-middle

attack and an unauthenticated encryption attack. In addition

to, AS/TGS, Shuffler and cloud service nodes have the

authority to ban any compromised nodes.

4.1.5. Encryption Oracle result: The proposed

mechanism is no longer malleable due to the use of diffusion

effect. Assuming that an attacker has compromised the

shuffling table, if he/she tries to use chosen-plaintext attack, it

can be easily recognized through the change of HMAC bits.

4.1.6. Oracle padding result: Two solutions are made

in the proposed mechanism to avoid such attacks. First

solution is by using random padding. The second one is by

using hybrid encryption schemes and shuffling effect which

are going to be an obstacle for an adversary.

4.1.7. Maintainability parameter test result: It is the

ability of the mechanism to be capable of surviving after its

encryption algorithm has been compromised and broken

mathematically but still renders security. The proposed

mechanism uses four hybrid encryption schemes and hops

randomly between them. These are considered more

maintainable than the other traditional mechanisms introduced

in this paper. These use only one discrete encryption scheme.

Assuming that the shuffling effect has been compromised and

one of the four encryption schemes was broken

mathematically, MCSAuth will still maintain its security.

4.2.Mechanism Metrics

The most measurable and encountered metrics of a

mechanism are speed, memory, message overhead and

bottleneck of the mechanism.

4.2.1. Speed: The computing time of the previous

algorithm and MSCAuth are measured. Table 1, shows the

results of the measured execution time for the previous

mechanism and MCSAuth. For the previous mechanism, the

execution time was measured using different encryption

schemes like AES, DES, IDEA and RC4. The next table is a

normalized table by the average output of AES used on the

previous mechanism compared with the other encryption

schemes and with the new proposed MCSAuth mechanism.

The error margin was also calculated to represent the

confidence interval; specifically the 95% confidence interval

was calculated.

Mechanism cited in [9] for cloud system was implemented

with different encryption schemes: RC4, IDEA, DES and

AES. RC4 is the fastest one compared with other schemes.

However, it has several weaknesses in the keys that it uses.

IDEA is second best in speed after RC4. It is good but

patented. DES is faster than AES, and is considered second

best choice, but weaker than AES. AES is the best choice for

securing a mechanism. It is strong but complex and takes long

in execution compared to RC4, IDEA and DES.

Table 1, Normalized table for performance level

comparing between modified Kerberos mechanism for

cloud system and MCSAuth (using n= 45 and confidence

level = 95%).

PPrreevviioouuss

pprrooppoosseedd pprroottooccooll

NNeeww PPrrooppoosseedd

PPrroottooccooll

RRCC44 IIDDEEAA DDEESS AAEESS MMCCSS

AAvveerraaggee 0.0123 0.0643 0.2569 1 6.1558

EErrrroorr MMaarrggiinn 0.0020 0.0034 0.0042 0.0045 0.0402

International Journal of Computer Applications (0975 – 8887)

Volume 88 – No.15, February 2014

30

LLoowweerr BBoouunndd 0.0103 0.0608 0.2526 0.9954 6.1156

UUppppeerr BBoouunndd 0.0143 0.0678 0.2611 1.0045 6.1961

Fig 13: Performance level

Compared with different

encryption schemes (RC4,

IDEA, DES, and AES)

implemented on the modified

Kerberos mechanism.

Fig 14: Performance

level Compared to

modified Kerberos

mechanism using AES

and the new proposed

MCSAuth mechanism.

For MCSAuth, execution time took approximately six times

that of AES used with the previous mechanism as shown in

previous Fig. 14. The cause of this huge increase is due to

more negotiation presented in MCSAuth and due to the use of

three parameters: multiple crypto systems, shuffling tables

and keyed hash function.

4.2.2. Memory Analysis: Table 2 is a comparison

presented between the memory of the previous authentication

mechanism found at each node and the new proposed

mechanism MCSAuth.

The additional memory requirements of MCSAuth are due to

the extra space for holding shuffling tables, the addition of

more tickets, more shared secret keys between nodes

presented, and user’s token parameter. Table 2, the memory

analysis comparison is made for only a single cloud user and a

single cloud service provider, the same pattern is expected to

hold as the system scales up.

4.2.3. Message overhead of a mechanism: In this

experiment, we measured the message overhead of the

previous mechanism and MSCAuth.

Tables 3 and 4, show the number of messages transmitted and

received for each node in the previous mechanism and

MCSAuth mechanism. Besides, the total length of messages

transmitted and received in bit length is added. As we can

observe, the new proposed authentication mechanism

MCSAuth has a large number of messages plus their length

increased dramatically compared to the previous mechanism,

because several issues were added: First, we added a new

node called shuffler node which caused more negotiations.

Second, we used shuffling tables. Third, more tickets are

used. Fourth, more shared secret keys are presented, and last

the use of keyed hashing function HMAC-SHA-1 is applied.

All the issues that were added to MCSAuth give more security

strength.

Table 2, Memory analysis is compared between modified

Kerberos and MCSAuth mechanism.

 Modified

Kerberos

 MCSAuth

Cloud User 168 bytes Cloud User 7968 bytes

AS/TGS 192 bytes AS/TGS 8016 bytes

 Shuffler node 7808 bytes

Cloud Service 96 bytes Cloud Service 7824 bytes

Table 3, Message overhead for modified Kerberos

 Modified Kerberos

Messages

transmitted
bits Messages

transmitted

bits

Cloud user 3 960 3 1024

AS/TGS 3 1280 3 576

Cloud service 1 128 2 768

Total 7 2377 7 2368

Table 4, Message overhead for MCSAuth.

 MCSAuth

Messages

transmitted
bits Messages

transmitted

bits

Cloud

User

4 2246 5 64006

AS/TGS 7 3785 3 62531

Shuffler

Node

3 185216 4 1728

Cloud

Service

1 128 3 63110

Total 15 191375 15 191375

4.2.4. Bottleneck of the mechanism: In this

experiment, we attempted to identify the performance

bottleneck of the mechanism. The purpose of this experiment

is to identify an aspect of the algorithm that can be subjected

to further optimization in order to improve performance. Next

Table 5, Fig. 15 and Fig. 16 show the comparison of time

taken during execution for each node between the previous

mechanism and MCSAuth mechanism.

We can see that processing time for cloud user in MCSAuth

mechanism increased dramatically. The main cause of this

increase is mainly keyed hashing function HMAC-SHA-1 that

is used for integrity check during negotiation between nodes.

The previous test and simulated results proved that MCSAuth

was able to counter most of the previously mentioned

vulnerabilities.

International Journal of Computer Applications (0975 – 8887)

Volume 88 – No.15, February 2014

31

Table 5, Comparing the execution time at each node for

each mechanism.

Nodes RC4 IDEA 3-DES AES Nodes MCS

Auth.

Cloud

User

0.0588 0.2589 1.0295 4.9282 Cloud

User

25.752

AS/

TGS

0.1322 0.5245 1.5576 6.2061 AS/

TGS

29.584

CSP 0.0267 0.1931 0.849 3.0995 Shuffler

Node

20.261

 CSP 12.256

5. CONCLUSION
This thesis introduces and discusses a new authentication

mechanism for cloud computing. Our design focuses on

blocking any malicious attacks. This mechanism has, so far,

proved to be effective against almost all security attacks.

MCSAuth was introduced in an effort to counter most of the

known vulnerabilities that were found in a previously

proposed mechanism. For the sake of clarity, a comparison is

presented below between MCSAuth and the previously

proposed mechanism. From table 6, MCSAuth has proved to

be more resilient to attacks than the previously proposed

mechanism. Yet it has some disadvantages that were evident

after testing, and they are:

 MCSAuth needs a new node called shuffler node with

powerful processing capabilities.

 Nowadays, there are many encryption schemes that can

replace one or two of the chosen schemes to provide

better results.

 All nodes especially AS/TGS and Shuffler nodes must

have a considerable memory size, to be able to store a

copy of tickets, shared keys, and shuffling tables.

 Time taken by MCSAuth to open a secure

communication channel is long compared with the other

mechanism. The cause of this problem is the use of

HMAC-SHA-1 during negotiations between nodes.

Fig 15: Bottleneck is compared with different encryption

schemes used on the previous mechanism.

Fig 16: Bottleneck for MCSAuth

Table 6, Comparison between the previously proposed

mechanism and MCSAuth.

Points Modified

Kerberos

MCSAuth

Time attack for

a single packet

using brute

force

Let all

encryption

schemes use

same key size

called K.

Let the brute

force

permutation of

the previous

proposed

mechanism be

called P =2K

Permutation

Let the brute force

permutation of

MCSAuth be called

F = {(2K + 2K + 2K

+ 2K)}*(factorial

(N)) =

(2K)*(4)*(factorial

(N)) = 4* factorial

(N) of P.

MIC Problem Not introduced

as there is no

MIC used.

Doesn’t exist

Execution time Best Least

MIC Not using Best using HMAC-

SHA-1

Malleability Malleable Non-Malleable

Unauthenticated

Encryption

Exist Doesn’t Exist

Encryption

Oracle

Exist Doesn’t Exist

Padding Oracle Exist Doesn’t Exist

6. FUTURE WORK
Further research is needed to optimize our design model. In

particular, further studies should apply the model to other

security model standards once available, apply any new

security attacks, once available, on the designed MCSAuth

model, design software for AS/TGS and Shuffler nodes to

enhance and speed up the execution time of MCSAuth,

intrusion detection algorithms can be added to MCSAuth,

which will help in finding and eliminating any intruders.

Besides, an updated version of MCSAuth will use more

encryption schemes. However, a foundation for such future

research has been established.

7. REFERENCES
[1] Ramgovind, Eloff, and Smith, “The Management of

security in Cloud Computing”, Information Security for

South Africa (ISSA), 2010.

[2] Gamal Ibrahim Selim, Sherif Fadel Fahmy,

and François Samir Nicola, “A New Authentication

Mechanism for Cloud Systems”, Helwan University

Engineering Journal 138, Mars 2013.

[3] Anthony Velte, Toby Velte, and Robert Elsenpeter,

“Cloud Computing, A Practical Approach”, McGraw

Hill, 2012.

[4] Bhaskar Prasad Rimal, Eunmi Choi, and Jan Lumb, “A

Taxonomy and survey of Cloud Computing System”,

INC, IMS and IDC, 2009.

[5] “Cloud Computing Alliance V2.1”, web site: http: //

www. cloud security alliance. Org /.

RC4 IDEA
Cloud
User
AS/TGS

Cloud
User

DES AES

MCSAuth.

Cloud User
AS/TGS
Shuffler Node
Cloud User

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5581173
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5581173

International Journal of Computer Applications (0975 – 8887)

Volume 88 – No.15, February 2014

32

[6] Bradley, Tony and Carvey, Harlan, “Essential Computer

Security”, Elsevier Science Ltd, 2006.

[7] James Haskett, “Pass-algorithms: a user validation

scheme based on knowledge of secret algorithms”,

communications of the ASM, 27, No 8, PP 777 – 781,

(1984).

[8] Anne Adams, Martina Angela Sasse and Peter Lunt:

“Making passwords secure and usable”, HCI 97

Proceedings of HCI on People and Computers XII,

Springer-Verlag London. 1997.

[9] Mahbub Ahmed, Yang Xiang and Shawkat Ali, “Above

the Trust and Security in Cloud Computing: A Notion

towards Innovation”, Embedded and Ubiquitous

Computing (EUC), IEEE/IFIP 8th, 2010.

[10] Charles Paul Pfleeger and Shari Lawrence Pfleeger,

“Security in Computing”, Third Edition Prentice Hall

Professional, 2003.

[11] Andrew Tanenbaum and Maarten Van Steen,

“Distributed Systems: Principles and Paradigms”,

Second Edition Pearson Prantice Hall, 2007.

[12] Charlie Kaufman, Radia Perlman and Mike Speciner,

“Network Security: private communication in a public

world”, Prentice Hall Press Upper Saddle River, NJ,

USA, 2002.

[13] William Stallings, “Cryptography and Network Security

Principles and Practices”, Fourth Edition, Prentice Hall,

2005.

[14] Paul Garrett, “Making, Breaking Codes: An Introduction

to Cryptology”. Upper Saddle River, NJ, Prentice Hall,

2001.

[15] Doug Stinson, “Cryptography: Theory and Practice”

Boca Raton, FL: CRC Press, 2005.

[16] Susan Landau, “Polynomials in the Nation’s Service:

Using Algebra to Design the Advanced Encryption

Standard.” American Mathematical Monthly, 2004.

[17] James Nechvatal, Elaine Barker, Lawrence

Bassham, William Burr, Morris Dworkin, James

Foti, Edward Roback, “Report on the Development of

the Advanced Encryption Standard”, National Institute of

Standards and Technology, 2000.

[18] William Stallings, “The Advanced Encryption Standard.”

Cryptologia, 2002.

[19] Pardeep, Pushpendra Kumar Pateriya, “PC-RC4

Algorithm: An Enhancement Over Standard RC4

Algorithm” , International Journal of Computer Science

and Network (IJCSN) Volume 1, Issue 3, 2012.

IJCATM : www.ijcaonline.org

http://www.citeulike.org/user/tumo/author/Haskett:JA
http://dl.acm.org/author_page.cfm?id=81100313105&coll=DL&dl=ACM&trk=0&cfid=190817574&cftoken=27393011
http://dl.acm.org/author_page.cfm?id=81100499004&coll=DL&dl=ACM&trk=0&cfid=190817574&cftoken=27393011
http://dl.acm.org/author_page.cfm?id=81100063881&coll=DL&dl=ACM&trk=0&cfid=190817574&cftoken=27393011
http://www.google.com.eg/search?hl=ar&tbo=p&tbm=bks&q=inauthor:%22Charles+Paul+Pfleeger%22
http://www.google.com.eg/search?hl=ar&tbo=p&tbm=bks&q=inauthor:%22Shari+Lawrence+Pfleeger%22
http://dl.acm.org/author_page.cfm?id=81100608871&coll=DL&dl=ACM&trk=0&cfid=190817574&cftoken=27393011
http://www.amazon.com/Charlie-Kaufman/e/B001H6UX0S/ref=ntt_athr_dp_pel_1
http://www.amazon.com/Radia-Perlman/e/B001H6QQ9K/ref=ntt_athr_dp_pel_2
http://www.amazon.com/s/ref=ntt_athr_dp_sr_3?_encoding=UTF8&field-author=Mike%20Speciner&search-alias=books&sort=relevancerank
http://academic.research.microsoft.com/Author/2772/james-nechvatal
http://academic.research.microsoft.com/Author/18006386/e-barker
http://academic.research.microsoft.com/Author/845129/lawrence-e-bassham-iii
http://academic.research.microsoft.com/Author/845129/lawrence-e-bassham-iii
http://academic.research.microsoft.com/Author/142924/william-e-burr
http://academic.research.microsoft.com/Author/770459/morris-dworkin
http://academic.research.microsoft.com/Author/51413972/james-foti
http://academic.research.microsoft.com/Author/51413972/james-foti
http://academic.research.microsoft.com/Author/385639/edward-roback
http://dl.acm.org/author_page.cfm?id=81466645214&coll=DL&dl=ACM&trk=0&cfid=289812345&cftoken=22730786

