
International Journal of Computer Applications (0975 – 8887)

Volume 87 – No.12, February 2014

41

Enhancing NameNode Fault Tolerance in Hadoop

Distributed File System

Ohnmar Aung

University of Computer Studies Yangon, Myanmar

Thandar Thein
University of Computer Studies, Yangon, Myanmar

ABSTRACT

In today’s cloud computing environment, Hadoop is applied

for handling huge data, tens of terabytes to petabytes, with

commodity hardware (HDFS) for storage and software

(MapReduce) for parallel data processing. In Hadoop version

1.0.3, there is a single metadata server called NameNode

which stores the entire file system metadata in main memory

and most of I/O operations are associated with those

credential metadata. Hadoop is out of commission if

NameNode is crashed because it works on memory which

becomes exhausted due to multiple concurrent accesses [3].

Therefore, NameNode is a single point of failure (SPOF) in

Hadoop and it has to tolerate faults. To solve this issue, a

proactive predictive solution is proposed for enhancing

NameNode fault tolerance. The solution is designed to

proactively calculate the predicted time to crash of NameNode

due to resource exhaustion by evaluating the use of powerful

Back Propagation Algorithm Neural Network. The proposed

approach can give prediction accuracy with minimal error

compared to the actual result. Therefore, NameNode’s single

point of failure can overcome through proposed proactively

predicting the time to crash of NameNode caused by memory

resource exhaustion.

Keywords

HDFS, NameNode, Memory Resource Exhaustion Prediction,

Back Propagation Neural Network

1. INTRODUCTION
In the world of cloud computing, companies and

organizations have a tremendous amount of data (big data)

that needs to be analyzed and processed very quickly.

Therefore, companies like IBM, Amazon, Yahoo!, etc apply

Hadoop to big data analysis since it is capable of handling

huge data, tens of terabytes to petabytes, with commodity

hardware and software. Hadoop is designed as master worker

architecture. Master nodes in Hadoop are responsible for

handling data storage processing whereas worker nodes are

only used for storage purpose. Hadoop separates storage

server for data and metadata and all information associated

with the entire cluster can only be retrieved via a single

metadata server, called NameNode.

NameNode is the heart of Hadoop for keeping the whole file

system information. There is only one single NameNode per

the cluster in Hadoop release series 1.0.3. Most of I/O

operations in the cluster are mainly associated with metadata

and NameNode does its entire house holding in memory.

When multiple concurrent processes come, NameNode is not

only busy but also start to starve resource exhaustion. If the

machine running the NameNode were obliterated, all the files

on the file system would be lost since there would be no way

of knowing how to reconstruct the files [13]. NameNode’s

failure makes the whole cluster unavailable. Therefore,

NameNode has to tolerate fault so that Hadoop can continue

giving services to its users.

In the proposed system, a proactively predictive model for

NameNode memory exhaustion is presented. Proactive

approach takes preventive actions using monitoring tools that

can predict anticipated faults before failures [14]. The

proposed system is evaluated proactive predictive solution

using the system metrics. Therefore, a monitoring agent is

applied to collect the required system metrics. The proposed

proactive predictive model predicts NameNode failure by

calculating the predicted time to crash using back propagation

algorithm. The experimental results show that the prediction

achieves accuracy of 99.9 % on average. By applying the

proposed model in Hadoop version 1.0.3, the level of fault

tolerant in NameNode can be enhanced in terms of prediction

accuracy which dictates minimal error in the predicted value.

In this paper, the preliminary concept related with the

proposed system is presented in Section 2. Then Section 3

highlights issues and contributions in the current cloud

infrastructures which are based on Hadoop. The proposed

framework is explained in Section 4. The model generation

used for the proposed system is described in Section 5 which

mentions with experimental preparation and results. The

whole presentation is concluded in Section 6.

2. PRELIMINARY CONCEPTS
Due to having the ability of handling massive volumes of

data, Hadoop is everywhere in today’s cloud platform.

However, designing a single metadata server (NameNode) in

Hadoop version 1.0.3 limits the system services. NameNode

stores the whole file system metadata in memory. It manages

queries by clients to carry out standard file system operations

DataNodes and TaskTrackers

JobTracker Node
Primary

NameNode

Secondary

NameNode

Distributed Data

Storage (HDFS)

Client

Daemons

Master

Daemons

Worker

Daemons

Figure 1: Single Point of Failure in Hadoop

such as add, copy, move or delete files and does all of its

house holding in memory. Therefore, memory in NameNode

becomes exhausted due to multiple concurrent accesses and it

International Journal of Computer Applications (0975 – 8887)

Volume 87 – No.12, February 2014

42

is a single point of failure (SPOF) in Hadoop cluster. In the

proposed system, NameNode failure is prevented by

enhancing its existing fault tolerant with the efficiency of

proactively predictive approach which uses back propagation

algorithm.

3. PROBLEM STATEMENT
Hadoop is popular for having its storage system (HDFS) and

parallel data processing framework (MapReduce). HDFS, the

Hadoop Distributed File System, is responsible for storing

huge data on the cluster. It is designed to run on commodity

hardware and can supports write-once-read-many semantics

on files. The basic idea of MapReduce is to partition a large

problem into smaller sub problems which are tackled in

parallel by separate multiple workers. Final result is produced

by summing the output of each sub worker [10]. Providing

high throughput access to applications that have large data

sets makes HDFS different from traditional file systems. In

order to give such significant service, Hadoop is implemented

as master-worker architecture. Master nodes take role of data

processing whereas worker nodes are used as storages

purpose.

In cloud computing environment, Hadoop is widely applied

for big data analytic. It can give so many advantages to its

consumers; meanwhile, it also has been facing with problems

to be solved. Followings are found as issues for Hadoop used

in today’s cloud infrastructures:

 In cloud computing clusters, there can be failures

occurred frequently and this can cost extremely to

roll back the system into original states.

 NameNode in Hadoop is still the problem of Single

Point of Failure (SPOF).

 Memory resource exhaustion impacts heavily on

NameNode to happen failure.

 As cloud computing clusters grow in size,

maintaining the health of these clusters becomes

increasingly challenging because those systems can

crash at any time.

Process 1

Hadoop
Extract

java

Hadoop

Logs

Process 2

java

Process N

Monitoring

Tool

System

Logs

Monitoring Agent System Process List

Figure 2: Proposed Proactive Predictive Framework for

NameNode Fault Tolerant

Among the above issues, monitoring tools are used to detect

potential system failures in order to prevent the cluster from

being down [11]. The second problem can be solved by

having redundant NameNodes [5]. Resource exhaustion in

NameNode can be predicted by calculating the system’s time

to crash based on collected data via monitoring tool [9]. Final

issue is concerned with the system’s performance factor: high

availability [4]. The proposed system is inspired by exploring

above issues. In the later section, process flow of NameNode

crash time prediction is presented with theoretical as well as

experimental results.

4. PROACTIVE, PREDICTIVE

SOLUTION FOR NAMENODE FAULT

TOLERANCE
Resource exhaustion impacts host processes running

significantly [14]. In Hadoop release series 1.0.3, NameNode

is a single point of failure and may primarily be broken down

by resource exhaustion. It operates mostly on RAM for instant

lookup requests and replies [5]. As long as the parallel

connections to the system are increased, the memory

consumption of NameNode for each process will be fluctuated

in accordance with the nature of the requested process and

finally resources become exhausted. Therefore, a proactive

predictive solution for enhancing NameNode fault tolerant is

presented in the proposed system. The major parts included in

the proposed system are discussed in the following sections.

4.1 NameNode Fault Tolerant System

Architecture
The proposed system is modeled on Active-Standby

NameNode with different configurations. There are three

major components in the proposed framework; Active

NameNode, Standby NameNode and Monitoring Agent. The

health of the Active NameNode is detected with proposed

monitoring agent who collects the system traces (memory

usage of each process) and then makes proactively predicting

the time to crash of the Active NameNode. After that, it

informs to the system administrator who is responsible for

creating new NameNode. Depending on the situation of

threshold violation or not, the administrator makes decision.

The Standby NameNode has to take role of the Active

NameNode and its activation is dependent on the system

administrator’s decision. Being known the state of the Active

NameNode based on proactively predicting time to crash

threshold based mechanism in advance, the administrator has

enough time to make decision whether it is required to create

new NameNode or not and the proposed proactive predictive

NameNode fault tolerance architecture is illustrated in Figure

2.

4.2 NameNode Memory Resource

Monitoring
To achieve fault tolerance in NameNode with efficiency of the

proposed proactive predictive solution, the required system

metrics has to be monitored using certain tools and

techniques. So, a monitoring agent is applied to watch the

process status of NameNode in the proposed system.

4.2.1 Monitoring Agent
There are many system metrics that can impact system

performance and they can be traced via certain monitoring

tools such as Nagios[9]. As for the proposed system, in order

to predict the time to crash of NameNode, the agent has

responsible for capturing memory usage of each process

running in the system. So, it collects all the data from one full

experiment using a monitoring script. The step by step

processes in the monitoring script is shown in Figure 3. The

traces monitored via a script are only a raw data set as

described in Table 1. These traces cannot be processed

directly in further process such as training and testing phase.

International Journal of Computer Applications (0975 – 8887)

Volume 87 – No.12, February 2014

43

Therefore, data enriching process is an essential step for

future processing.

4.2.2 Data Enriching
The main job is to add required variables derived from the

system metrics monitored [9]. For instance, memory usage for

each process may not be constant overtime because

NameNode may have to consume in accordance with the

process’s nature. So, the resource usage per process may be

linear or non-linear with respect to the time. Depending upon

resource usage, the system downtime may be nearer or

further. Generally, the time to crash (TTC) at certain time t for

a particular system could then be easily computed by using

the following formula:

 (1)

Where,

TTC= Time To Crash at time t

SAM = System Available Memory at time t

CUM = Currently Usage Memory at time t

CS = Consumption Speed at time t

In the above equation, the system available memory (SAM)

and currently usage memory for resource i at time t (CUM)

can be generated in data enriching phase. However, the

1. Set the status = “true”

2. While (true)

 - Get the current system time with “date”

 command

 - Append and save the time in a text file

 e.g date >> result.txt

 - Invoke “top” command (to know what processes

 are currently running and show how much the

 system resource they consume in percentage)

 - Set loop count n = 1

 - Select batch mode “b”

 - Extract only hadoop process with “grep”

 command (hadoop appears as “java” in the

 currently running processes lists).

 - Save and append the extracted record to a result

 file top –b –n 1 | grep java >> result.txt

2.3 Check the status

3. Go to step 2

4. Exit

Figure 3: Processes of the monitoring script

consumption speed (CS) for each process may not be same

over time. In Hadoop, there are many factors influencing the

resource consumed by each process [8]. MapReduce job type

spends memory nearly at constant rate since it does map and

reduce task in accordance with the size of the input split

Table 1: Sample Collected Data

Max

Memory

(MB)

Start Time End Time

Usage

Memory

(%)

512 10:52:18 10:52:23 8.32

512 10:52:23 10:52:28 10.13

512 10:52:28 10:52:33 13.23

512 10:52:33 10:52:38 13.5

512 10:52:38 10:52:43 13.3

512 10:52:43 10:52:48 13.35

512 10:52:48 10:52:53 12.07

Table 2: Enriched Data

Max

Memory

(MB)

Start

Time

End

Time

Usage

Memory

(MB)

Speed

(MB

per

second)

512 10:52:18 10:52:23 42.5984 0

512 10:52:23 10:52:28 51.8656 9.2672

512 10:52:28 10:52:33 67.7376 15.872

512 10:52:33 10:52:38 69.12 1.3824

512 10:52:38 10:52:43 68.096 -1.024

512 10:52:43 10:52:48 68.352 0.256

512 10:52:48 10:52:53 61.7984 -6.5536

defined on the input file [6]. In contrast, multiple concurrent

uploading and downloading to the same or different files in

Hadoop may be different from MapReduce in resource usage.

It may take sometimes much memory than the former job

type. Therefore, consumption speed for each process is

calculated using EWMA (Exponential Weighted Moving

Average) [8].

Exponentially weighted moving average (EWMA) is a type of

infinite impulse response filter that applies weighting factors

which decrease exponentially. The weighting for each older

datum decreases exponentially, never reaching zero [8].

∑ φ

∑ φ

∑ φ

N2

N3

N4

N5

N6

X1

X2

X3

X1 * W
41

X1 * W
41

N
4 * W

61

N4 * W
61

X
1 * W

51

X
3

*
W

41

X3 * W
51

X1 * W
51

Input Layer Hidden Layer Output Layer

Output

Figure 4: A Three Layer of Artificial Neural Network

In the proposed system, the EWMA for a series Y (data

samples: 100) may be calculated recursively as follow:

 (2)

 (3)

Where,

Sn = value of EWMA at any time period n

Yn= memory usage at time period n

tn- tn-1 = time difference

α = coefficient (a constant smoothing factor between 0 and 1)

W = process execution time

International Journal of Computer Applications (0975 – 8887)

Volume 87 – No.12, February 2014

44

There are many ways to initialize S1, however, most

commonly by setting S1 to Y1 (also same in the proposed

system). It depends on the applications used and the required

accuracy of the result. “W” means the period of time (process

execution time) in minutes and it is set “15 minutes” for the

proposed system since it is assumed that each job will be

submitted 15 minutes after another. In Hadoop, each node

(data nodes as well as job tracker) reports their status to

NameNode every 3 seconds to ensure that they are alive.

Based on this fact, the time difference between resource

usages of each process is limited to 5 seconds in the proposed

system. Finally, the whole collected system traces are

enriched and the results are as shown in Table 2.

4.3 NameNode Memory Resource

Exhaustion Prediction
Artificial neural network is widely used in many applications

such as pattern classification, function approximation,

clustering and prediction etc.) [1]. Multilayer perceptron

learning is a type of neural network and has been applied to

solve some difficult and diverse problems by training the

network in a supervised manner with its popular algorithm

called back propagation algorithm [12]. The proposed system

is intended to build a model that can proactively predict the

system time to crash by training the perceptrons of back

propagation algorithm.

Basically, a back propagation algorithm has two types of pass:

forward and backward. The synaptic weights of the networks

are fixed in the forward pass. By contrast, during the

backward pass, the synaptic weights are all adjusted in

accordance with an error correction rule. Updating synapse

weights makes the network output move closer to the desired

responses, and finally produces minimal error [11]. A sample

of three layer neural network is shown in Figure 4.

Neuron is the basic element of the network and is also called

computation nodes (N1, N2… N6). The network has generally

two layers: 1) input layer in which each neuron accepts

input: (X1, X2, X3) adds product of some initial weight

values: (W41, W42) (range is between 0 and 1) and

produces the partial output and 2) output layer where the

partial result: produced by the former layer is passed

through nonlinear function called neuron activation function:

 and finally produces the predicted output: by

equation 5. The error signal: is calculated by

subtracting the actual network response from the desired

output using equation 6. The prediction accuracy of the

network can know by looking at the error signal. Sometimes,

the network cannot predict the result using these two layers

and needs extra processing layers called, hidden layers [10].

Depending upon the output produced by the network at first

time, one or more hidden layers are required. There are

important parameters such as learning rate and local gradient

which has to be adjusted so that the network can predict the

desired output quickly as well as accurately.

 (4)

 (5)

 (6)

On account of predicting with back propagation algorithm for

the proposed system, four attributes are fed into the network.

Three out of four are used as inputs to the network such as

available memory, currently usage memory, consumption

speed and the rest is the time to crash (the desired response).

In order to achieve the desired output, the network was trained

iteratively. For each loop, the weight coefficients of the nodes

in each layer are modified using error correction rule:

in which gradient descent: and learning rate: were

adjusted for seeking a direction for weight change the value of

the error signal.

 (7)

 (8)

What’s more, the data set is divided into training and testing.

10 fold cross validation is used. Initially, the network is

trained with the training data set. When the error signal

reaches nearly zero, i.e., the network output is very close to

the desired output, stops the network and captures the weight

value because this parameter is the core of the network when

estimating the future output. Then, the testing data set is given

to the network whether it is able to work also on data that was

not used in the previous process.

5. SYSTEM EVALUATION

5.1 Experimental Setup
To evaluate the effective of the proposed approach, an

experimental environment is set up with commodity hardware

and necessary software installation is done as shown in Table

3. A machine having specifications with Memory 4GB, Hard

Disk 1 TB, CPU Core i3 and Window 7 version is chosen as a

host. On that machine, three virtual machines are created

using VMware Workstation 9 with equal specifications such

as Memory 512 MB, Hard Disk 20 GB, and CPU Core i3.

Each of them is connected using 100 Mps and Ubuntu 10.04

Lts is used as supporting OS as shown in Table 3.

Table 3: Test Bed Specifications

 Host VM1 VM2 VM3

Memor

y

4GB

DDR3

512MB

DDR3

512MB

DDR3

512MB

DDR3

Hard

Disk
1 TB 20 GB 20 GB 20 GB

CPU Core i3 Core i3 Core i3 Core i3

OS
Window

7

Ubuntu

10.04

LTs

Kenrel

2.6.32

Ubuntu

10.04

LTs

Kenrel

2.6.32

Ubuntu

10.04

LTs

Kenrel

2.6.32

Hadoop

Version
 1.0.3 1.0.3 1.0.3

VMwar

e

Worksta

tion

 9 9 9

Networ

k

(Mbps)

100 100 100 100

International Journal of Computer Applications (0975 – 8887)

Volume 87 – No.12, February 2014

45

5.2 Analysis of Resource Usage Behavior
Selecting hardware that provides the best choice of

performance and economy for a given workload requires

testing and validation. To show the strength of proposed

proactive predictive framework for prediction of time to crash

in NameNode due to resource exhaustion, analysis of resource

usage is done by releasing processes and monitoring how

process consume resource to complete submitted jobs.

In the experimental evaluation of the proposed system, it was

found that resource behavior was quietly different from one

job type to another. It is solely dependent upon the

characteristic of the running processes. For instance, when

writing Java programs, the memory requirement for a single

loop may be constant almost every time. However, for a

program having recursive condition, it consumes memory at a

gradually increasing rate and later this progressive

consumption makes the underlying system memory resource

face with exhaustion [8]. In this section, the root cause of

random resource consumption is discussed through two

different job type running analysis in Hadoop. The first part of

the analysis was made on running MapReduce jobs. And, the

second part was emphasized on working with random job

types: uploading and downloading files. Finally, deduction

was made on the two analysis results.

5.2.1 Running Map Reduce Job in Hadoop
In this test set, when a simple WordCount program with a

TXT file having size of 100 MB was submitted, memory

usage in NameNode grows up initially. By nature of

MapReduce, the program usually reserves required amount of

heap space to run its tasks (map tasks and reduce tasks). For

instance, default heap space is set with 256 MB and it can

change depending on the process requirement. The changes

can be made in mapred-site.xml configuration file of Hadoop

with the command “-Xmx256m” [13]. When the program

detects that it has enough space to run the task, it starts to

work and consumes memory. During the map and reduce task

for a given job, the resource consumption is at regular rate.

Finally, it starts to release spaces when the user submitted job

is completed successfully. The resource usage of running

WordCount for a TXT file with 100MB is shown in Table 4. It

can be found that the memory usage for running simple

WordCount of MapReduce is in steady state.

5.2.2 Running Simple I/O Job in Hadoop
As the second test on surveying resource consumption of the

processes in Hadoop, simple job of uploading and

downloading with multiple file types having different sizes is

submitted. When there is single user who uploads and

downloads files, the resource usage is nearly regular rate.

However, when multiple concurrent users are allowed to

submit jobs, the memory consumption speed becomes to

increase and later, within a few seconds (around 5 seconds),

the speed approached to fluctuate. As long as there is

increasing number of users submitting jobs (upload,

download) concurrently, the behavior of the resource usage is

gradually changed into abnormal as shown in Table 5.

5.2.3 Comparison of Resource Usage Difference

between Two Job Types
Figure 5 shows the result of consumption speed by two types

of jobs running in Hadoop. The red line represents the

resource usage in running with parallel upload and downloads

files whereas the blue line expresses the memory consumption

speed of running simple wordcount MapReduce process.

Table 4: Memory Usage in Running MapReduce Job

Max

 Memory

(MB)

Usage

Memory

(MB)

 Speed

(MB per second)

512 65.792 1.16634

512 65.792 0

512 65.792 0

512 65.792 0

512 65.792 0

512 65.792 0

512 52.457 -13.335

Table 5: Memory Usage in Running Simple I/O Job

Max Memory

(MB)

Usage Memory

(MB)

Speed (MB per

second)

512 78.08 0

512 66.8585 -11.2215

512 73.5575 6.69901

512 73.1023 -0.45517

512 72.9175 -0.18483

512 73.0455 0.128

Figure 5: Resource Usage Difference between Two Job

Types

In the case of running wordcount program, there is no

significantly difference in resource consumption. And, the

speed is nearly constant over time. Alternatively, the result of

second testing is rather different. In this run, there is a

fluctuation in resource usage. The reason of this result is

because the application clients are making a continuous

downloading and uploading files in the system and this result

on a significant overhead of memory consumption.

5.3 Proactively Predicting Time To Crash

with Back Propagation Algorithm of

Neural Network
In this section, the back propagation algorithm of neural

network is applied to predict the time to crash of NameNode

based on the collected traces.

68

70

72

74

5 10 15 20 25 30 35 40 45 C
o

n
su

m
p

ti
o

n
 S

p
e
e
d

 (
M

B
 p

e
r

se
c
o

n
d

)

Time period (seconds)

Upload,

Download

MapRedu

ce

International Journal of Computer Applications (0975 – 8887)

Volume 87 – No.12, February 2014

46

Table 6: Training Result with Learning Rate 0.1

Max

Memory

(MB)

Usage

Memory

(MB)

Speed

(MB per

second)

Actual

TTC

(seconds)

Predicted

TTC

(seconds)

512 42.5984 0 0 0

512 51.8656 10.2672 44.81596 44.78924

512 67.7376 15.872 27.99032 27.97372

512 69.12 1.3824 320.3704 320.181

512 68.096 -1.024 -433.5 -433.253

512 68.352 0.256 1733 1731.963

512 61.7984 6.5536 68.69531 68.6619

Table 7: Training Result with Learning Rate 0.2

Max

Memory

(MB)

Usage

Memory

(MB)

Speed

(MB per

second)

Actual

TTC

(seconds)

Predicted

TTC

(seconds)

512 42.5984 0 0 0

512 51.8656 10.2672 44.81596 44.80331

512 67.7376 15.872 27.99032 27.98246

512 69.12 1.3824 320.3704 320.2807

512 68.096 -1.024 -433.5 -433.383

512 68.352 0.256 1733 1732.509

512 61.7984 6.5536 68.69531 68.67933

Figure 6: Comparison of Actual TTC and Predicted TTC

using two learning rates

The traces generated by enriching process are used as data set

for the proposed framework. Each record set is created having

the number of process per each sample period (5 seconds in

this case). As for using back propagation algorithm , the one-

hundred (100) samples were separated into data set that can be

used for training network and testing data set which is used to

test whether the network can produce the desired output when

unknown input was given. In the proposed system, the

network is trained with two learning rate parameters so that

the network can produce the predicted output which is nearly

matched with the actual output.

Firstly, the network is trained with learning rate 0.1 to predict

the result and the output is recorded. The result achieved is as

shown in Table 6. In the second test set, the network is set up

again with learning rate (0.2) to train the total samples and

stops until the output approaches to the target. As before, the

rest of the data set is pushed into the network and the result is

regarded and the comparison results between the actual and

predicted one is as illustrated in Table 7.

5.4 Result Discussion
It can be found that the predicted result obtained through

training with learning rate 0.2 (red vertical bar) as shown in

Figure 6 is closer to the actual result (blue vertical bar)than

testing with learning rate 0.1 which is described as the green

vertical bar. It may be clearer to know which of these two

learning rates the best predictor to use is. Therefore, Mean

Absolute Error (MAE) for the two network output (learning

rate 0.1 and 0.2) is computed.

The MAE formula is expressed below:

 (9)

Where, d = Actual Time To Crash Value

 = Predicted Time To Crash Value

 N = Number of Samples

In the proposed system, the value of MAE is calculated for

both of output produced by two learning rates. The MAE

value using learning rate 0.2 is smaller than those of MAE for

learning rate 0.1 as mentioned in Table 8. The reason is that

the network trained with learning rate 0.1 produces the

predicted output: 22.8560 whereas the actual result is

44.8159. And, this makes the error value to be significantly

high in comparison with the predicted result: 44.8033

obtained by using learning rate 0.2. Besides, it took over 2000

epochs (number of training cycles) for the network to predict

the targeted result due to learning rate 0.1 whereas training

time only lasted nearly 1000 epochs for the network when

using learning rate 0.2.

6. RELATED WORK
Among many failures found in Hadoop, resource exhaustion

was the most common problems. Since NameNode in Hadoop

is still single point of failure, it can be an interrupt in getting

high availability of the system. Many researchers have been

done using failure detection and prediction so that Hadoop

can overcome issues with NameNode. Feng Wang and his

colleges [7] used metadata replication scheme to enhance

Hadoop NameNode High Availability. A different approach is

presented by Cristina L. Abad and his buddies [2]. They

introduced a synthetic workload generator called “Mimesis”

and evaluated its usefulness through a case study in a least

recently used metadata cache for the Hadoop Distributed File

System.

Table 8: Comparison of MAE value for Two Learning

Rates

Actual

TTC (d)

LR(0.2)

d1

LR(0.1)

d2

(d-d1)2 (d-d2)2

44.81596 44.8033149 22.85608 0.00016 482.2363

27.99032 27.98246131 26.33111 6.18E-05 2.752971

320.3704 320.2807235 310.9505 0.008042 88.73382

68.69531 68.67932591 68.65101 0.000255 0.001962

67.6953 67.67964826 67.6523 0.000245 0.001849

57.63399 57.62074645 57.59769 0.000175 0.001318

338.1538 338.0765 337.9423 0.005975 0.044729

47.84444 47.83383492 47.81575 0.000112 0.000823

MAE 0.00187 71.7217

0

50

100

150

200

250

300

350

400

10.27 15.87 1.38 6.55 -6.55 7.88 1.33 9.22

T
im

e
T

o
 C

ra
sh

 (
se

co
n

d
s)

Consumption Speed (MB per second)

Actual TTC

Predicted TTC

with LR 0.2

Predicted TTC

with LR 0.1

TTC = Time To Crash

 LR = Learning Rate

International Journal of Computer Applications (0975 – 8887)

Volume 87 – No.12, February 2014

47

Similar works can be found, however, as for concerning with

web server crash, a framework for predicting of time to failure

due to consuming resource (memory) randomly using M5P (a

Decision Tree Algorithm). To prove the availability of the

system, the authors illustrated with random injection of

memory leaks to the proposed system [9] and recorded the

logs and finally gave predicted time to failure to the

administrator. Dhurba Borthakur, project lead of Apache

Hadoop Distributed File System creates Avator Node to

overcome the problem of single point of failure happened in

NameNode of Hadoop [5]. To address the problem of

NameNode, the authors in Intel Distribution for Apache

Hadoop software uses shared edits directory with two ways to

grant accesses: Network File Share (NFS) and Quorum

Journal Manager.

All of the above researches are intended to raise system

performance as well as give fault tolerance based on

prediction approach. Like those, the proposed system also

presents resource exhaustion prediction approach. But, using a

proactive predictive solution for enhancing NameNode fault

tolerance in Hadoop release series 1.0.3 makes the proposed

system differ from the earlier systems. In addition, the system

can make prediction accuracy up to 99.9% compared to the

actual result.

7. CONCLUSION
Resource exhaustion in NameNode of Hadoop version 1.0.3

makes the cluster unavailable. In the proposed system, a

monitoring agent proactively collects the system metrics and

the traces are applied in time to crash calculation by using

back propagation algorithm. The predicted results trained by

the algorithm shows in terms of accuracy with minimal error.

By viewing the predicted time to crash of NameNode, the

system administrator can make decision whether it is time to

create new NameNode or not. Therefore, the proposed

proactive predictive solution can be utilized in preventing

NameNode failure.

8. REFERENCES
[1] Anil K. Jain, “Artificial Neural Networks: A Tutorial”, in

Proceedings of Neural Computing: Companion issue to

Engineering, Vol. 29 Issue 3, March 1996, pp. 31-44

[2] Cristina L. Abad, Huong Luu, Nathan Roberts, Kihwal

Lee, Yi Lu and Roy H. Campbell, “Metadata Traces and

Workload Models for Evaluating Big Storage Systems”,

in Proceedings of IEEE 5th International Conference on

Utility and Cloud Computing (UCC), Chicago, IL,

November 5-8, 2012, pp. 125-132.

[3] Chuck Lam, “Hadoop in Action”, Manning Publications

Co. 180 Broad St. Suite 1323, Stamfor, CT 06901,

December 22, 2010.

[4] Diane Hatcher, “Considerations for Implementing a

Highly Available or Disaster Recovery Environment,”

SAS Institute Inc, Cary, NC, USA, 2011.

[5] Dhruba Borthakur, “Apache Hadoop and Its Usage in

Facebook”, UC Berkeley, April 4, 2011. Online

Available : http://www.facebook.com/hadoopfs

[6] Eric Sammer, “Hadoop Operations”, O’Reilly Media,

Inc., 1005 Gravenstein Highway North, Sebastopol, CA

95472, United States of America, September 9, 2012.

[7] Feng Wang, Jie Qiu, Jie Yang, “Hadoop High

Availability through Metadata Replication”, IBM

Research, China, 2009.

[8] Javier Alonso and Jordi Torres, “Predicting Web Server

Crashes: A Case Study in Comparing Prediction

Algorithms”, in Proceedings of 5th IEEE International

Conference on Autonomic and Autonomous Systems

(ICAS’09), Valencia, April 20-25, 2009, pp. 264-269.

[9] Javier Alonso Lopez, “Proactive Software Rejuvenation

Solution for Web Environment on Virtualized

Platforms,” Doctoral thesis, Barcelona, Spain 2011.

[10] Jimmy Lin and Chris Dyer, “Data-Intensive Text

Processing with MapReduce”, University of Maryland,

College Park, April 11, 2010.

[11] Roman Dudko, Abhishek Sharma, Jon Tedsco,

“Effective Failure Prediction in Hadoop Clusters”,

March, 2012. Online Available:

http://www.techrepublic.com/resource-

library/whitepapers/effective-failure-prediction-in-

hadoop-clusters/

[12] Simon Haykin, “Neural Network: A Comprehensive

Foundation,” Prentice Hall, Delhi, India, 1999.

[13] Tom White, “Hadoop: The Definitive Guide”, O’Reilly

Media, Inc., 1005 Gravenstein Highway North,

Sebastopol, CA 95472, United States of America, May

2012.

[14] Xiaojuan Ren, Seyong Lee, Rudolf Eigenmann, Saurabh

Bagchi, “Prediction of Resource Availability in Fine-

Grained Cycle Sharing Systems Empirical Evaluation”, J

Grid Computing (2007), Vol 5, pp 173-195.

IJCATM : www.ijcaonline.org

