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ABSTRACT 

Clustering multiview data is one of the major research topics 

in the area of data mining. Multiview data can be defined as 

instances that can be viewed differently from different 

viewpoints. Usually while clustering data the differences 

among views are ignored. In this paper, a new algorithm for 

clustering multiview data is proposed. Here, both view and 

variable weights are computed simultaneously. The view 

weight is used to determine the closeness or density of view. 

Those views which have a weight less than a predefined value 

are considered insignificant and are eliminated. Variable 

weight is used to identify the significance of each variable. In 

order to determine the cluster of objects both these weights 

are used in the distance function. In the proposed method, 

enhancement to the usual iterative k-means is done so that it 

automatically computes both view and variable weights. 
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1. INTRODUCTION 

Clustering is a fundamental technique of unsupervised 

learning in machine learning and statistics. It is generally used 

to find groups of similar items in a set of unlabeled data. 

Multiview data are instances that can be represented in more 

than one ways from different feature spaces. Here the data is 

observed from multiple outlooks and in multiple types of 

dimensions. For example, in a student data set, variables can 

be divided into personal information view showing the 

information about the student’s personal information, the 

academic view describing the student’s academic performance 

and the extra-curricular view which gives the extra-curricular 

activities and achievements made by the student. 

Traditional methods take multiple views as a set of flat 

variables and do not take into account the differences among 

various views [1], [2], [3]. In the case of multiview clustering, 

it takes the information from multiple views and also 

considers the variations among different views which 

produces a more precise and efficient partitioning of data. 

Variable weighting clustering calculates a weight for each 

variable [4], [5], [6]. This weight is used to determine the 

variables that are important and those that are unimportant. In 

traditional variable weighting clustering, there are various 

methods that calculate and consider the weights for individual 

variable but do not consider the discrepancies in views in the 

case of multiview data. Thus, those methods do not provide an 

efficient or accurate clustering. In multiview data, differences 

in the views and also the importance of each variable in the 

view must be considered.  

In this paper, a new automated view reduction (AVR) 

algorithm for multiview data has been proposed. It is an 

enhancement to the usual k-means algorithm. In order to 

differentiate the effects of different views and different 

variables in clustering, the view weights and individual 

variables are applied to the distance function. Here while 

computing the view weights, the complete set of variables are 

considered and while calculating the weights of variables in a 

view, only a part of the data that includes the variables in the 

view is considered. Thus, the view weights show the 

significance of views in the complete data and the variable 

weights in a view shows the significance of variables in a 

view alone 

Fig.1 illustrates the multiview concept. Once the view weights 

are calculated, the views with weights below than the user 

given threshold is eliminated. Here a formula from an 

optimization model was derived which is used for calculating 

both view weights and variable weights. This is an extension 

to the basic    k-means clustering process. 

Fig 

1: Multiview concept 

This new clustering algorithm remains efficient in clustering 

large high dimensional multiview data because this method 

does not require any complex computations. Its computational 

complexity is same as that of basic k-means.  

The rest of the paper is organized as follows. Section 2 

provides a survey of the related work on variable weighting. 
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Section 3 gives the problem statement. Section 4 provides the 

detailed description of the proposed algorithm. Section 5 

presents the experiments and results of performance of the 

proposed method. Conclusions are given in section 6. 

2. RELATED WORK 

There are two methods for unsupervised learning of multiview 

data. In centralized algorithms, more than one representation 

is taken together at the same time in order to extract the data 

patterns. Another method is the distributed one. It first learns 

the hidden patterns in each representation separately and then 

from those multiple patterns the optimal ones are learned [7]. 

De Sa [8] proposed a two view spectral clustering algorithm 

where there are independent subsets of dimensions, each of 

which could be used for clustering. It creates a bipartite graph 

and clusters the data in each view so as to minimize the 

disagreement between the clustering in each view 

In [9], Huang et al proposed a new method called     W-K-

means that can calculate weights for variables automatically. 

The calculated variable weight is based on the importance of 

the variables in clustering. These weights can be used for 

selecting the variables in data mining applications where large 

data are involved. The optimal weights are found when the 

algorithm converges.  The computed variable weights are 

inversely proportional to the sum of the within cluster 

variances of the variable. Hence noisy variables get assigned 

with least weights and thus their impact on the clustering 

results is reduced. This method considers only individual 

variables. 

Jing and Huang [10] have proposed a new k-means type 

algorithm for clustering high dimensional objects in 

subspaces. The concept of weight entropy is used to assign 

weights to each dimension in the subset and different 

dimensions are considered to make different contributions to 

the identification of objects to the cluster. The within cluster 

scattering is brought to be the least and negative weight 

entropy is maximized at the same time so that more 

dimensions donate to the identification of a cluster. This can 

avoid the problem of identifying clusters by a few dimensions 

with sparse data.  

SYNCLUS [11] is the first clustering algorithm that used the 

concept of both view weights and variable weights. It is done 

in two steps. In the first step all the variables are assigned 

some weights randomly which is then partitioned into k 

clusters using k means. The second step computes a new set 

of optimal weights by optimizing a weighted mean-square. 

These two steps are repeated until the process converges to an 

optimal set of variable weights. This method computes the 

variable weights automatically. But the view weights are 

given by the users.  

3. PROBLEM DEFINITION 

The problem of finding clusters in variable groups and 

individual variables can be stated as follows. Let   
                be a set of n objects represented by the set 

P of s variables. Assume P is divided into Q views where 

        for r  t and    
 
     . Let 

                 
 
be a set of Q view weights, where     

indicates the weight that is assigned to the     view 

and     
 
   .Let R={Rj} be a set of s variable weights, 

where  Rj
 
 indicates the weight that is assigned to the      

variable and                   ,      
   . Assume 

that X contains k clusters from G. Along with that we have to 

find the important views from the view weight matrix  

[V ]t QV   and identify the important variables from the 

variable weight matrix R=[Rj]s . 

In the new method, the two types of weights are used for 

different aims. In W-k-means [9], the variable weights are 

used to recognize the subset of variables in which clustering 

structures occur, and eliminate the effect of insignificant (or 

noisy) variables. In the new method, we assume that the 

cluster structures occur in variable groups G and use variable 

weights Rt to identify the subset of variables in each variable 

group Gt. Meanwhile, the variable group weights V are used 

to identify the importance of cluster structures among these 

variable cluster structures. If the variable group contains 

insignificant cluster structures, a small variable group weight 

should be assigned to eliminate the effect of such variable 

groups. On the contrary, if the variable group contains 

significant cluster structures, a big variable group weight 

should be assigned so as to enhance the effect of such variable 

group. The group with weights less than a threshold value is 

eliminated and then the weight values are recalculated. These 

variable groups are termed as views. 

View weights can be easily distinguished than the variable 

weights as the number of views is much smaller than the 

number of variables. View weights are determined in the view 

level alone while the variable weights within a view will be 

determined. 

4. AVR CLUSTERING ALGORITHM 

4.1. Proposed system 

The proposed AVR algorithm is illustrated in Fig 2.It involves 

the following steps. 

1. Enter  the threshold view weight value 

2. Initialize i to 0, k centroid view weights and 

variable weights 

3. Calculate the distance of each object to each 

centroid 

4. Calculate the new values of view weight and 

variable weights based on the above calculated 

distances 

5. For  the first iteration , eliminate the view with 

weights below threshold view weight else go to next 

step. 

6. Assign the object to that cluster from which it has 

minimum distance 

7. Recalculate the centroid values 

8. If the centroid value changes then go to step 3 else 

stop the process  
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   Fig 2: Flowchart for AVR algorithm 

4.2. The optimization model 

 The clustering process to partition the X into k clusters that 

considers both view weights and variable weights is 

represented as a minimization of the following objective 

function. 

                             
    

 

   

 

 

   

    

 

   

 

             

 

   

            

 

   

 

                                                                                           
(1)
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Where U is an n x k partition matrix whose elements       are 

binary where        indicates that object i is allocated to 

cluster o.               is a set of k vectors on behalf of 

the centers of the k clusters.               are Q weights 

for Q views.        …  } are s weights for s variables.  
     

 
are two given parameters             is a distance or 

dissimilarity measure on the     variable between the     

object and the center of the     cluster.If the variable is 

numerical then                         
 . If the variable is 

categorical then                if           and 1 if     

    . 

The first term in the objective function is the sum of the 

within cluster dispersions. The next two terms are negative 

weight entropies. The two positive parameters    and  
 
are 

used to control the strength of motivation for clustering on 

more views and variables. 

The objective function can be minimized by iteratively 

solving the following four minimization problems. 

1. Problem P1: Fix C=C^,R=R^ and V=V^ and solve the 

reduced problem P(U,C^,R^,V^). 

2. Problem P2: Fix U=U^, R=R^ and V=V^ and solve the 

reduced problem P(U^,C,R^,V^). 

3. Problem P3: Fix C=C^, U=U^ and V=V^ and solve the 

reduced problem P(U^,C^,R,V^). 

Start 

Enter cluster number, threshold 

view weight 

Initialize i=0, k centroids, view and 

variable weights 

 
Calculate the distance of each object to 

each centroid 

Eliminate views with weights below 

threshold view weight and increment i 

Recalculate the view weights and variable 

weights 

Recalculate the centroids 

Assign the object to the cluster from which 

it has minimum distance 

 

If i==0 

Check if 

centroid 

moves 

Stop 
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4. Problem P4: Fix C=C^, R=R^ and U=U^ and solve the 

reduced problem P(U^,C^,R^,V). 

To solve problem 1 consider 

       (2) 

                                                                                            

 If       for       where 

 

       
    

 

   

               

and         for     

Problem 2 is solved by 

 

     
         
 
   

     
 
   

 

                                                                                           (3) 

 for      .                       

 

 

 

If the variable is categorical then         
 where   

 

 
is the 

mode of the variable values of the     variable in cluster c. 

The solution to problem 3 is given by considering the 

following. Let C=C^, U=U^ and V=V^ be fixed. 

P(U^,C^,R,V^) is minimized iff        

 

   
 
 
   

 
 

  
 
   

 
 

    

 

                                                                                           (4) 

Where 

          
    

   

 

   

             

   

The solution to problem 4 is as follows .Let C=C^, U=U^ and 

R=R^ be fixed. Then, P(U^,C^,R^,V) is minimized iff  

   
 
 
   
 

 

  
 
   
 

  
   

 

                                                                                           (5) 

where   

           
    

 

   

   

 

   

           
   

 

AVR Algorithm 

The algorithm that minimizes the objective function (1) is 

given as follows: 

 

Input: Cluster numbers k, threshold view weight Tv and the 

input parameters μ and γ 

 

Output: Finest values of U, C, V and R. 

 

Choose the cluster centers Co  and randomly initialize Vo and 

Ro 

Let t=0; 

Calculate U, C, R, V 

Prioritize the views in the order of view weights calculated 

Eliminate those views whose weights fall below Tv 

 

Repeat  

   Update Ut+1 by (2); 

    Update Ct+1 by (3);  

    Update Rt+1 by (4); 

    Update Vt+1 by (5); 

    t=t+1; 

until the objective function attains its confined least value. 

 

 

The input parameters γ and μ are used to control the 

distribution of the two types of weights V and R. We can 

show that the objective function (1) can be minimized with 

respect to v and r iff γ ≥ 0. 

If γ > 0 , according to (10), v is inversely proportional to D. 

The smaller Dt, the larger vt, the more important the 

corresponding view. If γ=0 ,this will produce clustering result 

with only one important view. It may not be desirable for 

high-dimensional data sets.  

If μ > 0, according to (8), r is inversely proportional to F. The 

smaller F, the larger r, and the more important the 

corresponding variable is. If μ=0 clustering results with only 

one important variable in a view. 

 

 

5. EXPERIMENTS ON THE 

PERFORMANCE OF AVR ALGORITHM 

 
5.1. Experimental setup 

 

5.1.1. Characteristics of Real-Life Data Set 

The Water Treatment Plant data set came from the daily 

measures of sensors in an urban waste water treatment plant 

[12]. This data set contains 527 instances and 38 features. The 

38 features can be partitioned into four views. 

The first 22 attributed that describes the input conditions 

of the plant is considered to be the first view. Attributes from 

23 to 29 portrays the output demands. Third view is illustrated 

by the attributes 30 to 34 because it depicts the performance 

input values. Final view is described by the last four features. 

 

5.2. Results and analysis 
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Below are the graphical representations of the 

clustering results. Fig 3 shows the variation in variable 

weights for varying μ values and fixed γ values. Fig 4 shows 

the variation in view weights for varying μ values and fixed γ 

values.  
 

Table 1: Variable weights vs γ value 

for fixed μ value 

 
 

 

From Table 1, it is observed that as μ increased, the 

variance of V decreased rapidly. This result can be explained 

from (eqn 4) as μ increases, V becomes flatter. The graphical 

representation of the Table 1 has been shown below. 

 

Fig 3: Variable weights vs γ value for fixed μ value 

 

 

Table 2: View weights vs μ value for 

fixed γ value 

 

 
 

Table 2 shows that as γ increased, the variance of 

view weights decreased rapidly. This result can be explained 

from (eqn 5) as γ increases, W becomes flatter. The graphical 

representation has been shown below. 

 

 

 
Fig 4: View weights vs μ value for fixed γ value 

From above analysis, it can be summarized that the following 

method can be used to control two types of weight 

distributions in AVR by setting different values of γ and μ. 

The experiments have been conducted for three different 

values of μ and γ for varying values of γ and μ respectively. 

 

 Large μ makes more variables contribute to the 

clustering while small μ makes only important 

variables contribute to the clustering. 

 Large γ makes more views contribute to the 

clustering while small γ makes only important 

views contribute to the clustering. 

    

Table 3: Comparison of accuracy rates of 

dataset considering all views 

 

 

 

 

 

 

 

 

From Table 3 it is observed that the clustering accuracy of 

AVR is better than WK-Means and EW-K-Means. It is 

observed that as the number of objects increases the accuracy 

of the proposed algorithm remains efficient than the other 

two. The graphical representation of the Table 3 is plotted 

below 

 

To sum up, it is possible to control two types of weight 

distributions in AVR by setting different values of γ and μ and 

AVR is superior to the other two clustering algorithms in 

clustering multiview data. 

 

Table 4: Clustering accuracies of dataset after view 

reduction 

 

The accuracies of the four clustering algorithms with the 

computed cluster centers and weights are shown in Table 4. In 

comparison of the clustering accuracies in Table 4 with the 

clustering accuracies in Table 3, k-means, EW-K-means and 

W-K-means were improved after removing the least weighted 
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μ 

γ=1 

γ=4 

γ=12 

Algorithms Clustering accuracy % 

k-means 

W-k-Means 

EW-k-Means 

AVR 

0.921 

0.947 

0.964 

0.968 

Algorithms Clustering accuracy % 

k-means 

W-k-Means 

EW-k-Means 

AVR 

0.921 

0.943 

0.951 

0.966 
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view. Among these algorithms, EW-K-means resulted in a 

significant increase. The other three clustering algorithms kept 

similar clustering accuracies as the clustering accuracies on 

the full data set. This indicates that cluster structures were 

made more obvious after removing the insignificant view. 

6. CONCLUSION 

In this paper, an efficient algorithm for clustering multiview 

data has been proposed. It can compute weights for views and 

individual variables simultaneously in the clustering process. 

With the two types of weights, dense views and significant 

variables can be identified and effect of low-quality views and 

noise variables can be reduced. The insignificant views are 

eliminated based on the input threshold weight. Therefore, 

this algorithm can obtain better clustering results than 

individual variable weighting clustering algorithms from 

multiview data. The performance of the AVR algorithm is 

compared with two other clustering algorithms and the results 

have shown that the proposed algorithm significantly 

outperformed the other clustering algorithms. It also 

compared the effect of control parameters on the view weights 

and variable weights. 
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