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ABSTRACT 

In today’s cloud computing environment, Hadoop is applied 

for handling huge data, tens of terabytes to petabytes, with 

commodity hardware (HDFS) for storage and software 

(MapReduce) for parallel data processing. In Hadoop version 

1.0.3, there is a single metadata server called NameNode 

which stores the entire file system metadata in main memory 

and most of I/O operations are associated with those 

credential metadata. Hadoop is out of commission if 

NameNode is crashed because it works on memory which 

becomes exhausted due to multiple concurrent accesses [3]. 

Therefore, NameNode is a single point of failure (SPOF) in 

Hadoop and it has to tolerate faults. To solve this issue, a 

proactive predictive solution is proposed for enhancing 

NameNode fault tolerance. The solution is designed to 

proactively calculate the predicted time to crash of NameNode 

due to resource exhaustion by evaluating the use of powerful 

Back Propagation Algorithm Neural Network. The proposed 

approach can give prediction accuracy with minimal error 

compared to the actual result. Therefore, NameNode’s single 

point of failure can overcome through proposed proactively 

predicting the time to crash of NameNode caused by memory 

resource exhaustion.  

Keywords 

HDFS, NameNode, Memory Resource Exhaustion Prediction, 
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1. INTRODUCTION 
In the world of cloud computing, companies and 

organizations have a tremendous amount of data (big data) 

that needs to be analyzed and processed very quickly. 

Therefore, companies like IBM, Amazon, Yahoo!, etc apply 

Hadoop to big data analysis since it is capable of handling 

huge data, tens of terabytes to petabytes, with commodity 

hardware and software. Hadoop is designed as master worker 

architecture. Master nodes in Hadoop are responsible for 

handling data storage processing whereas worker nodes are 

only used for storage purpose.  Hadoop separates storage 

server for data and metadata and all information associated 

with the entire cluster can only be retrieved via a single 

metadata server, called NameNode.  

NameNode is the heart of Hadoop for keeping the whole file 

system information. There is only one single NameNode per 

the cluster in Hadoop release series 1.0.3. Most of I/O 

operations in the cluster are mainly associated with metadata 

and NameNode does its entire house holding in memory. 

When multiple concurrent processes come, NameNode is not 

only busy but also start to starve resource exhaustion. If the 

machine running the NameNode were obliterated, all the files 

on the file system would be lost since there would be no way 

of knowing how to reconstruct the files [13]. NameNode’s 

failure makes the whole cluster unavailable. Therefore, 

NameNode has to tolerate fault so that Hadoop can continue 

giving services to its users.  

In the proposed system, a proactively predictive model for 

NameNode memory exhaustion is presented. Proactive 

approach takes preventive actions using monitoring tools that 

can predict anticipated faults before failures [14]. The 

proposed system is evaluated proactive predictive solution 

using the system metrics. Therefore, a monitoring agent is 

applied to collect the required system metrics. The proposed 

proactive predictive model predicts NameNode failure by 

calculating the predicted time to crash using back propagation 

algorithm. The experimental results show that the prediction 

achieves accuracy of 99.9 % on average. By applying the 

proposed model in Hadoop version 1.0.3, the level of fault 

tolerant in NameNode can be enhanced in terms of prediction 

accuracy which dictates minimal error in the predicted value. 

In this paper, the preliminary concept related with the 

proposed system is presented in Section 2. Then Section 3 

highlights issues and contributions in the current cloud 

infrastructures which are based on Hadoop. The proposed 

framework is explained in Section 4. The model generation 

used for the proposed system is described in Section 5 which 

mentions with experimental preparation and results. The 

whole presentation is concluded in Section 6.  

2. PRELIMINARY CONCEPTS 
Due to having the ability of handling massive volumes of 

data, Hadoop is everywhere in today’s cloud platform. 

However, designing a single metadata server (NameNode) in 

Hadoop version 1.0.3 limits the system services. NameNode 

stores the whole file system metadata in memory. It manages 

queries by clients to carry out standard file system operations  
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Figure 1: Single Point of Failure in Hadoop 

such as add, copy, move or delete files and does all of its 

house holding in memory. Therefore, memory in NameNode 

becomes exhausted due to multiple concurrent accesses and it 
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is a single point of failure (SPOF) in Hadoop cluster. In the 

proposed system, NameNode failure is prevented by 

enhancing its existing fault tolerant with the efficiency of 

proactively predictive approach which uses back propagation 

algorithm. 

3. PROBLEM STATEMENT 
Hadoop is popular for having its storage system (HDFS) and 

parallel data processing framework (MapReduce). HDFS, the 

Hadoop Distributed File System, is responsible for storing 

huge data on the cluster. It is designed to run on commodity 

hardware and can supports write-once-read-many semantics 

on files. The basic idea of MapReduce is to partition a large 

problem into smaller sub problems which are tackled in 

parallel by separate multiple workers.  Final result is produced 

by summing the output of each sub worker [10]. Providing 

high throughput access to applications that have large data 

sets makes HDFS different from traditional file systems. In 

order to give such significant service, Hadoop is implemented 

as master-worker architecture. Master nodes take role of data 

processing whereas worker nodes are used as storages 

purpose. 

In cloud computing environment, Hadoop is widely applied 

for big data analytic. It can give so many advantages to its 

consumers; meanwhile, it also has been facing with problems 

to be solved. Followings are found as issues for Hadoop used 

in today’s cloud infrastructures: 

 In cloud computing clusters, there can be failures 

occurred frequently and this can cost extremely to 

roll back the system into original states. 

 NameNode in Hadoop is still the problem of Single 

Point of Failure (SPOF). 

 Memory resource exhaustion impacts heavily on 

NameNode to happen failure. 

 As cloud computing clusters grow in size, 

maintaining the health of these clusters becomes 

increasingly challenging because those systems can 

crash at any time. 
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Figure 2: Proposed Proactive Predictive Framework for 

NameNode Fault Tolerant 

Among the above issues, monitoring tools are used to detect 

potential system failures in order to prevent the cluster from 

being down [11]. The second problem can be solved by 

having redundant NameNodes [5]. Resource exhaustion in 

NameNode can be predicted by calculating the system’s time 

to crash based on collected data via monitoring tool [9]. Final 

issue is concerned with the system’s performance factor: high 

availability [4]. The proposed system is inspired by exploring 

above issues. In the later section, process flow of NameNode 

crash time prediction is presented with theoretical as well as 

experimental results.  

4. PROACTIVE, PREDICTIVE         

SOLUTION FOR NAMENODE FAULT 

TOLERANCE 
Resource exhaustion impacts host processes running 

significantly [14]. In Hadoop release series 1.0.3, NameNode 

is a single point of failure and may primarily be broken down 

by resource exhaustion. It operates mostly on RAM for instant 

lookup requests and replies [5]. As long as the parallel 

connections to the system are increased, the memory 

consumption of NameNode for each process will be fluctuated 

in accordance with the nature of the requested process and 

finally resources become exhausted. Therefore, a proactive 

predictive solution for enhancing NameNode fault tolerant is 

presented in the proposed system. The major parts included in 

the proposed system are discussed in the following sections. 

 

4.1 NameNode Fault Tolerant System 

Architecture 
The proposed system is modeled on Active-Standby 

NameNode with different configurations. There are three 

major components in the proposed framework; Active 

NameNode, Standby NameNode and Monitoring Agent. The 

health of the Active NameNode is detected with proposed 

monitoring agent who collects the system traces (memory 

usage of each process) and then makes proactively predicting 

the time to crash of the Active NameNode. After that, it 

informs to the system administrator who is responsible for 

creating new NameNode. Depending on the situation of 

threshold violation or not, the administrator makes decision. 

The Standby NameNode has to take role of the Active 

NameNode and its activation is dependent on the system 

administrator’s decision. Being known the state of the Active 

NameNode  based on proactively predicting time to crash 

threshold based mechanism in advance, the administrator has 

enough time to make decision whether it is required to create 

new NameNode or not and the proposed proactive predictive 

NameNode fault tolerance architecture is illustrated in Figure 

2. 

 

4.2 NameNode Memory Resource 

Monitoring 
To achieve fault tolerance in NameNode with efficiency of the 

proposed proactive predictive solution, the required system 

metrics has to be monitored using certain tools and 

techniques. So, a monitoring agent is applied to watch the 

process status of NameNode in the proposed system. 

4.2.1 Monitoring Agent 
There are many system metrics that can impact system 

performance and they can be traced via certain monitoring 

tools such as Nagios[9]. As for the proposed system, in order 

to predict the time to crash of NameNode, the agent has 

responsible for capturing memory usage of each process 

running in the system. So, it collects all the data from one full 

experiment using a monitoring script. The step by step 

processes in the monitoring script is shown in Figure 3. The 

traces monitored via a script are only a raw data set as 

described in Table 1. These traces cannot be processed 

directly in further process such as training and testing phase. 
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Therefore, data enriching process is an essential step for 

future processing. 

4.2.2 Data Enriching 
The main job is to add required variables derived from the 

system metrics monitored [9]. For instance, memory usage for 

each process may not be constant overtime because 

NameNode may have to consume in accordance with the 

process’s nature. So, the resource usage per process may be 

linear or non-linear with respect to the time. Depending upon 

resource usage, the system downtime may be nearer or 

further. Generally, the time to crash (TTC) at certain time t for 

a particular system could then be easily computed by using 

the following formula: 

     
            

   
                                                            (1) 

Where, 

TTC= Time To Crash at time t 

SAM = System Available Memory at time t 

CUM = Currently Usage Memory at time t 

CS = Consumption Speed at time t 

 

In the above equation, the system available memory (SAM) 

and currently usage memory for resource i at time t (CUM) 

can be generated in data enriching phase. However, the  

1. Set the status = “true” 

2. While (true) 

   -   Get the current system time with “date”   

       command 

    -    Append and save the time in a text file 

         e.g date >> result.txt 

     -    Invoke “top” command (to know what processes        

        are currently running and show how much the   

        system resource they consume in percentage) 

    -    Set loop count n = 1 

    -    Select batch mode “b” 

    -    Extract only hadoop process with “grep”  

         command (hadoop appears as “java” in the   

         currently running processes lists). 

     -    Save and append the extracted record to a result   

        file  top –b –n 1 | grep java >> result.txt 

2.3 Check the status 

3. Go to step 2 

4. Exit 

 

Figure 3: Processes of the monitoring script 

consumption speed (CS) for each process may not be same 

over time. In Hadoop, there are many factors influencing the 

resource consumed by each process [8]. MapReduce job type 

spends memory nearly at constant rate since it does map and 

reduce task in accordance with the size of the input split 

Table 1: Sample Collected Data 

Max 

Memory 

(MB)  

Start Time  End Time  

Usage 

Memory 

(%)  

512  10:52:18  10:52:23  8.32  

512  10:52:23  10:52:28  10.13  

512  10:52:28 10:52:33  13.23  

512  10:52:33  10:52:38  13.5  

512  10:52:38  10:52:43  13.3  

512  10:52:43  10:52:48  13.35  

512  10:52:48  10:52:53  12.07  

 

Table 2: Enriched Data 

Max 

Memory 

(MB)  

Start 

Time  

End 

Time  

Usage 

Memory 

(MB)  

Speed 

(MB 

per 

second)  

512  10:52:18  10:52:23  42.5984  0  

512  10:52:23  10:52:28  51.8656  9.2672  

512  10:52:28 10:52:33  67.7376  15.872  

512  10:52:33  10:52:38  69.12  1.3824  

512  10:52:38  10:52:43  68.096  -1.024  

512  10:52:43  10:52:48  68.352  0.256  

512  10:52:48  10:52:53  61.7984  -6.5536  

 

defined on the input file [6]. In contrast, multiple concurrent 

uploading and downloading to the same or different files in 

Hadoop may be different from MapReduce in resource usage. 

It may take sometimes much memory than the former job 

type. Therefore, consumption speed for each process is 

calculated using EWMA (Exponential Weighted Moving 

Average) [8].  

Exponentially weighted moving average (EWMA) is a type of 

infinite impulse response filter that applies weighting factors 

which decrease exponentially. The weighting for each older 

datum decreases exponentially, never reaching zero [8]. 
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Figure 4: A Three Layer of Artificial Neural Network 

 
In the proposed system, the EWMA for a series Y (data 

samples: 100) may be calculated recursively as follow: 

 

                                                       (2) 

                  
       

    
                         (3) 

Where,  

Sn = value of EWMA at any time period n 

Yn= memory usage at time period n 

tn- tn-1 = time difference 

α = coefficient (a constant smoothing factor between 0 and 1) 

W = process execution time 
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There are many ways to initialize S1, however, most 

commonly by setting S1 to Y1 (also same in the proposed 

system). It depends on the applications used and the required 

accuracy of the result. “W” means the period of time (process 

execution time) in minutes and it is set “15 minutes” for the 

proposed system since it is assumed that each job will be 

submitted 15 minutes after another. In Hadoop, each node 

(data nodes as well as job tracker) reports their status to 

NameNode every 3 seconds to ensure that they are alive. 

Based on this fact, the time difference between resource 

usages of each process is limited to 5 seconds in the proposed 

system. Finally, the whole collected system traces are 

enriched and the results are as shown in Table 2. 

  

4.3 NameNode Memory Resource 

Exhaustion Prediction 
Artificial neural network is widely used in many applications 

such as pattern classification, function approximation, 

clustering and prediction etc.) [1]. Multilayer perceptron 

learning is a type of neural network and has been applied to 

solve some difficult and diverse problems by training the 

network in a supervised manner with its popular algorithm 

called back propagation algorithm [12]. The proposed system 

is intended to build a model that can proactively predict the 

system time to crash by training the perceptrons of back 

propagation algorithm. 

Basically, a back propagation algorithm has two types of pass: 

forward and backward. The synaptic weights of the networks 

are fixed in the forward pass. By contrast, during the 

backward pass, the synaptic weights are all adjusted in 

accordance with an error correction rule. Updating synapse 

weights makes the network output move closer to the desired 

responses, and finally produces minimal error [11]. A sample 

of three layer neural network is shown in Figure 4.  

Neuron is the basic element of the network and is also called 

computation nodes (N1, N2… N6). The network has generally 

two layers: 1) input layer in which each neuron accepts 

input:      (X1, X2, X3) adds product of some initial weight 

values:      (W41, W42) (range is between 0 and 1) and 

produces the partial output and 2) output layer where the 

partial result:       produced by the former layer is passed 

through nonlinear function called neuron activation function: 

         and finally produces the predicted output:      by 

equation 5. The error signal:        is calculated by 

subtracting the actual network response from the desired 

output using equation 6. The prediction accuracy of the 

network can know by looking at the error signal.  Sometimes, 

the network cannot predict the result using these two layers 

and needs extra processing layers called, hidden layers [10]. 

Depending upon the output produced by the network at first 

time, one or more hidden layers are required. There are 

important parameters such as learning rate and local gradient 

which has to be adjusted so that the network can predict the 

desired output quickly as well as accurately.  

                
 
                                               (4) 

                                                                      (5) 

                                                                  (6)  

 

On account of predicting with back propagation algorithm for 

the proposed system, four attributes are fed into the network. 

Three out of four are used as inputs to the network such as 

available memory, currently usage memory, consumption 

speed and the rest is the time to crash (the desired response). 

In order to achieve the desired output, the network was trained 

iteratively. For each loop, the weight coefficients of the nodes 

in each layer are modified using error correction rule:         

in which gradient descent:       and learning rate:   were 

adjusted for seeking a direction for weight change the value of 

the error signal.  

                                                                     (7) 

                                                                      (8) 

What’s more, the data set is divided into training and testing. 

10 fold cross validation is used. Initially, the network is 

trained with the training data set. When the error signal 

reaches nearly zero, i.e., the network output is very close to 

the desired output, stops the network and captures the weight 

value because this parameter is the core of the network when 

estimating the future output. Then, the testing data set is given 

to the network whether it is able to work also on data that was 

not used in the previous process.  

5. SYSTEM EVALUATION 

5.1 Experimental Setup 
To evaluate the effective of the proposed approach, an 

experimental environment is set up with commodity hardware 

and necessary software installation is done as shown in Table 

3. A machine having specifications with Memory 4GB, Hard 

Disk 1 TB, CPU Core i3 and Window 7 version is chosen as a 

host. On that machine, three virtual machines are created 

using VMware Workstation 9 with equal specifications such 

as Memory 512 MB, Hard Disk 20 GB, and CPU Core i3. 

Each of them is connected using 100 Mps and Ubuntu 10.04 

Lts is used as supporting OS as shown in Table 3.  

Table 3: Test Bed Specifications 

 

 

 

 Host VM1 VM2 VM3 

Memor

y 

4GB 

DDR3 

512MB 

DDR3 

512MB 

DDR3 

512MB 

DDR3 

Hard 

Disk 
1 TB 20 GB 20 GB 20 GB 

CPU Core i3 Core i3 Core i3 Core i3 

OS 
Window 

7 

Ubuntu 

10.04 

LTs 

Kenrel 

2.6.32 

Ubuntu 

10.04 

LTs 

Kenrel 

2.6.32 

Ubuntu 

10.04 

LTs 

Kenrel 

2.6.32 

Hadoop 

Version 
 1.0.3 1.0.3 1.0.3 

VMwar

e 

Worksta

tion 

 9 9 9 

Networ

k 

(Mbps) 

100 100 100 100 
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5.2 Analysis of Resource Usage Behavior 
Selecting hardware that provides the best choice of 

performance and economy for a given workload requires 

testing and validation. To show the strength of proposed 

proactive predictive framework for prediction of time to crash 

in NameNode due to resource exhaustion, analysis of resource 

usage is done by releasing processes and monitoring how 

process consume resource to complete submitted jobs.  

In the experimental evaluation of the proposed system, it was 

found that resource behavior was quietly different from one 

job type to another. It is solely dependent upon the 

characteristic of the running processes. For instance, when 

writing Java programs, the memory requirement for a single 

loop may be constant almost every time. However, for a 

program having recursive condition, it consumes memory at a 

gradually increasing rate and later this progressive 

consumption makes the underlying system memory resource 

face with exhaustion [8]. In this section, the root cause of 

random resource consumption is discussed through two 

different job type running analysis in Hadoop. The first part of 

the analysis was made on running MapReduce jobs. And, the 

second part was emphasized on working with random job 

types: uploading and downloading files. Finally, deduction 

was made on the two analysis results.  

5.2.1 Running Map Reduce Job in Hadoop 
In this test set, when a simple WordCount program with a 

TXT file having size of 100 MB was submitted, memory 

usage in NameNode grows up initially. By nature of 

MapReduce, the program usually reserves required amount of 

heap space to run its tasks (map tasks and reduce tasks). For 

instance, default heap space is set with 256 MB and it can 

change depending on the process requirement. The changes 

can be made in mapred-site.xml configuration file of Hadoop 

with the command “-Xmx256m” [13]. When the program 

detects that it has enough space to run the task, it starts to 

work and consumes memory. During the map and reduce task 

for a given job, the resource consumption is at regular rate. 

Finally, it starts to release spaces when the user submitted job 

is completed successfully. The resource usage of running 

WordCount for a TXT file with 100MB is shown in Table 4. It 

can be found that the memory usage for running simple 

WordCount of MapReduce is in steady state. 

5.2.2 Running Simple I/O Job in Hadoop 
As the second test on surveying resource consumption of the 

processes in Hadoop, simple job of uploading and 

downloading with multiple file types having different sizes is 

submitted. When there is single user who uploads and 

downloads files, the resource usage is nearly regular rate. 

However, when multiple concurrent users are allowed to 

submit jobs, the memory consumption speed becomes to 

increase and later, within a few seconds (around 5 seconds), 

the speed approached to fluctuate. As long as there is 

increasing number of users submitting jobs (upload, 

download) concurrently, the behavior of the resource usage is 

gradually changed into abnormal as shown in Table 5.  

 

5.2.3 Comparison of Resource Usage Difference 

between Two Job Types 
Figure 5 shows the result of consumption speed by two types 

of jobs running in Hadoop. The red line represents the 

resource usage in running with parallel upload and downloads 

files whereas the blue line expresses the memory consumption 

speed of running simple wordcount MapReduce process. 

Table 4: Memory Usage in Running MapReduce Job 

Max 

 Memory 

(MB) 

Usage  

Memory 

(MB) 

 Speed 

(MB per second) 

512 65.792 1.16634 

512 65.792 0 

512 65.792 0 

512 65.792 0 

512 65.792 0 

512 65.792 0 

512 52.457 -13.335 

 

Table 5: Memory Usage in Running Simple I/O Job 

 

Max Memory 

(MB) 

Usage Memory 

(MB) 

Speed (MB per 

second) 

512 78.08 0 

512 66.8585 -11.2215 

512 73.5575 6.69901 

512 73.1023 -0.45517 

512 72.9175 -0.18483 

512 73.0455 0.128 

 

 

 
Figure 5: Resource Usage Difference between Two Job 

Types 

 
In the case of running wordcount program, there is no 

significantly difference in resource consumption. And, the 

speed is nearly constant over time.  Alternatively, the result of 

second testing is rather different. In this run, there is a 

fluctuation in resource usage. The reason of this result is 

because the application clients are making a continuous 

downloading and uploading files in the system and this result 

on a significant overhead of memory consumption. 

 

5.3 Proactively Predicting Time To Crash 

with Back Propagation Algorithm of 

Neural Network 
In this section, the back propagation algorithm of neural 

network is applied to predict the time to crash of NameNode 

based on the collected traces. 
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Table 6: Training Result with Learning Rate 0.1 

 

Max 

Memory 

(MB) 

Usage 

Memory 

(MB) 

Speed 

(MB per 

second) 

Actual 

TTC 

(seconds) 

Predicted 

TTC 

(seconds) 

512 42.5984 0 0 0 

512 51.8656 10.2672 44.81596 44.78924 

512 67.7376 15.872 27.99032 27.97372 

512 69.12 1.3824 320.3704 320.181 

512 68.096 -1.024 -433.5 -433.253 

512 68.352 0.256 1733 1731.963 

512 61.7984 6.5536 68.69531 68.6619 

 

Table 7: Training Result with Learning Rate 0.2 
  
 

Max 

Memory 

(MB) 

Usage 

Memory 

(MB) 

Speed 

(MB per 

second) 

Actual 

TTC 

(seconds) 

Predicted 

TTC 

(seconds) 

512 42.5984 0 0 0 

512 51.8656 10.2672 44.81596 44.80331 

512 67.7376 15.872 27.99032 27.98246 

512 69.12 1.3824 320.3704 320.2807 

512 68.096 -1.024 -433.5 -433.383 

512 68.352 0.256 1733 1732.509 

512 61.7984 6.5536 68.69531 68.67933 

 

 

 
 

 

 

Figure 6: Comparison of Actual TTC and Predicted TTC 

using two learning rates 

The traces generated by enriching process are used as data set 

for the proposed framework. Each record set is created having 

the number of process per each sample period (5 seconds in 

this case). As for using back propagation algorithm , the one-

hundred (100) samples were separated into data set that can be 

used for training network and testing data set which is used to 

test whether the network can produce the desired output when 

unknown input was given. In the proposed system, the 

network is trained with two learning rate parameters so that 

the network can produce the predicted output which is nearly 

matched with the actual output. 

Firstly, the network is trained with learning rate 0.1 to predict 

the result and the output is recorded. The result achieved is as 

shown in Table 6. In the second test set, the network is set up 

again with learning rate (0.2) to train the total samples and 

stops until the output approaches to the target. As before, the 

rest of the data set is pushed into the network and the result is 

regarded and the comparison results between the actual and 

predicted one is as illustrated in Table 7.  

 

5.4 Result Discussion 
It can be found that the predicted result obtained through 

training with learning rate 0.2 (red vertical bar) as shown in 

Figure 6 is closer to the actual result (blue vertical bar)than 

testing with learning rate 0.1 which is described as the green 

vertical bar. It may be clearer to know which of these two 

learning rates the best predictor to use is. Therefore, Mean 

Absolute Error (MAE) for the two network output (learning 

rate 0.1 and 0.2) is computed. 

The MAE formula is expressed below: 

     
 

 
       

  
                                           (9) 

Where, d = Actual Time To Crash Value 

    = Predicted Time To Crash Value 

 N = Number of Samples 

In the proposed system, the value of MAE is calculated for 

both of output produced by two learning rates. The MAE 

value using learning rate 0.2 is smaller than those of MAE for 

learning rate 0.1 as mentioned in Table 8. The reason is that 

the network trained with learning rate 0.1 produces the 

predicted output: 22.8560 whereas the actual result is 

44.8159. And, this makes the error value to be significantly 

high in comparison with the predicted result: 44.8033 

obtained by using learning rate 0.2. Besides, it took over 2000 

epochs (number of training cycles) for the network to predict 

the targeted result due to learning rate 0.1 whereas training 

time only lasted nearly 1000 epochs for the network when 

using learning rate 0.2.  

6. RELATED WORK 
Among many failures found in Hadoop, resource exhaustion 

was the most common problems. Since NameNode in Hadoop 

is still single point of failure, it can be an interrupt in getting 

high availability of the system. Many researchers have been 

done using failure detection and prediction so that Hadoop 

can overcome issues with NameNode. Feng Wang and his 

colleges [7] used metadata replication scheme to enhance 

Hadoop NameNode High Availability. A different approach is 

presented by Cristina L. Abad and his buddies [2]. They 

introduced a synthetic workload generator called “Mimesis” 

and evaluated its usefulness through a case study in a least 

recently used metadata cache for the Hadoop Distributed File 

System. 

Table 8: Comparison of MAE value for Two Learning 

Rates 

Actual 

TTC (d) 

LR(0.2) 

d1 

LR(0.1) 

d2 

(d-d1)2 (d-d2)2 

44.81596 44.8033149 22.85608 0.00016 482.2363 

27.99032 27.98246131 26.33111 6.18E-05 2.752971 

320.3704 320.2807235 310.9505 0.008042 88.73382 

68.69531 68.67932591 68.65101 0.000255 0.001962 

67.6953 67.67964826 67.6523 0.000245 0.001849 

57.63399 57.62074645 57.59769 0.000175 0.001318 

338.1538 338.0765 337.9423 0.005975 0.044729 

47.84444 47.83383492 47.81575 0.000112 0.000823 

MAE 0.00187 71.7217 
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Similar works can be found, however, as for concerning with 

web server crash, a framework for predicting of time to failure 

due to consuming resource (memory) randomly using M5P (a 

Decision Tree Algorithm). To prove the availability of the 

system, the authors illustrated with random injection of 

memory leaks to the proposed system [9] and recorded the 

logs and finally gave predicted time to failure to the 

administrator. Dhurba Borthakur, project lead of Apache 

Hadoop Distributed File System creates Avator Node to 

overcome the problem of single point of failure happened in 

NameNode of Hadoop [5]. To address the problem of 

NameNode, the authors in Intel Distribution for Apache 

Hadoop software uses shared edits directory with two ways to 

grant accesses: Network File Share (NFS) and Quorum 

Journal Manager.  

All of the above researches are intended to raise system 

performance as well as give fault tolerance based on 

prediction approach. Like those, the proposed system also 

presents resource exhaustion prediction approach. But, using a 

proactive predictive solution for enhancing NameNode fault 

tolerance in Hadoop release series 1.0.3 makes the proposed 

system differ from the earlier systems. In addition, the system 

can make prediction accuracy up to 99.9% compared to the 

actual result.   

7. CONCLUSION 
Resource exhaustion in NameNode of Hadoop version 1.0.3 

makes the cluster unavailable. In the proposed system, a 

monitoring agent proactively collects the system metrics and 

the traces are applied in time to crash calculation by using 

back propagation algorithm. The predicted results trained by 

the algorithm shows in terms of accuracy with minimal error. 

By viewing the predicted time to crash of NameNode, the 

system administrator can make decision whether it is time to 

create new NameNode or not. Therefore, the proposed 

proactive predictive solution can be utilized in preventing 

NameNode failure. 
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