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ABSTRACT

Network coding (NC) techniques for lossy wireless networks have
been used for fault-tolerant and timely delivery of streaming video
data. Recent research on inter-session NC notwithstanding, reliable
transmission of high quality media over wireless networks contin-
ues to be a challenge. The effects of traffic and network dynam-
ics on coding block size and thereby on latency added at playback
were studied, and the interaction of congestion control on the cod-
ing technique to remedy this were examined. Simulations show an
inherent latency in video playback when TCP with random linear
NC is employed as the receiver needs to wait for a certain number
of packets to arrive before they are decoded. This paper presents
an adaptive NC algorithm based on the nature of video stream-
ing traffic and the available transmission opportunity to improve
streaming performance with lower latency and reduced jitter in case
of streaming TCP traffic. This algorithm is constructed under the
constraint of available transmission opportunities and arriving traf-
fic. The simulation results corroborate that the proposed adaptive
NC algorithm reduces observed latency at playback by more than
90% over traditional TCP and more than 60% over simple NC tech-
nique. Additionally, the observed jitter reduced by 70% over only
TCP and about 60% over fixed bucket size NC. To demonstrate
the utility of our approach, the proposed algorithm was compared
with TCP’s performance for a real-world video trace. Results from
this experiment indicated an 80% reduction in end-to-end latency.
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Reliable multimedia streaming, Low latency media delivery, Network cod-
ing

Keywords:

Bucket size, congestion control, finite field, intra-session network
coding, latency, linear network coding, ns-3, streaming media,
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1. INTRODUCTION

Demand for multimedia streaming has been rising exponentially
with the rise in on-demand and streaming video applications like
NetFlix, Hulu and Youtube as well as multi-party gaming. Al-
though, several techniques have been applied to improve the per-
formance of streaming multimedia applications [1], [2], adding the
dynamic nature of the wireless channel introduces challenges such
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as strict timeout deadlines and limitations to bandwidth availability
as well as delay and jitter [3]].

Typically, widely used services like Youtube use HTTP with TCP
to deliver streaming media [4]. TCP significantly degrades the per-
formance for interactive video applications like video conferencing
since the three-way handshake and congestion control would
cause undesirable delay [5]. Yet, most of the internet streaming
traffic uses HTTP and HTTP traffic uses TCP due to its reliability.
Despite TCP being ideally suited to wired networks and presenting
several challenges to its use in wireless networks, random packet
erasures being one of them, it remains one of the dominant types
of traffic in the internet [6]]. Packet erasures are one of the primary
causes leading to excessive delay and buffering at the receiver [1]].

One of the approaches to provide resilience to packet erasures in-
cludes layered coding where the media content is transmitted in
layers in order to account for low bandwidth conditions [7], 8. It
has been demonstrated that network coding masks random losses
from TCP and prevents the congestion control to be triggered for
non-congestion related packet losses [9]]. Network coding is an
error-correction and throughput improving technique where pack-
ets from same flow or different flows can be combined and trans-
mitted as payload without losing any information [[10]]. Based on
the approach defined in linear network coding [[11]], the actual data
is represented in the form of symbols from a finite field of size 2% or
216, Linear algebraic coefficients are randomly chosen from the fi-
nite field and are then combined along with the data bits to form the
corresponding set of network codes. Consider a set of N messages,
m;, where s € Z and 0 < ¢ < N and q; is the set of linear alge-
braic coefficients randomly chosen from a finite field /' associated
to message, m;. Then the set of output codes can be represented by
y; where:

N
yi =y a;xm, ey
1=0

It has been shown [11]] that in order to be able to decode N
messages with a high probability, /V linearly independent network
codes need to be received which form a full rank matrix at the
receiver. However, in order to account for packet losses, we need
to send redundant packets. Thus, in order to be able to decode all
N messages successfully, I' « N number of packets are sent where
I" is the redundancy factor maintained anywhere between 1 and
1.5 [9]]l. The value of N is usually fixed and is called the bucket
size. In the case of video streaming with network coding, the video



content that is present in the video source buffer is segmented by
the TCP layer and the network coding layer then combines N such
segments and sends N or more combinations to the destination.

Some of the first few papers on network coded TCP [9], [12]
prove the effectiveness of network coding for TCP traffic by
modifying the behavior of the acknowledgment process in TCP
to improve the overall throughput of the system, at the cost
of a decoding delay at the receiver. Recent research has fo-
cused on using inter-session network coding and demonstrated
its potential advantages for high quality streaming media [[13]], [14].

This paper analyzes the interaction between TCP (New Reno) and
an intra-session network coding module inserted in the network
stack to improve the video quality. Latency and jitter are consid-
ered as quality evaluation metrics as they represent the fidelity of
streaming data. A key problem is identified that is caused due to
the congestion control nature of TCP and also provide a simple
heuristic update algorithm to mitigate the specified problem. With
the help of simulations, significant improvement in latency and
jitter is observed at video playback for TCP traffic coupled with
network coding.

Section II on related work, summarizes different solutions that have
been proposed to overcome the challenges associated with deliver-
ing streaming video data over wireless networks. Section III de-
scribes our system model and assumptions. Section IV presents the
analysis, implementation details and results observed for different
scenarios followed by inferences. The future work arising from this
work is discussed in section V followed by the concluding section
VL

2. RELATED WORK

One of the seminal works on quality video streaming over wireless
networks [1] illustrates that packet level redundancy can be
achieved by using erasure codes. Redundancy and robustness for
streaming video have been achieved by layered and descriptive
coding techniques, which provide an incremental improvement in
the quality of streaming video which varies based on the type of
packet losses incurred and the available bandwidth [7]], [8].

Another form of erasure correction, network coding can also be
used to improve the performance of video streaming services [15].
The use of network coding for multimedia, especially video stream-
ing, has been shown to provide error control and also delay opti-
mized delivery of video content [[13]. An approach to combine both
layered coding and network coding was evaluated in [[16] and has
been shown to negatively impact the video content delivery of the
system, evaluated based on the number of layers of video decoded
by the receiver. [[15]], provides an extensive overview of the interac-
tion between network coding and media streaming applications and
illustrates the advantages of network coding for streaming content
delivery in Peer-to-Peer (P2P) streaming and priority based stream-
ing with suitable examples. A novel perspective on video stream-
ing was presented in [|17]], where an optimization framework was
designed based on the cost constraint of minimizing initial start-up
delay and interruptions while streaming. Although, network cod-
ing was used, it was mainly designed for P2P networks. They
also showed that there was a trade-off in achieving interruption-
free streaming, by buffering packets and the initial start-up delay.
Another paper on buffering analysis for intra-session network cod-
ing [[18]) investigates the effect of number of packets combined, also
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Fig. 1. System model depicting the video source and receiver’s network
stack; The arrows indicate the direction of packet flow along the stack

known as the generation (or bucket) size on the performance of the
system for video streaming sessions but again it primarily focuses
on multicast sessions while many of the internet based streaming
applications involve unicast traffic. A recent paper on coded TCP
[19] mimics the behaviour of TCP in the user space to achieve
high throughput for lossy environments. However, their approach
uses the delay bandwidth product to determine the coding block
size which does not factor in the nature of the arriving traffic. To
the best of our knowledge, none of the other work has explored
the impact of TCP’s congestion control coupled with intra-session
network coding for unicast video streaming sessions in a wireless
network focussing on providing low latency and jitter. The paper
addresses this by the following:

(1) Observing and identifying the cause for latency at the receiver.

(2) Providing a solution to the problem, reducing the latency prob-
lem introduced due to network coding.

(3) Demonstrating latency and jitter improvement caused due to
the modified network coding algorithm for both simulated and
real-world traffic traces.

3. SYSTEM MODEL AND ASSUMPTIONS

Consider a multihop wireless network where the video server
(source) node is responsible for generating and streaming video
traffic to the end user. Video traffic can be mainly categorized into
two types: video conference and full motion video. In case of a
video conference type traffic, a steady bit-rate traffic is generated
while full motion video creates a sequence of variable bit-rate
traffic. A rapidly changing background creates a high bit-rate
traffic while a steady background or a highly correlated set of
consecutive video frames causes a low bit-rate traffic [20]]. In our
experiments, we also use actual traces captured from stored videos
in MPEG4 format for realistic evaluation of our algorithm [21].
Assume a time slotted system and the server uses TCP as a trans-
port protocol to provide reliable video transmission. The system
model can be seen in figure [I} The server generates network
coded packets by performing intra-session network coding using
random linear packet combinations. The gateways simply forward
these network coded packets which are eventually decoded by the
decoder module present in the NC layer of the receiver/end user
using Gaussian Elimination technique. The decoded packets are
passed upto the playback buffer to maintain a steady rate of video



playback. The playback buffer is responsible for steady playback
of received video content. We assume that the video playback
occurs at a constant rate and there are no deliberate pauses caused
by the user. We also assume that there is negligible delay between
decoding the arrived coded packets and sending the decoded
packets up to the playback buffer.

The following subsections describe the cross layer communication
process between the TCP layer and the network coding layer for a
streaming video application.

3.1 Traditional TCP

In the slow-start phase of TCP congestion control, the value of the
congestion window rises exponentially with the reception of every
ACK received. However, for an uncongested channel, the source (if
it has data to send) should be able to send more data than the up-
dated congestion window size. It has been shown [6] that TCP mis-
interprets the random packet losses due to wireless channel fading
as congestion in wireless networks. As a result, congestion control
mechanism is triggered which leads to an undesirable reduction in
source sending rate. To avoid this undesirable control mechanism,
the MAC layer in the intermediate nodes initiate the automatic re-
peat request (ARQ) retransmission process that prevents some of
the link losses from being acknowledged as congestion [22]. These
retransmissions do not affect the source sending rate, but they do
add an unnecessary delay in data delivery.

3.2 TCP with network coding

A network coding layer is inserted in between TCP and IP
layers that creates coded packets from the TCP segments passed
down the stack. The operation of simple random linear network
coding with TCP can be explained by considering 2 scenarios.
Consider N TCP packets in the buffer where k is the bucket
size and cwnd represents the congestion window. For N > k, k
packets are combined together and I" * k packets are transmitted.
Since the operation is agnostic of the size of cwnd, the sending
rate control is not achieved as optimally as TCP alone would
normally do. In the second scenario, when N < k, in order to
account for the fixed k& packets, the network coding layer inserts
zero payload packets. These zero payload packets satisfy the
network coding process, but when they reach the receiver’s buffer
and are decoded, not all k£ packets have valid information to be
decoded by the video playback. As a result, the video playback
buffer needs to wait longer to receive the next valid video data,
thus adding latency at the playback for such zero payload instances.

In this paper, a variable bucket size k is proposed to resolve the
issue of added latency that lead to interruptions in service. To un-
derstand the problem, consider the following setup where the ap-
plication generates 512 bytes of data at 500 kb/s with a 60% duty
cycle and a fixed bucket size of two packets (and redundancy fac-
tor of one), which causes each TCP segment to become 536 bytes
long. Initially, the source generates 2048 bytes of video content.
The sender sends two coded packets of size 536 bytes each before
receiving an ACK for receiving two data packets causing an update
in the congestion window. In the meantime, the amount of video
content added by the source has gone to 1584 bytes (as 1072 bytes
have been received and 512 bytes are added to the source queue as
seen in the figure @) The size of the congestion window increases
to four packets. So, now, the sender sends two coded packets, and
forms another set of two coded packets (without waiting for an
ACK), one of which is a random zero payload packet. The prob-
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Fig. 3. Latency of video data reception at the playback buffer over simu-
lation and effect of zero payload packets on latency for a fixed bucket size
of four

lem arises because the update in congestion window has no effect
on the bucket size which leads the network coding layer to create
zero payload packets (in the absence of actual video payload) to
account for the bucket size.

In the figure EL it can be seen that adding network coding has cre-
ated instances of zero payload packets being received at the video
playback which when superimposed over the latency observed for
the entire simulation of 300 seconds, indicates that the latency in re-
ceiving valid video data is relatively higher when the zero payload
count increases. This can be seen from the secondary vertical axis
that indicates the increment in the number of zero payload packets
sent.

3.3 Variable Bucket Size Intra-Session Network
Coding

The objective is to ensure that no such zero payload instances
occur that will lead to undesirable latency at the video playback.
We propose that if the bucket size is dynamic, dependent on the
amount of data available and adaptive to network conditions, there

— ZeroPayloadCount



will be no additional packets required to satisfy the constraint
placed by the network coding algorithm. In essence, no zero
payload packets are created which ensures that no latency is added
by the network coding algorithm’s constraints.

Initially, the bucket size is kept at 1, which means that the
source node attaches only a single algebraic coefficient to form
a network coded packet for transmission. On receiving an ACK,
the congestion window is updated (increased) and the bucket
size also increases based on the number of packets waiting to be
transmitted at the sender. An increased congestion window implies
an increase in the available transmission opportunity and more
packets are drawn from the source video queue. The bucket size
that determines the number of packets to be combined to form
network coded packets is now calculated based on the available
transmission opportunity and the amount of data present in the
source video queue. Instead of a predetermined fixed bucket size,
we now use the following pseudo code to determine the number of
packet combinations to be sent across the network from the source.
Let the available window be represented by w, the TCP buffer size
by b and data in bytes still flight, that are still to be acknowledged
be represented by unack.

if w > (b — unack) then
bucketSize + (b — unack)/maxPktSize
else if w < (b — unack) && w > unack then
bucketSize + (w — unack)/mazxPktSize
end if

With this modification to the block based encoding scheme, the
bucket size becomes dynamic and dependent on the available pack-
ets at the source. As a result, the source node does not wait for pack-
ets to arrive before encoding and for a given transmission window,
more packets are picked from the video source queue and encoded
using random linear coding. We, then, check if the available trans-
mission window is greater than the size of the video source queue.
In our algorithm, we only consider the size of the video data queued
at the TCP layer that are waiting to be transmitted which can be
seen from the formula in the above pseudo code. As more pack-
ets arrive at the source queue from the application layer, the bucket
size varies to accommodate for the increase in load and prevents
excessive buffering at the source. When there are random losses in
the network, the losses are masked from the sender and the source
sending rate is unaffected because the coded packets sent ensure
that as long as innovative packets are received, an ACK is sent to
acknowledge the increase in the degree of freedom, keeping TCP
unaware of any packet loss. When congestion in the network oc-
curs, which is indicated by a missed ACK or 3 duplicate ACKs, the
bucket size is adjusted based on the updated congestion window,
which takes into account the missing degrees of freedom. Now, the
available transmission opportunity reduces causing a decrease in
the bucket size and slowing down the sending rate at the source.

4. PERFORMANCE ANALYSIS
4.1 Implementation

This section presents the ns-3 simulator’s framework used to test
the proposed system. The network coding module implemented in
C by Keller [23] was used as a building block to insert between
the TCP and IP layers of the stack. The following sub-section sum-
marizes the network coding module used and the integration of the
network coding module in ns-3 is summarized in subsequent sec-
tions.
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4.1.1 Random Linear Coding. The network coding module used
for the evaluation was implemented using an existing model based
on random linear network coding [23|]. This module is responsible
for creating a finite field, GF (2!°), forming encoding coefficients
and global coefficient matrix based on the block size and the de-
coder. Using Gaussian elimination technique, the decoder decodes
the received packets successfully if the received encoded packets
are linearly independent.

4.1.2  Integration into ns-3. The placement of the network
coding layer in the stack was decided based on the amount of
complexity added in the implementation. If the network coding
layer was implemented directly on the application layer packets,
then it would not be able to mask the random packet losses due
to the wireless channel from the congestion control action of
TCP. Thus, the network coding layer was chosen to be inserted
in between the transport and IP layer. The intermediate nodes are
unaware of the presence of the network coding layer as they will
simply forward the packet after checking the MAC. ns-3 facilitates
quick integration of a new module due to salient features like
helper modules and highly detailed PHY, MAC and the rest of the
network stack [24].

Packet reception is summarized in figure 4| The TCP ACKs are
modified to indicate the reception of cumulative number of innova-
tive packets, known as the degree of freedom enabling faster pro-
cessing which still serves the purpose of flow control. The network
coding header allocates 8 bits to inform the receiver of the bucket
size decided at the sender. The elements of the network coding
header are as shown in the figure[5] The random seed in the header
is used to ensure that the receiver uses the same finite field as the
sender for successfully decoding the packet.

4.2 Simulation

Experiments are performed in case of a 3 node network as well as
a larger network with increased traffic to demonstrate the effect of
the congestion control mechanism and its dynamics on the perfor-
mance of the system. The 3 node network is a string topology with
a sender (video server), a receiver (end user) and an intermediate
node (gateway). The large network consists of 20 nodes randomly
placed on a 100*100 area. The simulation setup has been tabulated
in[I} The packet error model for the wireless channel in ns-3 is
based on [25]. The system has been first evaluated based on the
proportion of zero payload packets received out of the total packets
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Table 1. Simulation Setup

Parameter Description/Value

Number of nodes 20

Mobility Static

Routing AODV

Propagation Loss Friis

PER model NIST Error model [25]
Video source VBR traffic generator in ns-3
Max. application packet size | 1472 bytes

Mean application data rate 1 Mbps

received, leading to latency at the end user’s playback buffer. The
effects on latency and jitter observed at the end user’s playback
buffer for the corresponding approaches are analyzed. It is further
demonstrated that the latency observed for real-world video stream
traces using our approach is significantly lower than that observed
on TCP and TCP with fixed bucket size network coding.

4.3 Numerical Results

4.3.1 3-Node Topology. Consider a 3 node string topology where
the intermediate node is only responsible for forwarding the pack-
ets. The sending node is the only traffic generating node in the net-
work and, thus, it is never congested. After the initial increase in the
transmission window, the available transmission opportunity does
not vary significantly for the duration of the entire simulation of
300 seconds. In this scenario, for a fixed bucket size of two, it is
observed that as the available transmission window changes, zero
payload packets are created. With the proposed variable bucket size
based network coding, all zero payload packet occurences are re-
moved. The evolution of the congestion window is superimposed
on the performance graph as seen in the figure []to show the effect
of varying congestion window on the performance of the system.
As the change in the congestion window is agnostic to the availabil-
ity of data at the video source, there is a mismatch in the number
of packets available for transmission with an increase in the trans-
mission opportunity. This is not taken care of by the fixed bucket
size approach while the variable bucket size scheme adapts itself to
available traffic and the size of the transmission window.

4.3.2 Large Network Topology. Consider a network with 20
nodes randomly placed where several nodes are communicating
with each other and there are multiple types of traffic flowing in the
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Fig. 6. Comparison of number of zero payload occurrences for fixed and
variable bucket size network coding for a simple 3 node network

Table 2. Parameters of different traffic in the experiment

Parameter CBR Traffic | Web browsing | Bulk file transfer
Transport Layer UDP TCP TCP

Data Rate (Mbps) 1 2 2

Max. file size (Bytes) 512 1400 100000
Source node 1 3

No. of hops to sink 4 3 5

network. To introduce congestion in the network, we create three
other applications, a constant bit rate traffic on UDP, a web brows-
ing session using HTTP and bulk file transfer using TCP together
with the VBR traffic in the network. The parameters used for the
different traffic types are as shown in the table[2]

In highly dynamic network conditions, the available transmission
window is not stable for long (as can be seen from figure[7), conse-
quently leading to a large number of zero payload packets being re-
ceived. On the other hand, the dynamic nature of the channel has a
negligible effect on the performance of the system with our variable
bucket size based network coding approach. With frequent changes
in the size of the congestion window, the fixed bucket size approach
suffers from excessive number of zero payload occurrences which
is not observed on the variable bucket size approach.

4.4 Evaluating latency and jitter

One of the key performance metrics for a video streaming sys-
tem is the latency. Latency is defined as the time it takes for the
server’s video application packet to travel down the stack from the
application layer and be delivered to the application layer at the
receiver [20], [[13]]. Since, we are evaluating our algorithm’s perfor-
mance, we consider the time taken only after the video encoding
process at the application layer to calculate the latency as we don’t
impose any constraints on the video encoding overhead in the appli-
cation layer. In figure [8] we observe that the latency in delivering
the video data reduces to almost 1/10*" of that caused by using
the traditional TCP transport. The added latency is due to packet
erasures caused in the wireless channel. However, with the vari-
able bucket size, the latency further reduces showing a reduction of
almost 1/100%" compared to traditional TCP. This significant im-
provement provided by the variable bucket size algorithm can be
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600 In order to obtain a realistic perspective on these metrics, a real-
world video trace is used that is an MPEG4 encoded file [21]]. The
500

f parameters of the video data used to test our algorithm are in the

| table [3] For “Silence of the Lambs”, as the packet sizes are larger

’ compared to our VBR traffic generator in ns-3, significant latency

i is observed for TCP and TCP with fixed bucket size network cod-

( IJ\ 11, L ] ﬂ ing as can be seen from the figure [0} However, due to the adaptive

f nature of the variable bucket size algorithm, larger packets are han-

dled quickly and thus, the overall latency at the application layer of

\ the end user is almost always below 250 ms, except initially where

the latency is high due to the slow-start nature of the TCP conges-
tion control.

&
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g
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—T® —Fixedbucketsize — Variable budket size Since latency and jitter are two important performance metrics that

quantify the performance of a video streaming service [[I7]], we de-

Fig. 8. Comparison of video data delivery latency for TCP, TCP with fixed termined the jitter for only TCP and TCP with both fixed and vari-
bucket size and variable size network coding for the large network topology able bucket size network coding. When plotted against the total
simulation time (ﬁgure@) it can be seen that the jitter for variable

Table 3. Parameters of “Silence of the bucket size network coding is the least of all the other techniques

Lambs” video trace and the peak jitter is around 180 ms which is seen only at the be-
Parameter Value ginning of the simulation which is the initial start-up time involved
Peak Bit Rate (per sec) 4.4 %10% in the algorithm.

Mean Bit Rate (per sec) 5.8 % 10°

Mean Frame Size (Bytes) | 2.9 x 103 4.5 Discussion
Max. Frame Size (Bytes) 22239 From our experiments, the following can be inferred:
Min. Frame Size (Bytes) 158
—Despite a stable network and a constant transmission window op-
attributed to the aggressive behaviour of the algorithm to transmit portunity, a network coding system with fixed bucket size gener-
the data based on available transmission opportunity. ates zero payload packets affecting the latency of video stream-

ing service. The quality of user experience, which is significantly
affected by this latency observed at video playback [27], de-
grades further if the wireless network consists of multiple types

However, if the bucket size were to increase as the amount of . : .
of traffic that lead to congestion and contention of the wireless

available transmission opportunity, the receiver at the network

coding layer would end up waiting for large number of packets channel.

before passing them up to the video playback and the TCP’s —Our proposed algorithm performs significantly better than the
retransmit timer at the sender would time out causing undesirable fixed bucket size counterpart for both uncongested and congested
retransmissions. Thus, based on heuristic data, an upper bound environments due to its ability to adapt to the network and video
of 15 packets is set on the bucket size in order to avoid these traffic conditions. As observed in the results, there are no zero
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Fig. 10. Comparison of jitter for TCP, TCP with fixed bucket size and
variable size network coding for the large network

payload packets observed, consequently leading to lower latency
at the video playback.

—Timely delivery of video data is imperative for service providers
and we observe from our experiments that with TCP the worst
case latency can go upto 600 ms and when TCP with network
coding is used, the latency goes upto 300 ms. However, with our
variable bucket size algorithm, the delay is as low as 5 ms which
is a tremendous improvement in the performance.

—lJitter is an equally important parameter as a streaming system
with low jitter signifies that two consecutive packets are uni-
formly delayed. For uninterrupted viewing, the streaming should
be jitter free [28]]. Jitter in a streaming system [29] is avoided by
having a delay jitter buffer at the receiver placed before the video
decoding buffer that compensates for channel and traffic arrival
variations. However, [30|] showed that a single receiver buffer is
sufficient to achieve a certain QoS guarantee. It can be seen from
our experiments that the jitter after using variable bucket size net-
work coding improves by 70% when compared with only TCP
and by 60% when compared with TCP and fixed size network
coding. The improvement in jitter can be attributed to the fact
that the variable bucket size at the receiver also acts as a delay
jitter buffer which compensates for variations caused due to the
incoming traffic and network conditions.

5. FUTURE WORK

Due to the heuristic approach of the algorithm, there is a need for
an analytical framework to determine bounds on the bucket size
which eventually, affects the latency and jitter at the end user. As a
part of the future work, we propose to use a dynamic programming
framework with the aggregate objective of minimizing latency and
jitter under the constraints of the arriving video traffic and conges-
tion control methods. Another future area of study is the impact
of the latest developments in the real-world implementation of the
TCP stack on linux that includes the “Controlled Delay(CoDel)”
algorithm [31] for preventing excessive queueing at intermediate
nodes, on our algorithm’s performance. The reason for evaluating
our approach on TCP with CoDel is to analyze the impact of delay
based packet drops in the intermediate nodes and how that leads to
corresponding changes in the bucket size.
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6. CONCLUSION

In this paper, the interplay between the behavior of TCP’s conges-
tion control mechanism and intra-session network coding was ana-
lyzed using simulations in ns-3. A significant performance lapse in
terms of latency was observed at the video playback for streaming
applications. A simple approach to dynamically adapt the bucket
size before performing network coding on the video packets was
proposed to get rid of the zero payload packets that cause the un-
desirable latency at the receiver. Simulation results demonstrated
that the variable bucket size algorithm removes all instances of
zero payload occurrences for both congested and uncongested en-
vironments reducing the latency and jitter at the video playback.
Our work, thus, identifies one of the issues arising when TCP and
intra-session network coding interact in a video streaming environ-
ment and successfully mitigates it using a simple heuristic algo-
rithm while also providing timely delivery of streaming video data.
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