
International Journal of Computer Applications (0975 – 8887)

Volume 87 – No.13, February 2014

42

A Comparative Study on the Performance of HZR+

Trees on Query Processing

Suba S

Vasavi College of Engineering,
Ibrahimbagh,Hyderabad-30

ABSTRACT

Data is being produced in new forms and unimaginable

quantities. Researches and other scientific and commercial

applications are engrossing the scientific community for

their size and need of faster accessibility. The conventional

access methods previously available in multidimensional

databases are no longer suitable for the new form of data

produced. In traditional databases, multicolumn index is

created using B-tree [5]. This indexing cannot slide over

columns, so the primary index column must be in the

WHERE clause filters of the query. The R-tree [3], an

extension of the B-tree, is a hierarchical, height balanced

multidimensional indexing structure that guarantees space

utilization above a certain threshold. But the data produced

in most of the cases are not spatial in nature. Therefore, the

data should be restructured in order to map the non-spatial

data to geometric space. Thus, the multidimensional

accessibility of spatial access methods, experimented on

non spatial data for the first time and the analysis of which

has produced interesting results forms the major

contributions of this paper. The sequence of procedures

followed to arrive at the analytical study is as follows:

1. The packing of non spatial data converts the data into a

form that paves the way for multidimensional access,

similar to using spatial access methods for spatial data.

2. The proposal of reduction of overlap of data using

Hilbert curves for ordering the data before insertion

into the proposed indexing structure

3. The proposal of a new index structure, Hilbert ZR+

Tree [HZR+ Tree].

4. A collection of experiments and analysis which

validates and proves the efficiency of the proposed

data model.

Keywords
Hilbert ZR+ Tree, packing-data, NSR-Tree

1. INTRODUCTION
Hilbert ZR+ tree is a clustered model of ZR+ Tree[1] which

is based on the Hilbert space filling curve. It is a height

balanced tree like R-tree, with a fill-factor F. Pre-processing

of the required column values among a set of tuples in the

relation is done and a range is computed based on the

minimum and maximum values of each dimension among

those tuples. This forms the rectangle entry and is termed as

Minimum Bounding Rectangle (MBR) similar to R-tree,

thus the multicolumn values are converted into key values

of the required multi-dimensions and are then inserted into

the node. The fill factor F signifies the number of key

values possible at each node of the tree. Every other node,

either leaf or intermediate node, has between F/2 and F

entries. The leaf node points to the actual pre-processed

data in the database. Each entry in a leaf node signifies the

set of rows converted into an interval in each dimension.

The intermediate node holds references that point to its

children (leaf nodes or the next level of intermediate

nodes), the MBRs corresponding to its children, and its own

MBR. Unlike B-trees, the keys in HZR+-trees are

multidimensional attributes that are either difficult or not

feasible to define in a linear fashion.

2. MULTIDIMENSIONAL INDEXING

STRUCTURES-A LITERATURE

SURVEY

2.1 R- Trees
R-trees [3] are a direct extension of B+-trees in k-

dimensions. The data structure is a height-balanced tree

which consists of intermediate and leaf nodes. R-Trees are

Rectangular Trees in which the every node in the tree is a

rectangle. The root will be larger rectangle which will

enclose all lower level rectangles. Data objects are stored in

leaf nodes and intermediate nodes are built by grouping

rectangles at the lower level. Each intermediate node is

associated with some rectangle which completely encloses

all rectangles that correspond to lower level nodes.

Limitations of R-tree

 In R-trees, sub-regions can overlap. So leads to more

expensive searching.

 Single query traverse multiple branches.

 It tends to degrade performance

2.2 R+ -Trees
The R+-tree [7], first proposed in 1987 by Sellis et al, uses

a clipping approach to avoid overlap between regions at the

same level. As a result of this policy, a point query in the

R+-tree corresponds to a single path tree traversal from the

root to a single leaf. The R+-tree exhibits better search

performance, making it suitable for applications where

search is the predominant operation. In simple words, R+-

trees do not allow overlapping of MBRs at the same tree

level. In turn, to achieve this, inserted objects have to be

divided in two or more MBRs, which mean that a specific

object’s entries may be duplicated and redundantly stored in

several nodes. R+-trees are considered to be one of the most

efficient indexes for supporting point and range queries.

Limitations of R+-tree

 Since rectangles are duplicated, an R+ tree can be

larger than an R tree built on same data set.

International Journal of Computer Applications (0975 – 8887)

Volume 87 – No.13, February 2014

43

 R+-trees generally perform better for search

operations, although this benefit comes at the cost of

higher complexity for insertions and deletions.

 Certain conditions where it is Unable to insert, Unable

to split

2.3 ZR+ -Trees
ZR+ Tree [1] was proposed in 2009 which considered

clipping procedure to avoid overlaps even at the leaf nodes

and thereby multiple path searches. It is also a height-

balanced tree (like R-Tree) which consists of intermediate

and leaf nodes. Limitation of ZR+ Tree [1] is that when the

data is skewed the number of overlaps of the tree nodes will

be more resulting in many number of clippings which

increases the insertion cost. Moreover when a non spatial

domain like marketing domain is concerned too many

numbers of clippings will not have any semantically

acceptable information. This caused the introduction of the

proposed indexing structure the Hilbert ZR+ tree, the

detailed algorithms and implementation of which is given in

later chapters.

The main challenge is in using spatial access methods to

operate with non spatial data. The major issues in this

context include providing a spatial representation to non-

spatial datasets and a data model for handling

multidimensional non spatial data.

3. HILBERT ZR+ TREE INDEX

MODEL

3.1 Packing of Data
Let D be the database, R be the relation and X be the set of

attributes of R. Let Y be the subset of X which are the

dimensions of interest. Let p be one of the attributes in Y

which will be the key dimension. To get d-dimension

interval for the spatial representation of these dimensions,

the preprocessing is done. The tuples in R are sorted based

on p. Then the dimensions other than p are taken for

forming the MBRs to be inserted into a node. Let T be the

range to be considered for forming the MBR. The tuples

which have been sorted on the basis of p are taken in a

group of T. The maximum and minimum of each dimension

other than p are found and suitable data structure is framed

to insert the MBR in the node of HZR+ Tree.

In the sample database, the dimensions are product, day and

sales, and naturally every sales value is described by the

associated product and day. For forming a range, the day

dimension is organized into weeks. For each tuple (p, d, s)

where d is the day of the year, p the product id, and s the

sales, an association can be made to a set of numeric values

Unit Price, Quantity Sold and Expense. The

multidimensional index to be created is based on these three

attributes. When indexes are to be created on multiple

attributes, HZR+ Trees use spatial access methods for data

storage and retrieval of data in non-spatial domain.

During preprocessing step, sale values for 4 consecutive

days were considered for each product. The low and high

sale values and dates were considered for forming

rectangles to be inserted into the HZR+ Tree. Uniformly

distributed real and synthetic data sets with one hundred

thousand rows were used for experimentation.

Figure 1: Insertion of MBR G

Figure 2: Resulting ZR+ tree due to insertion of G

4. ILLUSTRATIVE EXAMPLE

Figure 3: Rectangles initially

This data finally leads to the following HZR+-tree structure

with nodes named by the rectangles they point to.

Figure 4: HZR+-Tree initially

The following figure shows the sample structure as well as

a hatched rectangle being the MBR of an object in the

database that is to be inserted into the given index.

Now to insert a new node G into the HZR+-Tree.

International Journal of Computer Applications (0975 – 8887)

Volume 87 – No.13, February 2014

44

Figure 5: To insert rectangle G

Calling the INSERT algorithm now will first of all lead to a

call to ISOVERLAPPING which calls GETLEAFNODES.

This algorithm traverses the tree from the root to its leaf and

finally identifies R1 and R2 as the rectangle which overlaps

with the object to be inserted. The algorithms path through

the tree is shown by the following figure.

Figure 6: HZR+-Tree to insert G

Having now identified the place where to insert the new

object into the tree, the main part of the Insert algorithm

will clip the object vertically into G1 AND G2 to be

inserted into the tree. On finding that there is not enough

space left to insert the new object SPLITNODE is called

onR2 to split into two nodes R21 and R22 with the resulting

node’s MBRs being minimal. The first split will be R2 and

the MBR of the second split will be named R3.

Figure 7: After Split

Figure 8: Tree after inserting G1

Now, as nodes have been split and the new object G1 has

been inserted into the tree, a call to ADJUSTTREE is made

to ensure that all nodes preceding the node that has been

changed are accordingly changed themselves. The resulting

tree after the first split and insertion of the node G1 is

illustrated in the figure 8. Next G2 has to be inserted in R1

calling for SPLITNODE and ADJUSTTREE again. The

process of splitting can be illustrated as in figure 7. No

further split is required and finally the resulting tree

containing the new object looks as shown below.

Figure 9: HZR+-Tree after split

Let T be the root of a given HZR+-tree. Let S be the search

rectangle, the algorithm is intended to identify all index

records whose rectangle overlap S. The index entry is

denoted by E’s rectangle E.I and its TID or CP by E.p.

The input is a search rectangle (Query box). The search

starts from the root node of the tree. Every internal node

contains a set of rectangles and pointers to the

corresponding child node and every leaf node contains the

rectangles of the original data cluster (the pointer to some

spatial object can be there). For every rectangle in a node, it

has to be decided if it overlaps the search rectangle or not.

If yes, the corresponding child node has to be searched also.

Searching is done like this in a recursive manner until all

overlapping nodes have been traversed. When a leaf node is

reached, the contained bounding boxes (rectangles) are

tested against the search rectangle and their objects (if there

are any) are put into the result set if they lie within the

search rectangle.

Now the search algorithm is used to find all data objects

overlapping an object described by the hatched MBR in the

following diagram.

International Journal of Computer Applications (0975 – 8887)

Volume 87 – No.13, February 2014

45

Figure 10: Search window

The algorithm of course starts its work at the root node. As

the object’s MBR overlaps R2, search will continue in the

sub trees of only R2. Traversing the sub tree of R2, the

search will reach node R21.Further moving down the leaf

nodes will be reached. Rectangles A and G are found to

overlap the search object and since they are leaf nodes the

search will end there. Finally search will return nodes G and

A overlapping the search rectangle and therefore these

objects make up the result of the search. At last, the

following graph is meant to visualize the path of this search

through the tree structure.

Figure 11: Search path

5. RESULT AND ANALYSIS

5.1 Performance analysis with

PostgreSQL and MS SQL
The experimental analysis is done using PostgreSQL

database, MS SQL and Oracle. Datasets of size 10000,

50000, 100000 and 200000 have been considered. In

PostgreSQL as well as MSSQL, the default index i.e. B-

Tree is compared with the implementation of HZR+-tree

index. A comparison with a modified version of R-Tree,

NSR-Tree (Non-Spatial R-tree) has also been done. The

analysis is done on table without index and on the table

with index in PostgreSQL and with index in MSSQL.

Experiments have been done with fill factor 3 because 3 is

the default fill factor of the implementation. The minimum

fill factor for PostgreSQL B-tree index structure is 10 and

hence 11 is taken as another fill factor. Experimentation

was done with fill factor 90 too. In MSSQL, analysis is

done with fill factor 90.

The range/point queries which are used for analysis are:

select * from table_name where day between 1 and 5 and

sales between 100 and 2000

select * from table_name where day between 1 and 14 and

sales between 1000 and 20000

select * from table_name where day between 9 and 12

select * from table_name where sales between 1000 and

20000

select * from table_name where day between 2 and 5

select * from table_name where sales between 100 and

2000 and day between 1 and 5

select * from table_name where sales between 100 and

2000 and day between 1 and 14

select * from table_name where day=5 and sales=2614

Figure 12 to Figure 15 shows the execution time to get the

leaf node using HZR+ tree, R Tree and B-tree. The reason

for using B-tree structure for comparison is that in

PostgreSQL and MSSQL, the non-spatial data is not

indexed using R-tree index.

Here, from the experiments, it is shown that for range

queries, HZR+ tree performs better than conventional B-

tree index.

The X-axis shows the queries 1 to 8 as described above. Y-

axis shows the leaf node retrieval time for these queries.

The comparisons have been made for 7 cases.

a. With B-tree index fill factor 90, 11 and 100

b. HZR+ tree fill factor 3, 11, 90 and 150

Figure 12: 10000 rows

Figure 13: 50000 rows

0

50

100

150

200

250

1 2 3 4 5 6 7 8

MSSQL

NSR

HZR+

PostGres

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8

MSSQL

NSR

HZR+

PostGres

International Journal of Computer Applications (0975 – 8887)

Volume 87 – No.13, February 2014

46

Figure 14: 100000 rows

Figure 15: 200000 rows

5.2 Comparison of HZR+-Tree index

with PostgreSQL and MSSQL
The analysis results show that HZR+-tree indexing has

increased efficiency with larger datasets. In queries where

the filter has leading index column with full range, the

index is not used by PostgreSQL and MSSQL. The

sequential scan is done leading to higher execution time.

On the contrary, in HZR+-tree index scan is effective with

lesser execution time. In queries where the leading index

column is not specified in the filter, PostgreSQL avoids

index scan and does the sequential scan. But HZR+-tree

index scan is effective here too. In HZR+-tree index scan,

as the fill factor is increased, the execution time is

decreased. HZR+-tree index scan has lesser execution time

for point queries also compared to PostgreSQL and MSSQL

index scan. However if the queries have ranges of big sizes,

HZR+-tree is not so successful.

The experimental analysis is done using PostgreSQL

database. Datasets of size 10000, 50000, 100000 and

200000 have been considered. Experimentation is done by

evaluating the performance between the HZR+-tree table

and the original table with B-Tree index. Similar queries are

shot to both the table and the execution time is analyzed.

Each row is a page access. So the total number of rows

returned gives us the number of page accesses required,

also the total cost for execution of a query is calculated. The

indexing of original table is based on pid, day, and sales,

with the leading index as the pid. The Fill factors used are

3, 11, 90 and 150.

6. CONCLUSIONS
With the presented material it could be concluded that

applying the spatial indexing methods for non spatial

domains is worth improving the performance measures of

range and point queries on the data. The preprocessing and

clustering steps may seem to be overhead, but by slightly

modifying the regular insertion algorithm to insert data into

the database only after the number of rows required for

forming the rectangular data from the point data could be

considered. If queries with particular filter clauses were

executed on the database beyond a certain threshold,

creating an index dynamically based on the filter attributes

could be considered for future work. Based on the number

of dimensions, learning an optimal fill-factor provides

scope for further research as well. This would drastically

improve the performance of the database management

system.

7. REFERENCES
[1] Chang-Tien Lu, Jing Dai, Ying Jin, Mathuria J.

“GLIP: A Concurrency Control Protocol for Clipping

Indexing”, Knowledge and Data Engineering, IEEE

Transactions, Volume: 21, Issue: 5, May 2009.

[2] Ibrahim Kamel and Christos Faloutsos,Hilbert RTree-

An improved Rtree using fractals, Proceedings of the

20th VLDB Conference Santiago, Chlle,

September,1994

[3] A. Guttman, “R-Trees: A Dynamic Index Structure for

Spatial Searching,” Proc. ACM SIGMOD ’84, pp. 47-

57, 1984.

[4] V. Gaede and O. Gunther, “Multi- dimensional

Access Methods”, ACM Computing Surveys, Vol 30,

no. 2, pp. 170-231, June 1998.

[5] A. Guttman, “R-Trees: A Dynamic Index Structure

for Spatial Searching,” Proc. ACM SIGMOD ’84, pp.

47-57, 1984.

[6] Harry Leslie, Rohit Jain, Dave Birdsall, and Hedieh

Yaghmai “Efficient Search of Multidimensional B-

Trees”, Proceedinge of the 21st VLDB Conference,

Zurich, Switzerland, 1995.

[7] T. Sellis, N. Roussopoulos, and C. Faloutsos, “The

R+-Tree: A Dynamic Index for Multi-dimensional

Objects”, Proc. 13th International Conference, Very

Large Data Bases (VLDB ’87), pp.507-518, 1987.

[8] Norbert Beckmann, Hans–Peter Kriegel, Ralf

Schneider, Bernhard Seeger, Praktuche Informatlk,

Umversltaet Bremen, “The R*-tree:An Efficient and

Robust access Access Method for Points and

Rectangles+”, SIGMOD conference, 1990.

[9] Kamel, Ibrahim and Faloutsos, Christos, "On packing

R-trees" (1993). Computer Science Department. Paper

588, Conference proceedings of CIKM,January,1993.

[10] N. Roussopoulos ,D.Leifker “Direct spatial searche on

pictorial databases using packed R Trees”, proc. Of

ACM SIGMOD ’85

[11] H. V. Jagadish, L. V. S. Lakshmanan, and D.

Srivastava. “Snakes and sandwiches: optimal

clustering strategies for a data warehouse, SIGMOD

Rec., 28(2):37–48. ACM Press, 1999.

[12] Joseph M. Hellerstein, Jeffrey F. Naughton,

“Generalized Search Trees for Database Systems”,

Proceeding VLDB '95 Proceedings of the 21th

International Conference on Very Large Data Bases,

Zurich, Switzerland, 1995.

[13] Joseph M. Hellerstein, Jeffrey F. Naughton,

“Generalized Search Trees for Database Systems”,

Proceeding VLDB '95 Proceedings of the 21th

International Conference on Very Large Data Bases.

IJCATM : www.ijcaonline.org

