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ABSTRACT
Genome banks contain precious biological information that is
mostly not discovered yet. Biologists in turn are keen to precisely
explore these banks in order to discover effective patterns (such
as motifs and retro-transposons) that have a real impact on the
function and evolution of living creatures. Because the modern
genome sequencing technologies produce genomes in high
throughputs, many techniques have emerged to store genomes
in the lowest possible space. Reference-based Compression
algorithms (RbCs) efficiently compress the sequenced genomes
by mainly storing their differences with respect to a reference
genome. Therefore, RbCs give very high compression ratios
compared to the traditional compression algorithms. However,
in order to search a compressed genome for specific patterns,
it has to be totally decompressed, wasting both time and
storage. This paper introduces searching for either exact or
incomplete patterns inside the referentially compressed genomes
without their complete decompression. The introduced search
methodolgy is based on instantly searching subsequent sequences
that are partially decompressed from the compressed genome.
Moreover, the same search process is allowed to simultaneously
search for multiple patterns, thus saving more resources. The
experimental results showed noticeable performance gains
compared to traditionally searching the same compressed
genomes after their complete referential decompression.
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1. INTRODUCTION
The last decade witnessed considerable research efforts that
have been dedicated to study the genomic similarities and
differences between individuals belonging to the same species.
Examples of these projects are The HapMap Project [1], The
1000-Genome Project [2], and The Personal Genome Project
(PGP) [3]. Consequently, massive genome resequencing techniques
have been employed, resulting in very large genome banks.
These banks are growing in a pace that outperforms the current
storage technologies. Hence, the need to shrink the genomic
sequences becomes urgent. The traditional compression algorithms
cannot exploit the intensive similarities between the resequenced

genomes, and so, its resulting compression ratios are not effective.
Conversely, Reference-based Compression algorithms (RbCs)
can effectively compress genomic sequences with very high
compression ratios by basically storing the differences between the
resequenced genomes.

To search a genome that is referentially compressed, biologists
traditionally had to (1) completely decompress this genome into
file(s), (2) load it from its file(s), and then (3) search it using
some exhaustive search technique. For simplicity, this paper refers
to these three steps as the Traditional Search of Compressed
Genome procedure, (TSCG) for short. Unfortunately, TSCG takes
considerable disk storage and runtime while building the original
plain genome through a complete referential decompression
process. Moreover, it consumes more memory to load and cache
the decompressed genome. After that, it spends more runtime to
search the decompressed genome.

Wandelt and Leser [4] presented the possibility of searching
the referentially compressed genomes for strings (patterns). To
prove its feasibility, the authors have illustrated their search
algorithm over genomes that are referentially compressed using
their own Reference-based Compression algorithm (RbC) [5].
Their algorithm depends on creating a repository that contains an
index structure for the first genome, followed by the matches and
differences of each successively compressed genome (with respect
to the first genome as a reference). Because the big index structure
of the first genome usually has a significant size, their actual
compression gain takes effect after compressing approximately five
to ten genomes, where just the matches and differences of every
subsequent genome with respect to the first genome are stored.
Eventually, the repository’s overall size will be smaller than the
total size of the original plain individual genomes. Their search
algorithm is fast in searching the overall repository (all genomes)
for a given pattern, however, it cannot search a predetermined
genome. Moreover, removing an already compressed genome from
the repository is not implemented yet. Furthermore, their algorithm
does not support searching by incomplete patterns.

Chern et al. at Stanford University [6] developed an RbC that
completely avoids the index structure overhead by exploiting the
sliding window of the LZ77 algorithm [7]. For simplicity, this paper
refers to their algorithm as ”Stanford”. Stanford introduces better
compression ratios in many cases compared to the other RbCs
such as GRS [8] and GReEn [9]. In addition, Stanford compresses
every genome separately, and so, every compressed genome can
be searched individually. Moreover, the compression gains of
Stanford are directly noticeable for every compressed genome. For
example, using the hg18 human genome as a reference, Stanford
compresses the James Watson’s (JW) human genome from 2,991
megabytes (MB) down to 6.99 MB. Similarly, storing 1,000
non-compressed human genomes costs 2,991,000 MB, whereas
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Stanford compresses them into 9,974 MB with compression ratio
exceeding 99% by keeping one of them as a plain reference
genome (2,991 MB) and referentially compressing the other 999
genomes (6,983 MB) . In other words, Stanford can utilize the
same plain space of one thousand genomes (2,991,000 MB) to
store 427,469 referentially compressed genomes in addition to one
non-compressed genome as a reference.

Genome analysis algorithms usually start their work by a
preparatory step to load a part of or all the non-compressed
genomes from disk into memory. In addition to the cost of the
original disk storage, this preparatory step costs both runtime
and memory consumption overhead. Compressing genomes using
any RbC reduces their disk storage overhead, however, this
advantage will be instantly lost when an analytical algorithm
asks for a complete genome decompression in order to start its
usual work. This resource optimization problem motivated us to
think in a way to pick sequences from a referentially compressed
genome without its complete decompression. Overcoming this
problem can effectively reduce one or all of the disk storage,
memory consumption, and runtime overheads. In [10], an
algorithm, namely inCompressi, is applied to efficiently eliminate
all these overheads by performing partial decompressions of
genomes that are referentially compressed using the Stanford
algorithm. In addition, inCompressi is exploited to perform a
complete genome decompression that is more efficient than
the original Stanford’s decomresssion. Basically, inCompressi
makes a complete genome decompression through performing
successive partial decompressions of the compressed genome.
Thus, it reduces the memory consumption and the runtime
overhead resulting from managing that memory. Moreover, the
same article presented inCompressi-Blocks that works exactly
like inCompressi, but by performing partial decompressions
in relatively short fixed-length blocks. Therefore, it takes
lower runtime and memory consumption. This paper uses the
term ”inCompressi” to simply refer to the inCompressi-Blocks
algorithm.

This article introduces an enhancement to inCompressi in
order to support searching by either exact or incomplete patterns
inside the referentially compressed genomes without their complete
decompression. The enhancement introduced to inCompressi
depends on searching the blocks resulting from its subsequent
partial decompressions. So, inCompressi consumes memory that
is proportional to an individual fixed-length block, and with disk
storage just for the compressed genomes in addition to a plain
reference genome.

The following subsection mentions the possible alphabetic
characters representing the genomic sequences. The next two
subsections give a brief overview of Stanford and inCompressi.
After that, Section 2 gives more implementation details about
how the pattern search is implemented in inCompressi. The
experimental results are discussed in Section 3. Section 4 concludes
the paper and highlights interesting future work topics.

1.1 Alphabetical Representation of the Sequenced
Genomes

Genomic sequences basically consists of four chemically different
base pairs (Adenine, Cytosine, Guanine, and Thymine). These base
pairs are respectively represented by the alphabetical characters A,
C, G, and T. Because the modern genome sequencing techniques
are not exact, some base pairs of the sequenced genome may
have multiple values. According to the level of uncertainty, the
suspecious base pair is represented by a different character, namely
an ambiguity code. For example, character N represents a base pair
that is completely not recognized, while character R represents a
base pair that can be A or G, and character Y represents base
pair that can be C or T. The complete list of the fifteen possible
ambiguity codes can be found in [11]. By considering the four main
alphabetical characters, a genomic sequence with two characters

can have 42 different possible values: AA, AC, AG, AT, CA,
CC, CG, CT, GA, GC, GG, GT, TA, TC, TG, or TT. However,
when considering all the fifteen ambiguity codes, a two-characters
sequence can have one of 152 possible values. Generally speaking,
according to the exactness of the genomic sequence, a sequence
with n characters can be a pattern from 4n or 15n possible patterns.

1.2 Stanford Overview
Let X be the target chromosome to be referentially compressed
with respect to a reference chromosome Y. Stanford performs
compression by encoding the longest matches (Hs) between X and
Y, and similarly encoding the differences resulted from merging
Hs whenever possible. Differences include substitutions (Ss),
insertions (Is), and deletions (Ds) to be applied to Hs to recover
X from Y. Two sequences Xj

i and Y b
a form the longest match if

they have the same characters, and Xj+1 6= Yb+1. RC(X,Y) denotes
Stanford’s Referential Compression of X with respect to Y:

Encoded(Hs, Ss, Is,Ds) = RC(X,Y ) (1)

Conversely, X is reproduced by performing Stanford’s complete
Referential Decompression (Eqn 2). Stanford performs
decompression by firstly decoding all the matching instructions
(Hs) and all the differences (Ss, Is, Ds). It then starts building X
by copying the matches Hs from Y, and applying all differences
in their reversed order: (Ds, then Is, then Ss). Obviously, that
traditional genome decompression results in huge runtime and
storage overhead, especially if a biologist is just interested in
specific sequences of the compressed genome.

X = RD(Y,Encoded(Hs, Ss, Is,Ds)) (2)

For more details about the exact functionality of the Stanford’s
compression and decompression, please refer to [6], or alternatively
refer to subsection 1.1 to 1.3 in [10] for more illustrative examples.

1.3 inCompressi Overview
inCompressi refers to picking partial sequences from compressed
genomes or chromosomes without their complete decompression.
Moreover, inCompressi can also decompress an entire chromosome
via successive partial decompressions. The key strength behind
inCompressi is summarized in how it can efficiently re-adjust the
offset of the needed sequence to determine its location inside the
reference chromosome without the real execution of differences
preceding this sequence inside the target chromosome. In turn,
inCompressi adjusts the offsets of the differences falling inside the
picked sequence before applying them. Moreover, inCompressi can
efficiently handle cases where the needed sequence spans multiple
match instructions.

Common to Stanford decompression, inCompressi loads and
decodes the match instructions and differences of the overall
compressed genome. Unlike Stanford decompression, inCompressi
can determine the exact matching instruction(s) that contain the
queried sequence. It can then pick that sequence from the reference
chromosome, and then applies all the differences falling inside
this sequence to become an identical part of the target genome.
The key strength behind inCompressi is summarized in how it can
efficiently re-adjust the offset of the needed sequence to determine
its location inside the reference chromosome without the real
execution of differences preceding this sequence. Consequently,
inCompressi also adjusts the offsets of the differences falling inside
the picked sequence before applying them.

The reader can find more details about the inCompressi
algorithm in subsection 2.1 in [10]. Also, (Figure 1) contains
an illustrative diagram about how inCompressi operates. Using
the reference genome, inCompressi decompresses fixed-length
block(s) from the compressed genome with fast response and
low memory consumption compared to the Stanford’s complete
decompression. These blocks could further be saved to rebuild the
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Fig. 1: inCompressi’s block decompression of a referentially
compressed genome. Using the reference genome,
inCompressi starts building fixed-length blocks of the
compressed genome. Every established block could further
be processed by any genome analysis algorithm.

original genome, or alternatively, could be searched for specific
patterns.

2. METHODS
This section introduces the search techniques added to
inCompressi. Inherently, inCompressi is able to partially
decompress individual successive blocks of the referentially
compressed genome to pick either a small sequence, an entire
chromosome, or the entire genome. So, whatever inCompressi
decompresses, it can be efficiently searched by instantly searching
its decompressed blocks one by one.

2.1 Searching for Exact Patterns
The inCompressi’s search depends on performing subsequent
partial decompressions in fixed-length blocks, and instantly
searching every block using any exhaustive search technique for
possible occurrences of the given pattern. Because the given pattern
may be scattered over two blocks (starts at the end of the current
block, and ends at the beginning of the next block), inCompressi
searches every subsequent block with the tail of its previous block
concatenated. For example, given a pattern P=”ACGT” to search
for in a referentially compressed genome, inCompressi performs
subsequent partial decompressions that traverses and decompresses
the overall genome block by block. Because an occurrence of P
may be scattered between two blocks (for example, a block that
ends with ”ACG”, while its successive block starts with ”T”),
inCompressi searches for P in every successive block, but after
appending the last three characters of its preceding block to its
beginning.

2.2 Searching by Incomplete Patterns
Biologists sometimes become rationally interested in searching
genomes by incomplete patterns [11]. An incomplete pattern
contains wildcard character(s) that can be replaced by any of the
genomic base pairs (such as A, C, G, T ... etc). For example, a
pattern ”CT - AG” has one wildcard character, thus, its exact value
can be ”CTAAG”, ”CTCAG”, ”CTGAG”, or ”CTTAG”.

From one hand, for a pattern like ”CTAG - - - - - TCT”,
biologists might be interested in exploring all the existing
sub-patterns of the unknown five characters in a given sequence.

In addition, they might be interested in knowing what are the most
dominant characters in these sub-patterns, which in turn form a
dominant exact pattern (Consensus pattern). On the other hand,
biologists might be interested in knowing the occurrences of the
overall pattern regardless of the value of the five characters in
middle.

Therefore, in addition to searching for exact patterns inside
referentially compressed genomes, inCompressi allow searching
by incomplete patterns that are involved with successive wildcard
characters. This possibility is not supported neither by the
exhaustive search algorithms nor by the index-based search
technique provided in [4]. (Listing 1) shows how searching by
incomplete patterns is implemented in an efficient way so that it has
a modest effect on either the memory consumption or the runtime.
More specific, if inCompressi is searching by the incomplete
pattern P = ”CTAG - - - - - TCT”, then it divides P into two
exact sub-patterns: P1 = ”CTAG” and P2 = ”TCT”. inCompressi
can then exhaustively search for the exact sub-pattern P1 in every
decompressed block, and, for every occurrence of P1, inCompressi
skips five characters (corresponding to the wildcard characters),
then checks for the existence of P2.

Listing 1: Searching a referentially compressed genome for
incomplete patterns using inCompressi
inCompressi Incomplete Search(Pattern[0..m-1],
Compressed Genome)
{
01: hitsList = []
02: count = 0
03: dashStart = Pattern.Find(’-’)
04: dashCount = Pattern.Count(’-’)
05: dashEnd = dashStart+dashCount
06: Ptrn1 = Pattern[0..dashStart]
07: Ptrn2 = Pattern[dashEnd..m-1]
08: prevBlk = ” ”
09: foreach decompressed block Blk[0..t-1] in
Compressed Genome:
10: newBlk = prevBlk[t-(m-1)..t-1] + Blk
11: indx1 = find next Ptrn1 in newBlk
12: while Ptrn1 is found in newBlk:
13: indx2 = indx1 + dashEnd
14: if (newBlk[indx2..indx2+len(Ptrn2)] equals Ptrn2):
15: append indx1 to hitsList
16: count = count + 1
17: indx1 = find next Ptrn1 in newBlk
18: prevBlk = Blk
19: return (hitsList,count)
}

Although searching by incomplete patterns is not supported
by the exhaustive search algorithms, it is possible to exploit them
to find the same incomplete pattern P by firstly searching for all
occurrences of P1, then searching for all occurrences of P2, and
then intersecting the two lists of occurrences. This intersection only
keeps every occurrence of P1 that is followed by an occurrence
of P2 with any five characters in between. (Listing 2) shows how
searching by incomplete patterns is traditionally implemented. It
is clear that this procedure carries much more overhead compared
to either the traditional exact pattern search or the inCompressi’s
search.

Listing 2: An algorithm for traditionally searching a decompressed
genome for occurrences of an incomplete pattern.
Incomplete Pattern Search(Pattern[0..m-1], Genome[0..n-1])
{
01: hitsList = []
02: cntOfPtrn = 0
03: dashStart = Pattern.Find(’-’)
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04: dashCount = Pattern.Count(’-’)
05: dashEnd = dashStart+dashCount
06: P1 = Pattern[0..dashStart]
07: P2 = Pattern[dashEnd..m-1]
08: (HitsOfP1, cntOfP1) = Exhaustive Search(P1, Genome)
09: (HitsOfP2, cntOfP2) = Exhaustive Search(P2, Genome)
10: i = j = 0
11: while(i < cntOfP1 AND j < cntOfP2):
12: if(HitsOfP1[i] + dashEnd == HitsOfP2[j]):
13: hitsList[cntOfPattern] = HitsOfP1[i]
14: cntOfPattern = cntOfPattern + 1
15: i = i + 1
16: j = j + 1
17: else:
18: if(HitsOfP1[i] + dashEnd > HitsOfP2[j]):
19: j = j + 1
20: else:
21: i = i + 1
22: return (hitsList,cntOfPattern)
}

2.3 Simultaneous Search by Multiple Patterns
Assuming that there is enough space to completely decompress
a genome, it can then traditionally be decompressed only once,
but exhaustively searched multiple times for many patterns.
Conversely, inCompressi’s search costs performing subsequent
block decompressions of the overall genome for each given pattern.
Consequently, searching the same compressed genome for three
patterns redundantly triples the decompression cost. In order to
avoid this redundant decompression overhead, inCompressi allows
simultaneous search by a pool of patterns during one genome
decompression. Thus, for each block partially decompressed from
the given genome, inCompressi instantly searches this block for
occurrences of all the given patterns. Eventually, the total runtime
of inCompressi’s search is significantly reduced, because the
overall genome is decompressed once, but searched multiple times
for more than one pattern. In other words, the more the number of
patterns to simultaneously search for, the higher the reduction in
runtime.

3. RESULTS AND DISCUSSION
3.1 The Experimental Environment
The experiments of this article are performed using the same two
datasets used in [10]. The first dataset contains the Arabidopsis
thaliana TAIR8 (TAIR8 Website) and TAIR9 (TAIR9 Website)
genomes with approximate size of 120 MB for each. The second
dataset consists of the hg18 (HG18 Website) and the yh (YH
Website) human genomes with approximate size of 3,000 MB for
each. The TAIR experiments were performed on a machine with
an Intel Core2 Duo CPU @ 2.10 GHz with 3.77 gigabytes (GB)
of RAM. Because the human genomes are much longer than the
TAIR genomes, the human genome experiments were executed on
a machine with an Intel Core i5 CPU @ 2.50 GHz with 3.89 GB of
RAM. Both machines run on LinuxMint-14 OS, and only one core
is used by the implementated algorithm.

This section analyzes the performance of inCompressi while
searching the referentially compressed TAIR9 and yh genomes
through successive block decompressions. The experimental results
in [10] showed that selecting a specific block length depends on
how fast the architecture that inCompressi is running on, and in
turn, how well inCompressi will perform. For example, the best
block length for the ”2.10 GHz” machine was 100,000 characters,
whereas, the best block length for the ”2.50 GHz” machine was
1,000,000 characters. Therefore, the search experiments mentioned
by this article use these same block lengths.

3.2 Implementation and Validation
In general, a good implementation of an exact algorithm
has to give correct and identical results regardless of the
programming language used to implement it. Because Stanford
and inCompressi are complicated enough, they were implemented
in Python. Implementing an algorithm in Python, as an
interpreter-based language, is relatively simpler but slower
than implementing the same algorithm using compiler-based
languages (like C/C++). More details about the implementation of
inCompressi can be found at this link: http://mnassef.comuf.
com/implementations/inCompressi.php.

From one hand, in order to validate the search results of
inCompressi, the compressed genome had to be traditionally
searched after completely decompressing it (TSCG procedure). On
the other hand, to measure the performance gains of inCompressi
compared to TSCG, searching the overall genome by TSCG has
to be done using the same exhaustive search algorithm used by
inCompressi to exhaustively search the individually decompressed
blocks. This urged us to implement TSCG in Python as well. It
is worthy to note that Python searches text exhaustively using an
efficient combination [12] between both Boyer-Moore [13] and
Horspool [14] fast text search algorithms.

3.3 Searching for Exact Patterns using inCompressi
This subsection introduces an example of searching the comperssed
TAIR9 genome for an exact pattern using inCompressi. The search
results in (Table 1) show the number of occurrences (hits) as well as
the offsets of pattern ”AAACCCGGGTTT” at every chromosome
of the referentially compressed TAIR9 genome.

Table 1. : Searching the referentially compressed TAIR9 genome
for pattern ”AAACCCGGGTTT” using inCompressi.
The 1st column refers to the searched chromosome. The
2nd and 3rd columns refer respectively to the number of
hits as well as their offsets inside every chromosome.

Chromosome # of Hits Offsets of Hits

1 3 1,061,791 - 11,468,046 - 20,675,696

2 4 6,442,547 - 7,739,463 - 9,915,426 -
15,193,105

3 1 17,548,995

4 1 15,444,888

5 5 55,415 - 6,951,615 - 9,403,854 -
17,806,902 - 18,684,836

Total Hits 14

3.4 Searching by Incomplete Patterns using
inCompressi

Using inCompressi, the compressed TAIR9 genome is searched
by three incomplete patterns: ”AACCGGTT - - - AACCGGTT”,
”AACCGGTT - - - - - AACCGGTT”, and ”AACCGGTT - - - - -
- - - - - AACCGGTT”. All these three patterns have the same start
and end subpattern ”AACCGGTT”, however, they have different
number of wildcards. Each of these patterns is found exactly once
throughout the TAIR9 genome. The 1st and 2nd patterns are found
respectively with exact values ”AACCGGTTTTGAACCGGTT”
and ”AACCGGTTTTTTAAACCGGTT” at offsets
15,042,150 and 12,042,845 in the TAIR9’s 2nd

chromosome. The 3rd pattern is found with exact value
”AACCGGTTTCTCCTCAATAACCGGTT” at offset 21,618,420
in the TAIR9’s 5th chromosome.
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(Table 2) shows the number of hits, their offsets, and their
exact values of searching by pattern ”TGCGA - - - ACGCT”
at every chromosome of the referentially compressed TAIR9
genome. It is clear from the last column in this table that the
inCompressi’s incomplete-pattern search provides biologists with
a smooth investigation of the pattern they would be exploring,
especially the derivation of consensus patterns. For example, the
wildcards of the later pattern has a dominant value of ”TGA”,
because ’T’ is found 8 times as the first wildcard, ’G’ is repeated
6 times as the middle wildcard, and ’A’ exists 9 times as the last
wildcard. Hence, the consensus pattern of the incomplete pattern
”TGCGA - - - ACGCT” is ”TGCGATGAACGCT”.

Table 2. : Searching the referentially compressed TAIR9 genome
by the incomplete pattern ”TGCGA - - - ACGCT” using
inCompressi. The 1st column refers to the searched
chromosome. The next columns refer respectively to the
number of hits, their offsets, and their exact values inside
every chromosome.

Chromosome # of Hits Hit Offset Hit Value

1 2 17,531,396 TGCGATGAACGCT
29,972,472 TGCGAGGAACGCT

2 2 8,406,311 TGCGAGCAACGCT
9,116,714 TGCGATGCACGCT

3 1 10,735,231 TGCGAGGAACGCT

4 2 2,574,160 TGCGAATCACGCT
11,956,657 TGCGATCGACGCT

5 8 1,961,616 TGCGATTAACGCT
1,970,334 TGCGATTAACGCT

10,169,322 TGCGATCAACGCT
13,335,109 TGCGATGAACGCT
15,068,650 TGCGAAGGACGCT
15,708,290 TGCGAGATACGCT
17,422,227 TGCGAAAAACGCT
24,440,861 TGCGATCCACGCT

Total Hits 15 Consensus: . TGCGATGAACGCT

In addition to searching the overall genome, inCompressi
allows searching by incomplete patterns inside specific
chromosomes. For instance, searching the TAIR9’s 1st

chromosome for the pattern ”TTTTT - - - - - - - - - -
AAAAA” resulted in 1,416 different hits. The first hit is
”TTTTTAGTTGTGGCGAAAAA”, whereas the last hit is
”TTTTTGACACACCACAAAAA”.

3.5 inCompressi versus TSCG
Recall that the total disk storage used by inCompressi is only
for storing the compressed genomes in addition to the reference
genome, whereas the disk storage needed to perform TSCG is
for every distinct non-compressed genome to be searched. So,
for searching 1,000 human genomes, inCompressi can manipulate
these genomes while they are compressed in apporximate total
space of 9,993 MB (3,000 MB for a non-compressed reference
genome, and 6,993 MB for the 999 compressed genomes), whereas,
for TSCG to traditionally search the same genomes, they need to
be stored without compression in 3,000,000 MB approximately.
Moreover, for a fair comparison between inCompressi and TSCG,
it is assumed that these genomes are already compressed using
some reference genome, and that, for TSCG to traditionally search
them, it has to wait for the complete decompression of every
genome in order to be searchable.

(Table 3) and (Table 4) respectively shows the experimental
results performed on the TAIR9 and yh human genomes. In both

tables, column (a) shows the runtime of TSCG while traditionally
searching the plain genome starting by its complete referential
decompression, whereas column (b) shows inCompressi’s runtime
while directly searching the same compressed genome without
its prior complete decompression. Every pattern in those tables
has two rows showing the runtime and memory used to search
for this pattern. Column (a) of both tables is divided into
four sub-columns. The first three sub-columns have measures of
the memory consumption and runtime of the stages needed to
traditionally search a compressed genome using TSCG. The first
stage is the complete genome decompression using inCompressi.
The second stage measure the average resources needed to load the
decompressed genome into flat contiguous streams, while the final
stage measures the resources consumed to traditionally search the
entire cached genome. Finally, the forth sub-column accumulates
the runtime and memory consumed by the preceding three stages.

(Table 3) lists and (Figure 2) depicts the results of multiple
search experiments over the TAIR9 genome that has been originally
compressed using the TAIR8 genome as a reference. Searching
the compressed TAIR9 genome for any of the five exact patterns
below using TSCG took 5.44 sec on average (after adding the
decompression and caching runtimes). Alternatively, inCompressi
took 1.92 sec on average to directly search the TAIR9 compressed
genome for the same exact patterns. On the other hand, while
searching for the five incomplete patterns below, TSCG took 8.60
sec on average, whereas inCompressi took around 2.26 sec. So,
inCompressi outperforms TSCG while searching for either exact or
incomplete patterns. Regarding the memory consumption, TSCG
consumes more than 70 MB, whereas inCompressi consumes only
8 MB in normal cases. Patterns that are very common (such as
”AAAA” and ”TTT - - - - - - - - - - - - - - - - TTT”) exceptionally
consume more memory, because the more the occurrences of a
pattern, the larger the list of hits to be maintained. However,
inCompressi still consumes memory that is noticeably lower than
TSCG.

(Table 4) lists and (Figure 3) depicts the results for the same
experiments of (Table 3), but this time on the yh human genome
that has been compressed with respect to the hg18 human genome.
It is clear from (Table 4) that inCompressi is still highly compititor
to TSCG. Compared to TSCG, inCompressi’s search still has lower
runtime and memory consumption, and zero disk storage. Although
TSCG takes 463 sec on average to search for an exact pattern,
inCompressi takes only 406 sec. Searching by incomplete patterns
costs 505 sec on average, however, inCompressi takes around 402
sec on average. Regarding memory consumption, TSCG consumes
at least more than one GB of memory. In exceptional cases while
searching for very common patterns it consumes around two GB
of memory. Alternatively, inCompressi consumes around 556 MB
of memory, and in exceptional cases it still consumes memory
that is significantly lower than TSCG. So, at the worst case, if
inCompressi consumes runtime and memory as equal as TSCG,
inCompressi consumes no disk space.

It is worthy to note that the time taken to search for a pattern
differs from one pattern to another according to how many partial
or identical occurrences of that pattern exist in the given genome.
In other words, the higher the similarity of the pattern to sequences
of the given genome, the more runtime to be spent by the search
algorithm to determine whether these sequence are identical to the
given pattern. This explains why patterns such as ”AAAA” takes
more search time than searching for pattern ”ACGTACGT”.

3.6 Simultaneous Search by Multiple Patterns
By searching a compressed genome for one pattern, inCompressi
is highly competitor to TSCG with respect to both memory
consumption and runtime. However, when it comes to handling
simultaneous pattern search, TSCG can search a given genome
with multiple patterns after performing only one complete
decompression for that genome. To keep compitition with TSCG,
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Table 3. : The runtime and storage needed to search the TAIR9 genome using (a) TSCG and (b) inCompressi. Every pattern has two rows,
the 1st row shows the average runtime in milliseconds (ms), while the 2nd row shows the memory consumption in MB. Notice
that the TAIR9’s complete decompression time (2.25 sec on average) is added to the runtime of TSCG, because both TSCG and
inCompressi start working on a compressed TAIR9 genome. The runtime of inCompressi represents the overall search time inside
the referentially compressed genome.

Pattern (a) TSCG (b) inCompressi

Index Value Hits Decompression Caching Searching Total
1 TTTTTCCCCC 260

2,250 ms 2,300 ms

245 ms 4,795 ms 1,263 ms
5 MB 70 MB 8 MB

2 ACGTACGT 1,128 543 ms 5,093 ms 1,576 ms
5 MB 70 MB 8 MB

3 AACCGGTT 2,708 1,079 5,629 ms 2,120 ms
5 MB 70 MB 8 MB

4 AAACCCGGGTTT 14 1,112 5,662 ms 2,133 ms
5 MB 70 MB 8 MB

5 AAAA 2,024,672 1,465 6,015 ms 2,488 ms
24 MB 89 MB 70 MB

6 ACGT - - - ACGT 665 36 MB 29 MB 1,738 6,288 ms 1,765 ms
9 MB 74 MB 8 MB

7 ACGT - - - TGCA 985 2,000 6,550 ms 1,764 ms
10 MB 75 MB 8 MB

8 TATAT - - - - - 12 1,250 5,800 ms 1,745 ms
CGCGC 8 MB 73 MB 8 MB

9 TTTTT - - - - - 7,741 2,557 7,107 ms 1,841 ms
AAAAA 18 MB 83 MB 8 MB

10 TTT - - - - - - - - 317,053 12,669 17,249 ms 4,311 ms
- - - - - - - - TTT 107 MB 172 MB 18 MB

Fig. 2: The runtime and storage taken by TSCG and inCompressi while searching the compressed TAIR9 genome for the ten patterns listed
in (Table 3).

6



International Journal of Computer Applications (0975 8887)
Volume 88 - No. 1, February 2014

Table 4. : The runtime and storage needed to search the yh human genome using (a) TSCG and (b) inCompressi. Every pattern has two
rows, the 1st row shows the average runtime in ms, while the 2nd row shows the memory consumption in MB. Notice that the
yh’s complete decompression time (400 sec on average) is added to the runtime of TSCG, because both TSCG and inCompressi
start working on a compressed yh genome. The runtime of inCompressi represents the overall search time inside the referentially
compressed genome.

Pattern (a) TSCG (b) inCompressi

Index Value Hits Decompression Caching Searching Total
1 TTTTTCCCCC 15,831

400 sec 50 sec

4 sec 454 sec 404 sec
5 MB 1,034 MB 556 MB

2 ACGTACGT 1,855 9 sec 459 sec 396 sec
5 MB 1,034 MB 556 MB

3 AACCGGTT 3,575 16 sec 466 sec 411 sec
5 MB 1,034 MB 556 MB

4 AAACCCGGGTTT 39 16 sec 466 sec 417 sec
5 MB 1,034 MB 556 MB

5 AAAA 44,053,189 19 sec 469 sec 404 sec
1171 MB 2,200 MB 1,898 MB

6 ACGT - - - ACGT 1,850 794 MB 235 MB 22 sec 472 sec 397 sec
18 MB 1,047 MB 556 MB

7 ACGT - - - TGCA 14,042 31 sec 481 sec 389 sec
77 MB 1,106 MB 556 MB

8 TATAT - - - - - 84 18 sec 468 sec 393 sec
CGCGC 34 MB 1,063 MB 556 MB

9 TTTTT - - - - - 89,701 39 sec 489 sec 403 sec
AAAAA 157 MB 1,186 MB 556 MB

10 TTT - - - - - - - - 6,596,959 168 sec 618 sec 427 sec
- - - - - - - - TTT 856 MB 1,855 MB 745 MB

Fig. 3: The runtime and storage taken by TSCG and inCompressi to search the compressed yh genome for the ten patterns listed in (Table 4).

inCompressi allows simultaneous searching of the compressed
genome for multiple patterns. For instance, by searching the

TAIR9 genome simultaneously for all the ten patterns in (Table
3), inCompressi took around 12 sec to find all their occurrences
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instead of searching for them one by one (with multiple redundant
decompressions) in more than 21 sec. Conversely, and assuming
the need for only one complete decompression, TSCG took around
30 sec to traditionally decompress and cache the TAIR9 genome
once, and then search it for the same patterns one by one.

By simultaneously searching the yh human genome for the
10 patterns in (Table 4), inCompressi took 553 sec instead of
searching for the same patterns one by one with total runtime
4,041 sec. Considering one genome decompression (400 sec) and
one caching process (50 sec), TSCG took the total runtime of 792
sec. Moreover, inCompressi consumed zero disk storage and less
memory compared to TSCG.

4. CONCLUSION AND FUTURE WORK
This article proved how it is worthy to search the referentially
compressed genomes without their complete decompression. The
existing inCompressi algorithm is enhanced to search the individual
blocks it generates by performing partial decompressions over
genomes referentially compressed by the Stanford algorithm. Thus,
inCompressi eliminates the extra disk storage that would be needed
to traditionally store genomes after their complete decompression.
Moreover, inCompressi consumes memory that is proportional
to the length of individually decompressed blocks rather than
an entire decompressed genome. Furthermore, compared to the
traditional search procedures, inCompressi took lower runtime
to search the referentially decompressed genome, especially by
incomplete pattern. In addition, it needs no extra memory or disk
storage as would be needed by the traditional search procedures
to store a totally decompressed genome before searching it. The
inCompressi’s search experiments over versions of the TAIR
genome and the human genome showed how inCompressi is
promising. In addition, inCompressi’s runtime could be further
enhanced by utilizing the multicore technologies of the nowadays
machines. Finally, we believe that implementing both Stanford
and inCompressi with compiler-based languages could have further
performance gains compared to their Python’s implementations.
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