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ABSTRACT 

In the modern era of electronics and communication decoding 

and encoding of any data(s) using VLSI technology requires 

low power, less area and high speed constrains. The viterbi 

decoder using survivor path with necessary parameters for 

wireless communication is an attempt to reduce the power and 

cost and at the same time increase the speed compared to 

normal decoder. This paper presents three objectives. Firstly, 

an orthodox viterbi decoder is designed and simulated. For 

faster process application, the Gate Diffused Input Logic 

(GDIL) based viterbi decoder is designed using Xilinx ISE, 

simulated and synthesized successfully. The new proposed 

GDIL viterbi provides very less path delay with low power 

simulation results. Secondly, the GDIL viterbi is again 

compared with our proposed technique, which comprises a 

Survivor Path Unit (SPU) implements a trace back method 

with DRAM. This proposed approach of incorporating 

DRAM stores the path information in a manner which allows 

fast read access without requiring physical partitioning of the 

DRAM. This leads to a comprehensive gain in speed with low 

power effects. Thirdly, all the viterbi decoders are compared, 

simulated, synthesized and the proposed approach shows the 

best simulation and synthesize results for low power and high 

speed application in VLSI design. The Add-Compare-Select 

(ACS) and Trace Back (TB) units and its sub circuits of the 

decoder(s) have been operated in deep pipelined manner to 

achieve high transmission rate. Although the register 

exchange based survivor unit has better throughput when 

compared to trace back unit, but in this paper by introducing 

the RAM cell between the ACS array and output register 

bank, a significant amount of reduction in path delay has been 

observed. All the designing of viterbi is done using Xilinx ISE 

12.4 and synthesized successfully in the FPGA Virtex 4 target 

device operated at 64.516 MHz clock frequency, reduces 

almost 41% of total path delay. 

Keywords 

Viterbi decoder, GDIL technique, SPU, DRAM, Add 

Compare Select (ASC), Trace Back (TB), Xilinx, FPGA. 

1. INTRODUCTION 
The Viterbi decoding algorithm, proposed by Viterbi, is a 

decoding process for convolutional codes in memory-less 

noise. The algorithm can be applied to a host of problems 

encountered in the design of communication systems. The 

Viterbi Algorithm finds the most-likely state transition 

sequence in a state diagram, given a sequence of symbols. The 

Viterbi algorithm is used to find the most likely noiseless 

finite-state sequence, given a sequence of finite-state signals 

that are corrupted by noise.  

Generally, a viterbi decoder consists of three basic 

computation units: Branch Metric Unit (BMU), Add-

Compare-Select Unit (ACSU) and Trace Back Unit (TBU). 

The BMU calculates the branch metrics by the hamming 

distance or Euclidean distance and the ACSU calculates a 

summation of the branch metric from the BMU and previous 

state metrics, which are called the path metrics.  

After this summation, the value of each state is updated and 

then the survivor path is chosen by comparing path metrics. 

The TBU processes the decisions made in the BMU and 

ACSU and outputs the decoded data. The feedback loop of the 

ACSU is a major critical path for the viterbi decoder. The 

operations of the convolutional encoder and decoder for 

constraint length of 3 are explained as follows.  

The convolution encoder has a rate of ½ (k/n) with a 

constraint length of 3. With an encoder, the 3 bit shift register 

provides the memory and two modulo-2 adders provide 

convolution operations. For each bit in the input sequence, 

two bits are output, one from each of the two modulo-2 

adders. The decoding procedure compares the received 

sequence with all the possible sequences that may be obtained 

with the respective encoder and then selects the sequence that 

is closest to the received sequence. There are always two 

paths merging at each node and the path selected is the one 

with the minimum hamming distance, the other is simply 

terminated. The retained paths are known as survivor paths 

and the final path selected is the one with the continuous path 

through the trellis with a minimum aggregate hamming 

distance. 

2. EARLIER RESEARCH WORK 
Y. Zhu and M. Benaissa (2003) presented a novel ACS 

scheme that enables high speeds to be achieved in area 

efficient viterbi decoders without compromising for area and 

power efficiency. Multilevel pipelining has been introduced 

into the ACS feedback loop.  

 Arkadiy Morgenshtein et al (2004) used Gate Diffusion Input 

circuits for asynchronous design and compared the designs 

with CMOS asynchronous design [1]. Dalia A. El-Dib and 

Mohamed I. Elmasry (2004) discussed the implementation of 

a viterbi decoder based on modified register-exchange (RE) 

method [2]. Song Li and Qing-Ming Yi (2006) proposed a 

scheme based on Verilog language for the implementation of 

high-speed and low power consumption bi-directional viterbi 

decoder [3]. The decoding was done in both positive and 

negative direction and the delay was half of that of the 

unilateralism decoder and the decoding speed was greatly 

improved. Yun-Nan Chang and Yu-Chung Ding (2006) 

presented a low power design for viterbi decoder based on a 

novel survivor path trace mechanism. Lupin Chen et al (2007) 



International Journal of Computer Applications (0975 – 8887) 

Volume 88 – No.14, February 2014 

31 

presented a low-power trace-back (TB) scheme for high 

constraint length viterbi decoder. Xuan-zhong Li et al (2008) 

discussed a high speed viterbi decoder which was based on 

parallel radix-4 architecture and bit level carry-save 

algorithm. Seongjoo Lee (2009) presented an efficient 

implementation method for parallel processing viterbi 

decoders in UWB systems.   

3. ORTHODOX VITERBI LIMITATION 
From the literature survey, viterbi decoder is mainly used in 

all communication techniques. Logic styles like CMOS, 

Pseudo NMOS and Dynamic logic design of circuits at ACS 

level are done [4] but the switching activity in these logic 

styles are high and hence lead to high power dissipation. 

 

Fig 1: The RTL design of orthodox viterbi decoder 

In figure 1 the RTL logic design of the old orthodox viterbi is 

simulated. The backend coding is done in VHDL and the 

circuit is synthesized using Xilinx ISE. This viterbi provides 

the delay report and power analysis report, which clearly 

depicts the high power dissipation that is undesired for any 

FPGA based VLSI circuit design. 

4. GDIL BASED VITERBI 
Gate Diffusion Input Logic (GDIL) is a technique of low 

power digital for circuit design which allows reducing power 

consumption, delay and area of the digital circuit. The basic 

GDIL cell is similar to the standard CMOS inverter, the 

differences are: (1) GDIL cell contains three inputs (2) Bulks 

of both NMOS and PMOS are connected to N or P, so it can 

be randomly biased at contrast with CMOS inverter. The 

GDIL contains four terminals – G (common gate input of the 

nMOS and pMOS transistors), P (outer diffusion node of the 

pMOS transistor), N (outer diffusion node of the nMOS 

transistor) and D node (common diffusion of both transistors). 

The GDIL approach [5] allows implementation of a wide 

range of complex logic functions using only two transistors. 

This GDIL method is suitable for design of fast, low-power 

circuits using a reduced number of transistors (as compared to 

CMOS and existing Pass Transistor Logic techniques), while 

improving logic level swing and static power characteristics 

and allowing simple top-down design by using small cell 

library. A simple change of the input configuration of the 

simple GDI cell corresponds to very different Boolean 

functions [6]. This GDIL undoubtedly reduces area as lesser 

number of LUTs and CLBs are used in FPGA prototyping [7].  

GDIL viterbi decoder consists of three blocks. They are 

Branch Metric Unit (BMU), Add Compare Select Unit 

(ACSU) and Survivor Memory Unit (SMU). All these blocks 

are designed using GDIL technology, simulated and 

synthesized using Xilinx ISE. 

4.1 GDIL based Branch Metric 

Unit(BMU) 
The branch metric computation block compares the received 

code symbol with the expected code symbol and counts the 

number of differing bits. It consists of EXOR gate and 

counter. The Branch Metric Unit is designed using the EXOR 

gate and the 3-bit counter. The output of the EXOR gate is fed 

as the clock input to the 3-bit counter. 3-bit counter is 

designed by cascading the D FF and the output of the one flip 

flop is given as clock input for the next flip flop. Further the D 

input for all the flip flops are tied to HIGH input. The preset 

and clear input is used to make the counter working as 

asynchronous counter. The RTL schematic diagram of the 

Branch Metric Unit is shown in figure 2.  

 

Fig 2: The RTL design of Branch Metric Unit 

4.2 Add Compare Select Unit (ACSU) 
The Add Compare Select Unit (ACSU) which adds the 

Branch Metrics (BM) to the corresponding Path Metrics (PM) 

compares the new PMs and then stores the selected PMs in 

the Path Metric Memory (PMM). At the same time, the ACSU 

stores the associated survivor path decisions in the Survivor 

Memory Unit (SMU).The PM of the survivor path of each 

state is updated and stored back into the PMM. The Block 

diagram of the Add Compare and Select unit is shown in the 

figure 3. 

 

Fig 3: The RTL design of Add Compare Select Unit 

State metric (SMi,j) and Branch Metric (BMi,j) are the two 

inputs to the Adder unit. Each butterfly wing is usually 

implemented by a module called ACS module. The two 

adders compute the partial path metric of each branch. The 
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comparator compares the two partial metrics and the selector 

selects an appropriate branch. The new partial path metric 

updates the state metric of state p and the survivor path-

recording block records the survivor path.  

The adder unit which is proposed in the design consists of two 

full adders and one half-adder. Output of the Branch metric 

unit (BMU) is added with the previous path metric and the 

obtained output is the new path metric for the next branch. 

The input sequence from a0 (1100), b0 (1001), a1 (1011), b1 

(1101), a2 (0111) and b2 (0011) are added to the adder unit. 

The 1st bit of a0 and b0, i.e. 11, is the input of half-adder and 

produces the output of the half adder operation sum1 as ‘0’ 

and carry as ‘1’.  

4.3 Selector Unit (SU) using GDIL 
The output of the comparator is given as the select signal for 

the multiplexer which is used to select the minimum path 

metric of the decoded message bit in the Viterbi decoder. The 

selector unit consist of four 2x1 MUX and the select signal for 

all the multiplexers are from the A<B output of the 

comparator. Hence the selector selects the minimum path 

metric value. The 4-bit input is a0=1101, b0=1111, a1=1101, 

b1=1000, a2=1111, b2=1110, a3=1001, b3=1110 and select line 

value is 1010. When the select line value is high i.e. ‘1’, the 

output value z0 will be b0, i.e. ‘1’. When the select line value 

is ‘0’, the output value z0 will be a0. Likewise all other input 

values z1, z2 and z3 are taken and the outputs are obtained. 

4.4 Survivor Memory Unit (SMU) using 

GDIL 
The Survivor Memory Unit is designed by using the serial-in-

serial-out shift register and the length of the shift register 

depends on the length of the convolution encoder. The figure 

4 shows the 4x4 memory unit to store the minimum surviving 

path and the clock signal of the SMU are the ACSU output for 

a constraint length of 3.  

 

Fig 4: The RTL design of Survivor Memory Unit 

The 4-bit output of the selector unit is input of the SMU. The 

SMU was designed as 4x4 shift register using D flip-flop. 

Each bit is stored in each of the D flip-flop. Similarly all the 4 

shift registers store one bit each. The input of D flip-flop and 

clock is D flip-flop GND PULSE and CLK GND PULSE and 

the output for the q1, q2, q3 and q4 are shifting depending on 

the input value of D flip-flop and clock pulse. Number of 

memory stage depends on 2k-1 where k is the constraint 

length. In this GDIL method it varies from 4 to 128 stages.  

4.5 Complete Integration of GDIL based 

Viterbi decoder 
The viterbi decoder using GDIL technique is designed by 

integrating all the units like BMU, ACSU and SMU. The 

proposed design using GDIL is shown in the figure 5. 

 

Fig 5: The RTL design of GDIL Viterbi Decoder 

Here two Branch Metric Units are used since two possible 

changes from one state to another. This BMU calculates the 

branch metric between the expected sequence (original 

random input which is ‘a’) and the received sequence 

(introduced errors which is ‘b’). Then adder unit adds branch 

metric with the previous path metric and comparator 

compares the two paths and select the least path using 

selector. The survivor memory unit stores the path metric 

value and its corresponding states using the 2x1 multiplexer 

and 2 bit shift register to get the decoded output.  

5. PROPOSED VITERBI USING DRAM 
The GDIL viterbi is also compared with our proposed 

technique, which comprises a Survivor Path Unit (SPU) 

implements a trace back method with DRAM. This proposed 

approach of incorporating DRAM stores the path information 

in a manner which allows fast read access without requiring 

physical partitioning of the DRAM. This leads to a 

comprehensive gain in speed with low power effects. 

 

Fig 6: The RTL design of Proposed Viterbi using DRAM 

As shown in figure 6 the proposed DRAM based GDIL viterbi 

is designed in Register Transfer Logic style. As in earlier 

inventions of viterbi, the main block is divided into two main 

sub-units, i.e; Add-Compare-Select (ACS) array and a 

Survivor Path Unit (SPU). Here in this proposed system the 

metric calculation, addition, weight comparison and survivor 

path selection everything take place in the ACS array 

(ACSU). Thus ACS array contains the weight values at each 
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state, as a progression along the survivor path. The weight 

values are very necessary when comparing with other weights 

of other paths, to determine the survivor path. The 

compilation and comparison functions, which takes place 

within the ACS array actually determines the path extensions. 

Signals indicating these extensions to the survivor paths are 

passed from the ACS array to the SPU, which then updates 

the survivor paths. 

Till now two methods exist for implementing the SPU: the 

register exchange method and the trace back method.          

Though the register exchange based survivor unit has better 

throughput when compared to trace back unit, but in this 

project by introducing the RAM cell between the ACS array 

and output register bank, a significant amount of reduction in 

path delay (almost 41%) has been observed.  

The Trace Back (TBU) Unit operates in the following manner. 

At each time step, the chosen transitions are stored in a 

column. One state is chosen as a starting point and then trace 

back begins. Here in this proposed system the TBU consists 

of repeated reads from the RAM cell. Each read accesses a 

column which precedes the column last accessed in same 

clock cycle. This would cause very demanding requirements 

of GDIL viterbi using DRAM for high speed applications 

though it requires larger silicon chip area.   

6. VITERBI IMPLEMENTATION ON 

RISC PROCESSOR  
Finally the fastest GDIL based viterbi decoder is implemented 

on the 64-bit RISC (Reduced Instruction Set Computer) 

processor. RISC is basically a modern style of microprocessor 

with a few old tricks from the mainframe world. In todays 

market most microprocessors are based on either RISC or 

CISC (Complex Instruction Set Computer) architecture 

technologies. Research has shown that RISC architecture 

immensely boost up computer speed by using simplified 

machine instructions for frequently used functions. In this 

case the instruction set is etched into logic circuits using 

HDLs like Verilog HDL. This instruction set is reduced to 

basic, often used commands that can be executed in a single 

machine cycle. For general purpose computers the data 

collection shows that up to 85% is spent executing simple 

instructions like LOAD, STORE and BRANCH. For further 

complexity the compiler should generate several simple 

instructions. The more complex instructions consist of a very 

small amount of overall execution time of the CPU. Therefore 

for optimization of RISC processing power and to avoid 

complex instructions, no complex addressing is allowed and 

all instruction sets act on internal register set. These fruitful 

factors make RISC an irresistible choice and most modern 

processors are built on this form factor.   

6.1 RISC Design Architecture  
The ultimate goal of the project is to design and implement a 

RISC (Reduced Instruction Set Computer) using a FPGA 

(here Virtex 4 – Target device) for high speed application. 

The RISC is characterized by 64 bit architecture having 64 bit 

registers, ALU, RAM, Counters, Control Unit, Display Unit 

and most importantly Decoders. Here the proposed GDIL 

based Viterbi decoder is replaced by ordinary decoder, and 

then implemented and synthesized by Xilinx 12.4 ISE 

software.  

        

Fig 7: Processor Design Architecture 

The following section would provide the background 

information of RISC architecture for best target processor. 

The figure 7 illustrates the processor’s 64-bit architecture and 

the ability to READ and WRITE to the external memory. The 

designed processor core consists of Registers, ALU, RAM, 

GDIL Viterbi Decoders (Proposed), Counters, Control Unit 

and Display Unit connected by a central bus denoted by Bus 

wires. Control Unit (CU) provide necessary control signals 

that allow data to be moved or copied over the Bus wires as 

well as for performing an ALU operation on the data.   

The RISC is designed using Verilog HDL. Machine 

instructions are directly implemented in hardware. For 

complex tasks to execute in a single cycle is performed by 

executing a series of basic instructions, either as in-line code 

or by calling a sub-routine.  

6.2 Complete RTL Design of RISC with 

GDIL Implementation  
Finally the target device of 64-bit RISC is designed in block 

level and synthesized. The control unit having orthodox 

decoders is replaced by proposed Viterbi using proposed 

GDIL technology.  

 

Fig 8: RTL Design of proposed RISC Architecture 
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The figure 8 shows the complete RTL design of the RISC 

processor with modifications of viterbi decoder for high speed 

applications. The backend coding is done using Verilog HDL 

and the layout is extracted by Xilinx ISE. Finally the proposed 

processor is successfully implemented in Virtex 4 FPGA.  

7. SIMULATION RESULTS  
The simulation results of orthodox viterbi, GDIL viterbi and 

proposed GDIL viterbi using DRAM are shown below. The 

simulation is mainly performed by Xilinx ISE 12.4 and 

synthesized in the FPGA [8, 9] target device: Virtex 4. The 

major constrains for VLSI design is speed, power and area. In 

this whole project all three constrains have been taken into 

account. The detail timing report and power report describes 

the delay analysis for high speed applications and low power 

for proposed Virtex [10] based viterbi decoder.  

7.1 Timing Analysis                                              
Table 1. Performance Summary (Timing) 

Timing 

Report 

Orthodox 

Viterbi 

GDIL 

Viterbi 

Proposed 

GDIL Viterbi 

with DRAM 

Target 

Device 

XA9536XL 

(Virtex 4) 

XA9536XL 

(Virtex 4) 

XA9536XL 

(Virtex 4) 

Max Clock 

Frequency 
64.516 MHz 64.516 MHz 64.516 MHz 

Min Clock 

Period 
21.400 ns 15.500 ns 15.500 ns 

Clock to 

Set up 

Cycle Time 

21.400 ns 15.500 ns 15.500 ns 

Set up to 

Clock Pad 

Delay 

87.663 ns 52.600 ns 20.800 ns 

Clock Pad 

to Output 

Pad Delay 

16.635 ns 5.800 ns 5.800 ns 

7.2 Power Analysis                                              
Table 2. Performance Summary (Power) 

Power 

Report 

Orthodox 

Viterbi 

GDIL 

Viterbi 

Proposed 

GDIL Viterbi 

with DRAM 

Target 

Device 

XA9536XL 

(Virtex 4) 

XA9536XL 

(Virtex 4) 

XA9536XL 

(Virtex 4) 

On-Chip IO 

Pads 
0.982 μw  0.001 μw 0.001 μw 

Leakage 

Power 
3.791 μw 1.010 μw 1.007 μw 

Quiescent 

Power  
2.315 μw 1.110 μw 1.007 μw 

Dynamic 

Power 
0.739 μw 0.022 μw 0.003 μw 

8. SYNTHESIS RESULTS OF VITERBI 

DECODED 64-BIT RISC 
The developed proposed viterbi decoded RISC architecture is 

simulated and verified its functionality. Once the functional 

verification is done, the RTL model [11] is taken to the 

synthesis process using the Xilinx ISE 12.4. In synthesis 

process, the RTL model will be converted to the gate level 

netlist mapped to a specific technology library [12]. This 

modified viterbi decoded 64-bit RISC design is implemented 

on FPGA (Field Programmable Gate Array) family of Virtex 

4. Here in this Virtex 4 family many different devices were 

available in the Xilinx ISE tool. In order to implement this 

modified viterbi with DRAM, the device named as 

“XA9536XL” has been chosen and the package as “FG320” 

with the device speed as “– 4 ”. The design of modified 

viterbi decoded RISC for low power [13] and high speed [14] 

is synthesized successfully and its results are analyzed as 

shown in the figure 9 below.  

 

Fig 9: Synthesize Report of Proposed Viterbi Decoded 

RISC 

After completion of synthesize the entire circuit model is 

processed through Translate, Map, Place and Route 

successfully. Finally a UCF file of the target object is created 

which is prototyped with hardware FPGA Virtex 4 hardware 

[15], through parallel connection using JTAG. Boundary Scan 

is performed followed by generation of PROM file. Finally 

the modified viterbi with RAM cell is successfully configured 

into FPGA Virtex 4 shown in figure 10. 

 
Figure 10: FPGA prototyping of Proposed Viterbi 

decoded 64-Bit RISC  

The layout of the proposed modified GDIL Viterbi decoded 

RISC is obtained shown in figure 11. 

 

Figure 11: Layout of proposed GDIL Viterbi decoded 

RISC  



International Journal of Computer Applications (0975 – 8887) 

Volume 88 – No.14, February 2014 

35 

The graphical analysis is also performed for all three viterbi 

decoders to have a complete performance summary. The 

timing - delay analysis and power analysis are shown in figure 

12 (a) and 12 (b) respectively.   
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Figure 12(a): Timing & Delay (Graphical) Analysis 
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Figure 12(b): Power (Graphical) Analysis 

9. CONCLUSION & FUTURE SCOPE 
The Add-Compare-Select (ACS) and Trace Back (TB) units 

and its sub circuits of all the three type decoder(s) have been 

operated in deep pipelined manner to achieve high 

transmission rate. Although the register exchange based 

survivor unit has better throughput when compared to trace 

back unit, but in this paper by introducing the RAM cell 

between the ACS array and output register bank, a significant 

amount of reduction in path delay has been observed. All the 

designing of viterbi is done using Xilinx ISE 12.4 and 

synthesized successfully in the FPGA Virtex 4 target device 

operated at 64.516 MHz clock frequency and reduces almost 

41% of total path delay with considerable low power results. 

The fast decoding can be achieved by our modified viterbi 

approach, which shows significant results in high speed 

applications. In future this research work can be extended by 

32nm CMOS process technology for more precise fast 

decoding results.  
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