
International Journal of Computer Applications (0975 – 8887)

Volume 88 – No.14, February 2014

30

Virtex 4 FPGA Implementation of Viterbi Decoded 64-bit

RISC for High Speed Application using Xilinx

Ritam Dutta

Dept. of Electronics & Communication Engineering
SIEM, West Bengal University of Technology

Siliguri, India

Charles Van Der Mast
Dept. of Electrical Engg., Mathematics & Comp. Sc

Delft University of Technology
Delft, The Netherlands

ABSTRACT

In the modern era of electronics and communication decoding

and encoding of any data(s) using VLSI technology requires

low power, less area and high speed constrains. The viterbi

decoder using survivor path with necessary parameters for

wireless communication is an attempt to reduce the power and

cost and at the same time increase the speed compared to

normal decoder. This paper presents three objectives. Firstly,

an orthodox viterbi decoder is designed and simulated. For

faster process application, the Gate Diffused Input Logic

(GDIL) based viterbi decoder is designed using Xilinx ISE,

simulated and synthesized successfully. The new proposed

GDIL viterbi provides very less path delay with low power

simulation results. Secondly, the GDIL viterbi is again

compared with our proposed technique, which comprises a

Survivor Path Unit (SPU) implements a trace back method

with DRAM. This proposed approach of incorporating

DRAM stores the path information in a manner which allows

fast read access without requiring physical partitioning of the

DRAM. This leads to a comprehensive gain in speed with low

power effects. Thirdly, all the viterbi decoders are compared,

simulated, synthesized and the proposed approach shows the

best simulation and synthesize results for low power and high

speed application in VLSI design. The Add-Compare-Select

(ACS) and Trace Back (TB) units and its sub circuits of the

decoder(s) have been operated in deep pipelined manner to

achieve high transmission rate. Although the register

exchange based survivor unit has better throughput when

compared to trace back unit, but in this paper by introducing

the RAM cell between the ACS array and output register

bank, a significant amount of reduction in path delay has been

observed. All the designing of viterbi is done using Xilinx ISE

12.4 and synthesized successfully in the FPGA Virtex 4 target

device operated at 64.516 MHz clock frequency, reduces

almost 41% of total path delay.

Keywords

Viterbi decoder, GDIL technique, SPU, DRAM, Add

Compare Select (ASC), Trace Back (TB), Xilinx, FPGA.

1. INTRODUCTION
The Viterbi decoding algorithm, proposed by Viterbi, is a

decoding process for convolutional codes in memory-less

noise. The algorithm can be applied to a host of problems

encountered in the design of communication systems. The

Viterbi Algorithm finds the most-likely state transition

sequence in a state diagram, given a sequence of symbols. The

Viterbi algorithm is used to find the most likely noiseless

finite-state sequence, given a sequence of finite-state signals

that are corrupted by noise.

Generally, a viterbi decoder consists of three basic

computation units: Branch Metric Unit (BMU), Add-

Compare-Select Unit (ACSU) and Trace Back Unit (TBU).

The BMU calculates the branch metrics by the hamming

distance or Euclidean distance and the ACSU calculates a

summation of the branch metric from the BMU and previous

state metrics, which are called the path metrics.

After this summation, the value of each state is updated and

then the survivor path is chosen by comparing path metrics.

The TBU processes the decisions made in the BMU and

ACSU and outputs the decoded data. The feedback loop of the

ACSU is a major critical path for the viterbi decoder. The

operations of the convolutional encoder and decoder for

constraint length of 3 are explained as follows.

The convolution encoder has a rate of ½ (k/n) with a

constraint length of 3. With an encoder, the 3 bit shift register

provides the memory and two modulo-2 adders provide

convolution operations. For each bit in the input sequence,

two bits are output, one from each of the two modulo-2

adders. The decoding procedure compares the received

sequence with all the possible sequences that may be obtained

with the respective encoder and then selects the sequence that

is closest to the received sequence. There are always two

paths merging at each node and the path selected is the one

with the minimum hamming distance, the other is simply

terminated. The retained paths are known as survivor paths

and the final path selected is the one with the continuous path

through the trellis with a minimum aggregate hamming

distance.

2. EARLIER RESEARCH WORK
Y. Zhu and M. Benaissa (2003) presented a novel ACS

scheme that enables high speeds to be achieved in area

efficient viterbi decoders without compromising for area and

power efficiency. Multilevel pipelining has been introduced

into the ACS feedback loop.

 Arkadiy Morgenshtein et al (2004) used Gate Diffusion Input

circuits for asynchronous design and compared the designs

with CMOS asynchronous design [1]. Dalia A. El-Dib and

Mohamed I. Elmasry (2004) discussed the implementation of

a viterbi decoder based on modified register-exchange (RE)

method [2]. Song Li and Qing-Ming Yi (2006) proposed a

scheme based on Verilog language for the implementation of

high-speed and low power consumption bi-directional viterbi

decoder [3]. The decoding was done in both positive and

negative direction and the delay was half of that of the

unilateralism decoder and the decoding speed was greatly

improved. Yun-Nan Chang and Yu-Chung Ding (2006)

presented a low power design for viterbi decoder based on a

novel survivor path trace mechanism. Lupin Chen et al (2007)

International Journal of Computer Applications (0975 – 8887)

Volume 88 – No.14, February 2014

31

presented a low-power trace-back (TB) scheme for high

constraint length viterbi decoder. Xuan-zhong Li et al (2008)

discussed a high speed viterbi decoder which was based on

parallel radix-4 architecture and bit level carry-save

algorithm. Seongjoo Lee (2009) presented an efficient

implementation method for parallel processing viterbi

decoders in UWB systems.

3. ORTHODOX VITERBI LIMITATION
From the literature survey, viterbi decoder is mainly used in

all communication techniques. Logic styles like CMOS,

Pseudo NMOS and Dynamic logic design of circuits at ACS

level are done [4] but the switching activity in these logic

styles are high and hence lead to high power dissipation.

Fig 1: The RTL design of orthodox viterbi decoder

In figure 1 the RTL logic design of the old orthodox viterbi is

simulated. The backend coding is done in VHDL and the

circuit is synthesized using Xilinx ISE. This viterbi provides

the delay report and power analysis report, which clearly

depicts the high power dissipation that is undesired for any

FPGA based VLSI circuit design.

4. GDIL BASED VITERBI
Gate Diffusion Input Logic (GDIL) is a technique of low

power digital for circuit design which allows reducing power

consumption, delay and area of the digital circuit. The basic

GDIL cell is similar to the standard CMOS inverter, the

differences are: (1) GDIL cell contains three inputs (2) Bulks

of both NMOS and PMOS are connected to N or P, so it can

be randomly biased at contrast with CMOS inverter. The

GDIL contains four terminals – G (common gate input of the

nMOS and pMOS transistors), P (outer diffusion node of the

pMOS transistor), N (outer diffusion node of the nMOS

transistor) and D node (common diffusion of both transistors).

The GDIL approach [5] allows implementation of a wide

range of complex logic functions using only two transistors.

This GDIL method is suitable for design of fast, low-power

circuits using a reduced number of transistors (as compared to

CMOS and existing Pass Transistor Logic techniques), while

improving logic level swing and static power characteristics

and allowing simple top-down design by using small cell

library. A simple change of the input configuration of the

simple GDI cell corresponds to very different Boolean

functions [6]. This GDIL undoubtedly reduces area as lesser

number of LUTs and CLBs are used in FPGA prototyping [7].

GDIL viterbi decoder consists of three blocks. They are

Branch Metric Unit (BMU), Add Compare Select Unit

(ACSU) and Survivor Memory Unit (SMU). All these blocks

are designed using GDIL technology, simulated and

synthesized using Xilinx ISE.

4.1 GDIL based Branch Metric

Unit(BMU)
The branch metric computation block compares the received

code symbol with the expected code symbol and counts the

number of differing bits. It consists of EXOR gate and

counter. The Branch Metric Unit is designed using the EXOR

gate and the 3-bit counter. The output of the EXOR gate is fed

as the clock input to the 3-bit counter. 3-bit counter is

designed by cascading the D FF and the output of the one flip

flop is given as clock input for the next flip flop. Further the D

input for all the flip flops are tied to HIGH input. The preset

and clear input is used to make the counter working as

asynchronous counter. The RTL schematic diagram of the

Branch Metric Unit is shown in figure 2.

Fig 2: The RTL design of Branch Metric Unit

4.2 Add Compare Select Unit (ACSU)
The Add Compare Select Unit (ACSU) which adds the

Branch Metrics (BM) to the corresponding Path Metrics (PM)

compares the new PMs and then stores the selected PMs in

the Path Metric Memory (PMM). At the same time, the ACSU

stores the associated survivor path decisions in the Survivor

Memory Unit (SMU).The PM of the survivor path of each

state is updated and stored back into the PMM. The Block

diagram of the Add Compare and Select unit is shown in the

figure 3.

Fig 3: The RTL design of Add Compare Select Unit

State metric (SMi,j) and Branch Metric (BMi,j) are the two

inputs to the Adder unit. Each butterfly wing is usually

implemented by a module called ACS module. The two

adders compute the partial path metric of each branch. The

International Journal of Computer Applications (0975 – 8887)

Volume 88 – No.14, February 2014

32

comparator compares the two partial metrics and the selector

selects an appropriate branch. The new partial path metric

updates the state metric of state p and the survivor path-

recording block records the survivor path.

The adder unit which is proposed in the design consists of two

full adders and one half-adder. Output of the Branch metric

unit (BMU) is added with the previous path metric and the

obtained output is the new path metric for the next branch.

The input sequence from a0 (1100), b0 (1001), a1 (1011), b1

(1101), a2 (0111) and b2 (0011) are added to the adder unit.

The 1st bit of a0 and b0, i.e. 11, is the input of half-adder and

produces the output of the half adder operation sum1 as ‘0’

and carry as ‘1’.

4.3 Selector Unit (SU) using GDIL
The output of the comparator is given as the select signal for

the multiplexer which is used to select the minimum path

metric of the decoded message bit in the Viterbi decoder. The

selector unit consist of four 2x1 MUX and the select signal for

all the multiplexers are from the A<B output of the

comparator. Hence the selector selects the minimum path

metric value. The 4-bit input is a0=1101, b0=1111, a1=1101,

b1=1000, a2=1111, b2=1110, a3=1001, b3=1110 and select line

value is 1010. When the select line value is high i.e. ‘1’, the

output value z0 will be b0, i.e. ‘1’. When the select line value

is ‘0’, the output value z0 will be a0. Likewise all other input

values z1, z2 and z3 are taken and the outputs are obtained.

4.4 Survivor Memory Unit (SMU) using

GDIL
The Survivor Memory Unit is designed by using the serial-in-

serial-out shift register and the length of the shift register

depends on the length of the convolution encoder. The figure

4 shows the 4x4 memory unit to store the minimum surviving

path and the clock signal of the SMU are the ACSU output for

a constraint length of 3.

Fig 4: The RTL design of Survivor Memory Unit

The 4-bit output of the selector unit is input of the SMU. The

SMU was designed as 4x4 shift register using D flip-flop.

Each bit is stored in each of the D flip-flop. Similarly all the 4

shift registers store one bit each. The input of D flip-flop and

clock is D flip-flop GND PULSE and CLK GND PULSE and

the output for the q1, q2, q3 and q4 are shifting depending on

the input value of D flip-flop and clock pulse. Number of

memory stage depends on 2k-1 where k is the constraint

length. In this GDIL method it varies from 4 to 128 stages.

4.5 Complete Integration of GDIL based

Viterbi decoder
The viterbi decoder using GDIL technique is designed by

integrating all the units like BMU, ACSU and SMU. The

proposed design using GDIL is shown in the figure 5.

Fig 5: The RTL design of GDIL Viterbi Decoder

Here two Branch Metric Units are used since two possible

changes from one state to another. This BMU calculates the

branch metric between the expected sequence (original

random input which is ‘a’) and the received sequence

(introduced errors which is ‘b’). Then adder unit adds branch

metric with the previous path metric and comparator

compares the two paths and select the least path using

selector. The survivor memory unit stores the path metric

value and its corresponding states using the 2x1 multiplexer

and 2 bit shift register to get the decoded output.

5. PROPOSED VITERBI USING DRAM
The GDIL viterbi is also compared with our proposed

technique, which comprises a Survivor Path Unit (SPU)

implements a trace back method with DRAM. This proposed

approach of incorporating DRAM stores the path information

in a manner which allows fast read access without requiring

physical partitioning of the DRAM. This leads to a

comprehensive gain in speed with low power effects.

Fig 6: The RTL design of Proposed Viterbi using DRAM

As shown in figure 6 the proposed DRAM based GDIL viterbi

is designed in Register Transfer Logic style. As in earlier

inventions of viterbi, the main block is divided into two main

sub-units, i.e; Add-Compare-Select (ACS) array and a

Survivor Path Unit (SPU). Here in this proposed system the

metric calculation, addition, weight comparison and survivor

path selection everything take place in the ACS array

(ACSU). Thus ACS array contains the weight values at each

International Journal of Computer Applications (0975 – 8887)

Volume 88 – No.14, February 2014

33

state, as a progression along the survivor path. The weight

values are very necessary when comparing with other weights

of other paths, to determine the survivor path. The

compilation and comparison functions, which takes place

within the ACS array actually determines the path extensions.

Signals indicating these extensions to the survivor paths are

passed from the ACS array to the SPU, which then updates

the survivor paths.

Till now two methods exist for implementing the SPU: the

register exchange method and the trace back method.

Though the register exchange based survivor unit has better

throughput when compared to trace back unit, but in this

project by introducing the RAM cell between the ACS array

and output register bank, a significant amount of reduction in

path delay (almost 41%) has been observed.

The Trace Back (TBU) Unit operates in the following manner.

At each time step, the chosen transitions are stored in a

column. One state is chosen as a starting point and then trace

back begins. Here in this proposed system the TBU consists

of repeated reads from the RAM cell. Each read accesses a

column which precedes the column last accessed in same

clock cycle. This would cause very demanding requirements

of GDIL viterbi using DRAM for high speed applications

though it requires larger silicon chip area.

6. VITERBI IMPLEMENTATION ON

RISC PROCESSOR
Finally the fastest GDIL based viterbi decoder is implemented

on the 64-bit RISC (Reduced Instruction Set Computer)

processor. RISC is basically a modern style of microprocessor

with a few old tricks from the mainframe world. In todays

market most microprocessors are based on either RISC or

CISC (Complex Instruction Set Computer) architecture

technologies. Research has shown that RISC architecture

immensely boost up computer speed by using simplified

machine instructions for frequently used functions. In this

case the instruction set is etched into logic circuits using

HDLs like Verilog HDL. This instruction set is reduced to

basic, often used commands that can be executed in a single

machine cycle. For general purpose computers the data

collection shows that up to 85% is spent executing simple

instructions like LOAD, STORE and BRANCH. For further

complexity the compiler should generate several simple

instructions. The more complex instructions consist of a very

small amount of overall execution time of the CPU. Therefore

for optimization of RISC processing power and to avoid

complex instructions, no complex addressing is allowed and

all instruction sets act on internal register set. These fruitful

factors make RISC an irresistible choice and most modern

processors are built on this form factor.

6.1 RISC Design Architecture
The ultimate goal of the project is to design and implement a

RISC (Reduced Instruction Set Computer) using a FPGA

(here Virtex 4 – Target device) for high speed application.

The RISC is characterized by 64 bit architecture having 64 bit

registers, ALU, RAM, Counters, Control Unit, Display Unit

and most importantly Decoders. Here the proposed GDIL

based Viterbi decoder is replaced by ordinary decoder, and

then implemented and synthesized by Xilinx 12.4 ISE

software.

Fig 7: Processor Design Architecture

The following section would provide the background

information of RISC architecture for best target processor.

The figure 7 illustrates the processor’s 64-bit architecture and

the ability to READ and WRITE to the external memory. The

designed processor core consists of Registers, ALU, RAM,

GDIL Viterbi Decoders (Proposed), Counters, Control Unit

and Display Unit connected by a central bus denoted by Bus

wires. Control Unit (CU) provide necessary control signals

that allow data to be moved or copied over the Bus wires as

well as for performing an ALU operation on the data.

The RISC is designed using Verilog HDL. Machine

instructions are directly implemented in hardware. For

complex tasks to execute in a single cycle is performed by

executing a series of basic instructions, either as in-line code

or by calling a sub-routine.

6.2 Complete RTL Design of RISC with

GDIL Implementation
Finally the target device of 64-bit RISC is designed in block

level and synthesized. The control unit having orthodox

decoders is replaced by proposed Viterbi using proposed

GDIL technology.

Fig 8: RTL Design of proposed RISC Architecture

International Journal of Computer Applications (0975 – 8887)

Volume 88 – No.14, February 2014

34

The figure 8 shows the complete RTL design of the RISC

processor with modifications of viterbi decoder for high speed

applications. The backend coding is done using Verilog HDL

and the layout is extracted by Xilinx ISE. Finally the proposed

processor is successfully implemented in Virtex 4 FPGA.

7. SIMULATION RESULTS
The simulation results of orthodox viterbi, GDIL viterbi and

proposed GDIL viterbi using DRAM are shown below. The

simulation is mainly performed by Xilinx ISE 12.4 and

synthesized in the FPGA [8, 9] target device: Virtex 4. The

major constrains for VLSI design is speed, power and area. In

this whole project all three constrains have been taken into

account. The detail timing report and power report describes

the delay analysis for high speed applications and low power

for proposed Virtex [10] based viterbi decoder.

7.1 Timing Analysis
Table 1. Performance Summary (Timing)

Timing

Report

Orthodox

Viterbi

GDIL

Viterbi

Proposed

GDIL Viterbi

with DRAM

Target

Device

XA9536XL

(Virtex 4)

XA9536XL

(Virtex 4)

XA9536XL

(Virtex 4)

Max Clock

Frequency
64.516 MHz 64.516 MHz 64.516 MHz

Min Clock

Period
21.400 ns 15.500 ns 15.500 ns

Clock to

Set up

Cycle Time

21.400 ns 15.500 ns 15.500 ns

Set up to

Clock Pad

Delay

87.663 ns 52.600 ns 20.800 ns

Clock Pad

to Output

Pad Delay

16.635 ns 5.800 ns 5.800 ns

7.2 Power Analysis
Table 2. Performance Summary (Power)

Power

Report

Orthodox

Viterbi

GDIL

Viterbi

Proposed

GDIL Viterbi

with DRAM

Target

Device

XA9536XL

(Virtex 4)

XA9536XL

(Virtex 4)

XA9536XL

(Virtex 4)

On-Chip IO

Pads
0.982 μw 0.001 μw 0.001 μw

Leakage

Power
3.791 μw 1.010 μw 1.007 μw

Quiescent

Power
2.315 μw 1.110 μw 1.007 μw

Dynamic

Power
0.739 μw 0.022 μw 0.003 μw

8. SYNTHESIS RESULTS OF VITERBI

DECODED 64-BIT RISC
The developed proposed viterbi decoded RISC architecture is

simulated and verified its functionality. Once the functional

verification is done, the RTL model [11] is taken to the

synthesis process using the Xilinx ISE 12.4. In synthesis

process, the RTL model will be converted to the gate level

netlist mapped to a specific technology library [12]. This

modified viterbi decoded 64-bit RISC design is implemented

on FPGA (Field Programmable Gate Array) family of Virtex

4. Here in this Virtex 4 family many different devices were

available in the Xilinx ISE tool. In order to implement this

modified viterbi with DRAM, the device named as

“XA9536XL” has been chosen and the package as “FG320”

with the device speed as “– 4 ”. The design of modified

viterbi decoded RISC for low power [13] and high speed [14]

is synthesized successfully and its results are analyzed as

shown in the figure 9 below.

Fig 9: Synthesize Report of Proposed Viterbi Decoded

RISC

After completion of synthesize the entire circuit model is

processed through Translate, Map, Place and Route

successfully. Finally a UCF file of the target object is created

which is prototyped with hardware FPGA Virtex 4 hardware

[15], through parallel connection using JTAG. Boundary Scan

is performed followed by generation of PROM file. Finally

the modified viterbi with RAM cell is successfully configured

into FPGA Virtex 4 shown in figure 10.

Figure 10: FPGA prototyping of Proposed Viterbi

decoded 64-Bit RISC

The layout of the proposed modified GDIL Viterbi decoded

RISC is obtained shown in figure 11.

Figure 11: Layout of proposed GDIL Viterbi decoded

RISC

International Journal of Computer Applications (0975 – 8887)

Volume 88 – No.14, February 2014

35

The graphical analysis is also performed for all three viterbi

decoders to have a complete performance summary. The

timing - delay analysis and power analysis are shown in figure

12 (a) and 12 (b) respectively.

Orthodox Viterbi GDI Viterbi GDI Viterbi RAM

0

10

20

30

40

50

60

70

80

90

<
--

--
--

--
--

--
--

--
T

im
e

 (
n

s)
--

--
--

--
--

--
--

--
>

<---------------Circuit Complexity------------->

 Min Clk Period

 Clk to Set-up Cycle Time

 Clk Pad to O/P Pad Delay

 Set-up to Clk Pad Delay

Figure 12(a): Timing & Delay (Graphical) Analysis

Orthodox Viterbi GDI Viterbi GDI Viterbi Ram

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

<-
--

--
--

--
--

--
--

P
ow

er
 (µ

W
)-

--
--

--
--

--
--

>

<--------------Circuit Complexity-------------->

 On Chip IO Pads

 Laekage Power

 Quiescent Power

 Dynamic Power

Figure 12(b): Power (Graphical) Analysis

9. CONCLUSION & FUTURE SCOPE
The Add-Compare-Select (ACS) and Trace Back (TB) units

and its sub circuits of all the three type decoder(s) have been

operated in deep pipelined manner to achieve high

transmission rate. Although the register exchange based

survivor unit has better throughput when compared to trace

back unit, but in this paper by introducing the RAM cell

between the ACS array and output register bank, a significant

amount of reduction in path delay has been observed. All the

designing of viterbi is done using Xilinx ISE 12.4 and

synthesized successfully in the FPGA Virtex 4 target device

operated at 64.516 MHz clock frequency and reduces almost

41% of total path delay with considerable low power results.

The fast decoding can be achieved by our modified viterbi

approach, which shows significant results in high speed

applications. In future this research work can be extended by

32nm CMOS process technology for more precise fast

decoding results.

10. REFERENCES
[1] Arkadiy Morgenshtein, M Moreinis and R Ginosar,

2004. “Asynchronous Gate-Diffusion-Input (GDI)

Circuits” IEEE Transactions on VLSI Systems, 12,

pp.847-856.

[2] El-Dib D. A. and M. I. Elmasry.2004, “Modified

register-exchange Viterbi decoder for low power wireless

communications”, IEEE Trans. Circuits Syst. I, Reg. 51,

pp. 371–378.

[3] Song li and qing-ming yi., 2006. ‘The Design of High-

Speed and Low Power Consumption Bidirectional

Viterbi Decoder”. Fifth International Conference on

Machine Learning and Cybernetics. pp. 3886-3890.

[4] Mohammad K.Akbari and Ali Jahanian, 2004, “Area

efficient, Low Power and Robust design for Add

Compare and Select Units,” Proceedings of the IEEE

Conferecne on EUROMICRO Systems on Digital

System Design (DSD ’04).

[5] Arkadiy Morgenshtein, Fish, and I. A. Wagner 2001,

“Gate-diffusion input (GDI) – A novel power efficient

method for digital circuits: A detailed methodology” in

Proc. 14th IEEE Int. ASIC/SOC Conf., pp. 39–43.

[6] Arkadiy Morgenshtein, M Moreinis and R Ginosar,

2004. “Asynchronous Gate-Diffusion-Input (GDI)

Circuits” IEEE Transactions on VLSI Systems, 12,

pp.847-856.

[7] F. Chan and D. Haccoun. Adaptive Viterbi Decoding of

Convolutional Codes over Memoryless Channels. IEEE

Transactions on Communications, 45(11):1389–1400,

Nov. 1997.

[8] http://www.xilinx.com/products/silicondevices/fpga/virte

x-6

[9] Denton J. Daily (2004), “Programming Logic

Fundamentals using Xilinx ISE and CPLDs,” in Prentice

Hall, 203 pages.

[10] www.xilinx.com/training/languages/designing-with-

vhdl.htm

[11] Chu C.-Y., Y.-C. Huang and A.Y. Wu, 2008, “Power

Efficient Low Latency Survivor Memory Architecture

for Viterbi Decoder”. IEEE International Symposium on

VLSI Design Automation, and Test, pp. 228-231.

[12] www.digilentinc.com/Products/Detail.cfm?NavPath=AT

LYS

[13] Man Guo, M. Omair Ahmad, M.N.S. Swamy, and

Chunyan Wang , “A Low-Power Systolic Array-Based

Adaptive Viterbi Decoder and its FPGA

Implementation”, International Symposium on Field-

Programmable Technology 2003, Vol 2, Page(s)- 276 -

279, 25-28 May 2003.

[14] Abdulfattah M. Obeid, Alberto Garcia, Mihail Petrov,

Manfred Glesner ,”A Multi – path high speed Viterbi

decoder” , Proceedings of the 2003 10th IEEE

International Conference on Electronics, Circuits and

Systems, 2003. ICECS 2003, Vol 3, Issue, 14-17 Page(s):

1160 – 1163, December 2003.

[15] www.xilinx.com/products/boards/v6conn/reference_desi

gns.html

IJCATM : www.ijcaonline.org

http://www.xilinx.com/products/boards/v6conn/reference_designs.html
http://www.xilinx.com/products/boards/v6conn/reference_designs.html

