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ABSTRACT
The error performance of the 2-tier star shaped Quadrature
Amplitude Modulation scheme over K and KG fading channels
are analyzed and evaluated. Novel closed form expressions
for Symbol Error Rate (SER) have been derived for M -ary
2-tier circular Star QAM transmitted over the K and KG
fading channels. The expressions derived are in the form of
sum of single definite integrals of hypergeometric functions
which are calculated using numerical methods. The expressions
are validated by extensive Monte Carlo simulation. A simple
relationship between SER and bit error rate (BER) is proposed
and experimentally verified. Using the expressions for SER,
the optimum values of ring ratio are calculated for various
values of M . It has also been established that the error
performance of 2-tier Star QAM is considerably superior to
that of the M -ary Square QAM for high and moderate fading.
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1. INTRODUCTION
Various statistical models are used to study the effects of multipath
fading and shadowing that severely degrade the performance of
wireless communication systems. Effects of small-scale multipath
fading on communication systems have been widely studied. The
analysis of the effect of shadowing in wireless communication
systems had been impeded by the complex mathematical form of
the log-normal distribution conventionally used to quantify this
phenomenon.
In relatively recent works the K and the KG fading models
have been found to be a suitable replacement of the log-normal
distribution to estimate the combined effects of shadowing and
small-scale fading in wireless media [1, 2, 3]. Moreover the
Generalized-K distribution is also being used to model the
effect of turbulence in free space optical (FSO) communication
channels [4, 5]. The mathematical forms of these distributions

allow closed form integration and hence system parameters can be
efficiently computed using numerical techniques. Error analysis of
lower order M -ary Phase Shift Keying (PSK) and square M -ary
Quadrature Amplitude Modulation (MQAM) schemes for K and
KG channels is found in [3, 6, 7]. Similar analysis for higher order
and complex modulation schemes are absent in literature.
M -ary QAM schemes are spectrally efficient modulation schemes
which ensures higher data rates without requiring extra bandwidth.
It has been pointed out in [8] that the widely used square MQAM
scheme will have a high chance of false phase locking in channels
where both amplitude and phase of the transmitted signal may vary
considerably. The authors in [8] have contended that the M -ary
Star QAM modulation scheme will be better suited for vehicular
environments. In [9] it has been shown that the M -ary Star QAM
scheme gives a better performance in heavy fading channels like
the Rayleigh channel and also simplifies the receiver structure as
automatic gain control (AGC) and carrier recovery are no longer
required. As given in [10], the M -ary Star QAM overcomes
the problem of high peak-to-average power ratio (PAPR) present
in square and rectangular QAM schemes. In recent academic
literature [11, 12, 13, 14] the Star QAM modulation has been
studied for applications in optical communication. Additionally in
[15] it has been pointed out that circular QAM schemes provide
better performance than rectangular QAM for quantum detection.
Error analysis of Star MQAM schemes in small-scale multipath
fading channels can be found in [16, 17, 18] but to the best of
our knowledge error rate estimation of Star QAM in shadowed
fading channels is absent in current literature. The aim of this paper
is to analyse the combined effects of shadowing and multi-path
fading on the performance of 2-tier M -ary Star QAM schemes.
The contributions of this paper are :

i. Derivation of numerically computable expressions for average
SER of Star MQAM considering the effects of both multipath
fading and shadowing.

ii. Derivation of an efficient relationship between average SER and
average BER for the 2-tier Star QAM.

iii. Proposing optimum values of ring ratio for different
constellation sizes in composite multi-path and shadow fading
channel.

iv. To compare the error performance of the Star and the Square
constellations in the discussed propagation model.

The rest of the paper has been structured as follows. In Section 2
the channel models used are discussed. The theoretical derivation
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Fig. 1. Signal constellation of 2-tier 16-ary Star QAM.

of the average SER in K and KG fading channel is shown in
Section 3. The relationship between SER and bit error rate (BER)
is given in Section 4. The optimum values of ring ratio for the
Star QAM scheme are presented in Section 5.Numerical results
and discussions are presented in Section 6; Section 7 concludes
the paper.

2. SYSTEM MODEL
2.1 2-tier Star MQAM Scheme
The 2-tier M -ary Star QAM scheme, as shown in Figure 1, has
the signalling points distributed over two amplitude levels RI and
RO and on each amplitude level there are M/2 signalling points
which are placed at a constant phase difference (4π/M). Thus a
signalling point (si) of a Star QAM constellation can be given as,

si = ri.e
jθi , (1)

where,
riε {RI , RO}

and
θi = 4πi

M
, i = 0, 1, ..., M

2
.

The signalling points are uncoded, i.e. for the 16-QAM in Figure 1
s0 = 0000, s1 = 0001, s8 = 1000 and so long. The modulated wave
is baseband transmitted over the wireless channel.

2.2 Channel Model
The uncoded dual ring M -ary Star QAM signal is transmitted
over a wireless channel along with AWGN. The signal in this
wireless channel is corrupted due to both short-term (multipath)
and long-term (shadow) fading. The short-term fading is assumed
to be slow compared to the signal variation. The received baseband
signal can be given by z = sX + n where s is the transmitted
symbol, X is a random variable following a fading statistics fγ(γ)
and n is the Gaussian distributed additive noise.
When only channel degradation due to short term fading is
considered, the probability density function of the signal amplitude
can be given by fγ(γ) where fγ(γ) can be the Rayleigh distribution

or the Nakagami-m distribution given in [19]. When long term
fading is considered, the power of the envelope which is assumed to
be constant for multipath fading varies according to the lognormal
distribution fY (y). Thus the joint pdf of the random variable X is
given as,

fX(γ) =

∫ ∞
0

fγ|Y (γ|y).fY (y)dy. (2)

But with lognormal distribution there is no closed form solution
for fγ(γ) for the envelope of the received signal power. As shown
in [1], the two parameter Gamma pdf can be used as a suitable
substitute for lognormal pdf. From [20] the Gamma pdf can be
given in terms of average SNR γ0 as,

fY (y) =
1

Γ(c)
γ−c0 yc−1 exp

(
− y

γ0

)
; y ≥ 0, (3)

where c is the shape parameter of the Gamma distribution and Γ(.)
is the gamma function [21].
Considering the envelope of the signal to follow the Rayleigh
distribution and the power of the envelope to follow the Gamma
distribution given by eqn.(3), the channel as given in [20] can be
modelled as the Rayleigh-Gamma or K distributed channel given
as a function of SNR (γ) as,

fX(γ) =
2

γ0Γ(c)

(
γ

γ0

) c−1
2

Kc−1

(
2

√
γ

γ0

)
; γ ≥ 0, (4)

where Ka(.) is the the modified Bessel function of the second
kind. The K fading channel has been generally used for RADAR
and satellite applications [22, 23]. As is evident from eqn.(4), for
the K distribution; the severity of the short term fading cannot be
changed. Hence the K fading channel is not suitable for fading
analysis where the fading characteristics vary. Thus for terrestrial
applications a more general channel model is required.
The Nakagami-Gamma orKG channel model can be used for more
generalized estimation of the combined effects of short-term and
long-term fading. The envelope of the received signal follows the
Nakagami-m distribution and the power of the envelope follows
the Gamma distribution. The KG fading distribution function, as
shown in [1, 20], can be given as a function of SNR (γ) as,

fX(γ) =
2γ0

Γ(c)Γ(m)
mmγm−1(mγ0γ)

c−m
2 Kc−m

(
2

√
mγ

γ0

)
; γ ≥ 0,

(5)
where m is the Nakagami shape parameter and m ≥ 0.5. From
[24] Ka(.) is related to the Meijer-G function Gmnpq (.) by,

xµKν(x) = G20
02

(
1

4
x2

∣∣∣∣∣ −
1
2
µ+ 1

2
ν, 1

2
µ− 1

2
ν

)
. (6)

To facilitate calculations we use eqn.(6) in eqn.(5) and rewrite the
KG distribution function as

fX(γ) =
1

Γ(c)Γ(m)

m

γ0
G20

02

(
mγ

γ0

∣∣∣∣∣ −
c− 1,m− 1

)
; γ ≥ 0. (7)

3. SER CALCULATION OF STAR MQAM IN K
AND GENERALIZED-K FADING CHANNELS

Using the simple geometric method proposed by Craig in [25],
closed form expressions for symbol error rate (SER) of dual ring
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M -ary Star QAM in AWGN channel is derived in [16] as,

Pe(γ) =
1

2π

4∑
k=1

∫ θk

0

exp [−A(θ, k).γ]] dθ, (8)

where,

A(θ, k) =
αkMsin2φk

2(1 + L2)sin2(φk + θ)
, (9)

and αk, φk and θk are geometry dependent parameters given in
[16].M is the total number of signalling points on the constellation
and L is the ring ratio [16, 17]. αk, φk and θk are either constants
or functions of M and L. The expression put forth in [16] can
be easily computed by numerical method and gives an exact
approximation of the SER for lower order M -ary Star QAM
schemes.
The SER, Pe(γ), in a fading channel characterized by the fading
distribution fX(γ), is given by,

P (γ) =

∫ ∞
0

Pe(γ).fX(γ).dγ. (10)

3.1 SER in Rayleigh-Gamma (K) Fading Channel
The average SER in the Rayleigh-Gamma (K) channel can be
obtained by substituting eqn.(4) and eqn.(8) in eqn.(10). Thus the
average SER in the K channel is the solution of integral given by,

Pe(γ0)

∣∣∣∣∣
K

=
1

2π

k=4∑
k=1

∫ θk

0

∫ ∞
0

2

γ0Γ(c)

(
γ

γ0

) c−1
2

×Kc−1

(
2

√
γ

γ0

)
× exp (A(θ, k)γ) dγdθ.

(11)

Using the relation [24]∫ ∞
0

x
m
2 e−αxKm

(
2
√
x
)

=

Γ(m+ 1)

2α

(
1

α

)m−1
2

.W− 1
2 c,−

1
2 (c−1)

(
1

α

) (12)

to compute the inner most integral of eqn.(11), the final closed form
expression for SER in K fading channel is given as,

Pe(γ0)

∣∣∣∣∣
K

=
1

2π

k=4∑
k=1

∫ θk

0

(
1

A(θ, k)γ0

)
× exp

(
1

2A(θ, k)γ0

)
×W− 1

2 c,−
1
2 (c−1)

(
1

A(θ, k)γ0

)
dθ,

(13)

where Wa,b(z) is the Whittaker function.

3.2 SER in Nakagami-Gamma (KG) Fading Channel
The average SER in Nakagami-Gamma (KG) fading channel can
be computed by substituting eqn.(7) and eqn.(8) in eqn.(10). The

average SER is the solution of the integral given by,

Pe(γ0)

∣∣∣∣∣
KG

=
1

2π

k=4∑
k=1

∫ θk

0

∫ ∞
0

1

Γ(c)Γ(m)

×
(
m

γ0

)
exp (A(θ, k)γ)

×G20
02

(
mγ

γ0

∣∣∣∣∣ −
c− 1,m− 1

)
dγdθ.

(14)

Using the relation [24]∫ ∞
0

x−ρe−βxGmnpq

(
αx

∣∣∣∣∣a1, ..., apb1, ..., bq

)
=

βρ−1Gmn+1
p+1q

(
αx

∣∣∣∣∣ρ, a1, . . . , apb1, . . . , bq

) (15)

for computing the inner most integral, the closed form expression
for SER in KG fading channel is given as,

Pe(γ0)

∣∣∣∣∣
KG

=
1

2π

k=4∑
k=1

∫ θk

0

1

Γ(c)Γ(m)
.

(
m

γ0

)

× 1

A(θ, k)
G21

12

(
m

γ0A(θ, k)

∣∣∣∣∣ 0

c− 1,m− 1

)
dθ.

(16)

Computing the average value of SER using eqn.(16) becomes
computationally expensive in MATLAB 2012 because MATLAB
exports the Meijer-G function from the MuPad utility. From [21]
we get the relation

G21
12

(
x

∣∣∣∣∣ ab, c
)

= Γ(b− a+ 1)Γ(c− a+ 1)x
1
2 (b+c−1)

× e 1
2xWk,m(x),

(17)

where, k = a− 0.5(b+ c+ 1) and m = 0.5(b− c).
Using eqn.(17) we can rewrite eqn.(16) as,

Pe(γ0)

∣∣∣∣∣
KG

=
1

2π

k=4∑
k=1

∫ θk

0

(
m

γ0A(θ, k)

) 1
2 (c+m−1)

× exp

(
m

2γ0A(θ, k)

)
×W− 1

2 (c+m−1),− 1
2 (c−m)

(
m

A(θ, k)γ0

)
dθ.

(18)

As expected, putting m = 1 in eqn.(31) we get eqn.(13). This is in
conformance to the fact that the K distribution is a special case of
the KG distribution.

4. BIT ERROR RATE ANALYSIS
In [26] it is pointed out that traditional Gray’s approximation
underestimates the average bit error rate (BER) for Star QAM
modulation. In fact Gray’s approximation provides a lower bound
(LB) for the BER. In this section we will derive a relation between
the upper bound (UB) of BER and the SER using maximum a
priori probability estimate.
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Table 1. Average Asymptotical Optimum
Ring Ratio in KG Fading Channel.

M Lopt in AWGN Average Lopt in KG
8 2.414 2.390
16 1.765 1.805
32 1.390 1.445
64 1.196 1.255

By maximum a priori probability (MAP) estimate the upper bound
of BER is given by,

Pb(u) ≤ 1

log2(M)

M∑
j=1

d(cj , cu).Aj|u (19)

where, cu is the symbol received and cj is the symbol decoded and

Aj|u = P (cjisdecoded|cuisreceived) (20)

and d(cj ,cu) is the Hamming distance between symbol cj and cu.
Under conditions of severe and moderate channel degradation it
can be assumed that in case of a symbol error all the other M −
1 symbols are equi-probable receiver output. Thus the probability
that symbol u is sent and j is decoded is given as,

Aj|u =
SER(γ0)

M − 1
, (21)

where SER(γ0) is the symbol error rate as a function of average
input SNR ( γ0 ) as given in Section3. The average SER(γ0) is
independent of j . Thus eqn. (19) can be simplified as,

Pb(u) ≤ SER(γ0)

(M − 1)log2M

M∑
j=1

d(cj , cu) (22)

Eqn. (22) can be further simplified by substituting,

M∑
j=1

d(cj , cu) = m.2m−1 (23)

where, m = log2(M) , the number of bits per symbol.
Substituting equation (23) in equation (22), Pb is given as,

Pb ≤
M

2(M − 1)
SER(γ0) (24)

Thus the average BER under conditions of severe and moderate
channel degradation is given by,

SER(γ0)

log2(M)
≤ BER ≤ M

2(M − 1)
SER(γ0) (25)

5. ESTIMATION OF RING RATIO (L)
The ring ratio (L) is a crucial parameter in the design of M -ary
Star QAM systems. In AWGN channel the optimum value of ring
ratio can be simply derived by equating the distance between a
constellation point and its neighbours, i.e. from Figure 1 we equate
the distance between s0 and s1 and s0 and s8. The relation can
be easily computed using geometric methods as given in [27] for
16-ary Star QAM. Generalizing the expression the optimum ring

ratio in AWGN is given by,

Lopt = 2.sin

(
2π

M

)
− 1 (26)

For fading channels there is no direct formula to compute the
optimum ring ratio (L). We need to employ the expressions for
SER to estimate the optimum value of L. For a given value of
SNR (γ), the value of L for which SER is minimum is computed
programmatically. This is repeated for different values of SNR (γ).
As shown in [17], the value of the optimum ring ratio assumes
an asymptotic value for higher SNR. This asymptotic value is
considered as the optimum value of L. Following this approach the
asymptotic values Lopt in the KG fading channel is computed.
The function under the integral in eqn.(31) is a hypergeometric
function and hence a direct numerical search becomes
computationally expensive and impractical. To overcome this
a combination of numerical and empirical method is utilized to
compute the asymptotic values of Lopt. Initially a few values of
SNR are chosen over a large range (0 to 50dB). As we get an
estimation of the asymptotic value of Lopt from this set of data, we
decrease our range and take equal number of data points over that
range. For example if from the first test we see that the optimum
value of L starts assuming asymptotic values from 30dB, then in
the next iteration we will decrease our range to 25dB to 40dB and
find the variation of L for minimum SER in this range. Repeating
these steps we can calculate the accurate value of Lopt for the KG

fading channel.
Obviously the value of Lopt varies with c and m. In order to
facilitate system design an average value ofLopt has been proposed
for each value of M . The values of Lopt for different values of c
and m (1 ≤ m ≤ 5, 1 ≤ c ≤ 5) are within a range of±10% of the
proposed mean values given in Table5.

6. RESULTS AND DISCUSSIONS
To establish the analytical results of Section3 extensive Monte
Carlo simulations are preformed using MATLAB. Independent
and identically distributed generalized K variates can be easily
generated by extending the method shown in [28] using Gamma
variates. Let Gθ be a gamma distributed random variate with the
probability density function,

fX(x; θ) = Γ−1(θ)x(θ−1)ex. (27)

The generalized-K random variates with parameters m and c can
then be generated by,

KG = 2p
√

(Gm ×Gc), (28)

where,

p =
1√

|c−m|+ 1
. (29)

The gamrnd(θ,1,a,b) function of the Statistical toolbox in
MATLAB can be used to efficiently generate gamma variates.
The expressions derived in Section 3 are numerically evaluated by
the adaptive Simpson quadrature formula using MATLAB 2012.
From Fig.2 ,3, 4 and 5 it is evident that the expressions derived
in Section 3 are in close agreement with the simulated results for a
wide range of input SNR. From the plots it is evident that increasing
c and/or m the SER decreases. This is at par with the general
expectation as for higher values of c and m, shadowing and fading
respectively becomes less severe.
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Fig. 2. Average SER vs. average SNR (γ0) of 8-ary Star QAM in
Generalized-K fading channel for several values of m and c (L=2.390).

Fig. 3. Average SER vs. average SNR (γ0) of 16-ary Star QAM in
Generalized-K fading channel for several values of m and c(L=1.805).

From Figure 6 and Figure 7 it is seen that the estimation of
BER using eqn.(25) is in close conformance to the Monte Carlo
simulated results for high and moderate channel degradation. The
importance of this result lies in the fact that BER is generally
considered as the figure of merit of communication systems. To
the best of the authors’ knowledge, similar analysis for the circular
QAM family is absent in current literature.

Fig. 4. Average SER vs. average SNR (γ0) of 32-ary Star QAM in
Generalized-K fading channel for several values of m and c (L=1.445).

Fig. 5. Average SER vs. average SNR (γ0) of 64-ary Star QAM in
Generalized-K fading channel for several values of m and c (L=1.255).

6.1 Comparison with Square MQAM
The SER of MQAM has been computed in [3] but the final
expression in terms of the Meijer-G function is difficult to compute
using MATLAB 2012. A close approximation of bit error rate
(BER) for MQAM in AWGN channel has been given in [29] as,

BERMQAM (γ) ≈ 0.2 exp

(
− 1.6γ

M − 1

)
(30)
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Fig. 6. UB and LB of average BER vs. average SNR (γ0) of 16-ary Star
QAM in Generalized-K fading channel for high and moderate channel
degradation (L=1.805).

Fig. 7. UB and LB of average BER vs. average SNR (γ0) of 64-ary Star
QAM in Generalized-K fading channel for high and moderate channel
degradation (L=1.255).

Following similar steps as in Section 3.2 we get the expression for
BER of square MQAM in KG fading channel as,

BERMQAM (γ0)

∣∣∣∣∣
KG

=0.4

(
m
M − 1

1.6γ0

) 1
2 (c+m−1)

× exp

(
1

2

m(M − 1)

1.6γ0

)
×W− 1

2 (c+m−1),− 1
2 (c−m)

(
m
M − 1

1.6γ0

)
dθ.

(31)

Fig. 8. Comparison of Error performance of 16-ary Star and Square QAM
in KG Fading Channel for varying channel conditions ( L=1.805 for Star
QAM ).

The BER of Star MQAM can be estimated by the analytical
expressions presented in Section 4.
In our comparitive analysis we have considered the target BER to
be 10−6. From Figure 8 it is seen that for m = 1 and c = 1
an advantage of 2.10dB is achieved by the use of Star MQAM.
Whereas for m = 2 and c = 4 the SNR advantage over Square
MQAM is 0.95 dB. From Figure 9 we find that for 64-ary schemes
the advantage provided by Star MQAM over Square MQAM is
6dB for m = 1 and c = 1 and 3dB for m = 2 and c = 4.
In light of the results it is contend that the Star MQAM scheme
gives a considerable advantage over the popularly used Square
MQAM scheme in conditions of high and moderate fading. The
advantage decrease with the decrease in the amount of fading
(increase in m or c). For very high values of m and c (i.e. for light
fading) the Square MQAM has a better error performance. It can
be noted that the results discussed here are similar in trend as the
results discussed in [9, 17] for short-term fading channels.

7. CONCLUSION
The error rate performance of coherent M -ary 2-tier Star QAM
signalling under long-term fading conditions is presented in this
paper. The expressions are in terms of finite summation of
single definite integrals of hypergeometric functions which can
be computed using numerical techniques. The paper presents a
novel approach to calculating the bit error rate of the Star QAM
scheme from the expressions of SER. The paper also establishes
the fact that Star MQAM signalling has better error performance
than Square MQAM in the K and KG fading channels. The Star
MQAM is considerably better than the Square constellation for
high and moderate fading. It can also be noted that higher order Star
MQAM gives greater advantage than its Square counterpart. Thus
it can be inferred from our analysis that Star MQAM modulation
is the better option than M -ary Square QAM for high rate data
transmission over shadowed fading channels.
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Fig. 9. Comparison of Error performance of 64-ary Star and Square QAM
in KG Fading Channel for varying channel conditions ( L=1.255 for Star
QAM ).
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Functions. Krieger, Melbourne, 1981.

[22] GA Lampropoulos, A Drosopoulos, N Rey, et al. High
resolution radar clutter statistics. IEEE Trans. Aerosp.
Electron. Syst., 35(1):43–60, 1999.

[23] D Lewinski. Nonstationary probabilistic target and
clutter scattering models. IEEE Trans. Antennas Propag.,
31(3):490–498, 1983.

[24] Izrail S Gradshteyn and IM Ryzhik. Table of Integrals, Series
and Products. Academic, New York, (1.421), 1980.

[25] J. W. Craig. A new, simple, and exact result for
calculating the probability of error for two-dimensional
signal constellations. In Proceedings of IEEE Military

15



International Journal of Computer Applications (0975 8887)
Volume 88 - No. 1, February 2014

Communications Conference (MILCOM91), pages 571–575,
McLean, VA, USA, October 1991.

[26] Lei Xiao and Xiaodai Dong. The exact transition probability
and bit error probability of two-dimensional signaling. IEEE
Trans. Wireless Commun., 4(5):2600–2609, 2005.

[27] L. N. Binh. Dual-ring 16-star QAM direct and coherent
detection in 100 Gb/s optically amplified fiber transmission:
simulation. Opt. Quantum Electron., 40(10):707–732, August

2008.
[28] D Robert Iskander and Abdelhak M Zoubir. Estimation of

the parameters of the k-distribution using higher order and
fractional moments [radar clutter]. , IEEE Trans. Aerosp.
Electron. Syst., 35(4):1453–1457, 1999.

[29] Seong Taek Chung and Andrea J Goldsmith. Degrees of
freedom in adaptive modulation: a unified view. IEEE Trans.
Commun., 49(9):1561–1571, 2001.

16


	Introduction
	System Model
	2-tier Star MQAM Scheme
	Channel Model

	SER Calculation of Star MQAM in K and Generalized-K Fading Channels
	SER in Rayleigh-Gamma (K) Fading Channel
	SER in Nakagami-Gamma (KG) Fading Channel

	Bit Error Rate Analysis
	Estimation of Ring Ratio (L)
	Results and Discussions
	Comparison with Square MQAM

	Conclusion
	References

