
International Journal of Computer Applications (0975 – 8887)

Volume 87 – No 1, February 2014

23

Parallel Simulated Annealing Algorithm for
Standard Cell Placement in VLSI Design

Aaquil Bunglowala, Ph.D

Department of Electronics & Communication
Sri Aurobindo Institute of Technology

Indore, M.P. – India

Manisha Jain
Department of Engineering Mathematics

Sanghvi Institute of Management & Science
Indore, M.P. – India

ABSTRACT
Simulated Annealing (SA) is a stochastic based heuristic

optimization technique based on physical process of metal

crystallization. Optimization of Non-Deterministic

polynomial hard (NP-hard) problems of non-trivial sizes is

done using heuristic approach. Until now, simulated

annealing (SA), genetic algorithm (GA) and Hopfield neural

network (HNN) were individually used for solving the

standard cell placement (SCP) problem. Simulated annealing

established as a powerful SCP optimization tool, its drawback

has always been its appetite for computational resources. In

light of this, we are interested in the application of these

parallel simulated annealing algorithms with respect to

standard cell placement.
Several generalized algorithms proposed for parallelizing

simulated annealing, only a few have been applied to cell

placement. Parallel moves has been the most popular strategy

and in this paper we present a new implementation of this

approach.

General Terms
Standard Cell, Optimization, Parallel Moves, Non-Trivial

Keywords
NP-hard, Simulated Annealing, Hopfield Neural Network,

Recombinative SA, PMSAA.

1. INTRODUCTION
The Standard Cell Placement (SCP) problem can be stated as:

Give an electrical circuit consisting of fixed rectangular

shaped cells and a netlist stating interconnection among

terminals on the periphery of the cells and construct a layout

on the periphery of the circuit itself, indicating the position of

each cell such that all the nets can be routed and the total area

s minimized [3].

Let c1, c2,…….ck be the cells to be placed on the chip. Each

cn, 1≤ n≤ k, has associated with it a height Hn and width Wn.

Let N={n1, n2, n3,……..nj} be the set of nets representing the

interconnections between different blocks. Let S= {s1,

s2,s3,……si} represent the empty space allocated for routing

between cells. Let Ln denote the estimated length of net. The

placement problem now is to determine a rectangle for each of

these blocks in the row denoted by R={r1, r2, r3, ……rk} such

that:

1. Each cell can be placed in the corresponding rectangle in a

rn row with width Wn and height Hn.

2. No two rectangles overlap i.e. rp∩rq=φ, 1≤ p, q ≤ k.

3. The placement is routable, i.e.sr, 1≤ r ≤ i, is sufficient to

route all the nets.

4. The total area of the rectangle bonding R and S is

minimized, minimizing the total area of chip.

5. The total wire length is minimal.

SCP is computationally NP-hard. These problems can not be

solved in polynomial time. A heuristic needs to be used to

search through a large number of candidate placement

configurations efficiently.

We established three heuristic techniques for SCP problem in

the previous publications. They included Genetic Algorithms

(GA), Hopfield Neural Network (HNN), Simulated Annealing

(SA) based approach [9, 10, 11].

2. SA ALGORITHM
The Simulated Annealing Algorithm, SAA, starts with a high

value of the control parameter taken for temperature; and a set

of parameters {xi} are defined. An initial solution for a

parameter xk is computed. This initial parameter is then

perturbed causing the neighbourhood parameter xl to generate

a new solution. The value of the objective function, the cost,

for the new solution is computed [9, 14].

2.1 SCP by Simulated Annealing
Kirkpatrick et al. tried to solve placement and routing

problems occurring in VLSI design by the SAA. A great deal

of research was conducted to improve the performance of

SAA for SCP [1].

Information about the initial placement of the cells on the

layout is shown in the table 1 in which the first row is a

sequence of cells, the second and third rows provide the

coordinates of the corresponding cells on the layout.

Table 1: Representation of Standard Cell Placement

CELL A B C D E F G H I J

X

coordinate
0 20 50 75 90 0 30 55 70 95

Y

coordinate
0 0 0 0 0 50 50 50 50 50

The basic algorithm is followed by the underlined procedure.

 Initially, the starting temperature is computed, which in this

case is problem-specific.

 The initial solution is generated randomly and the x and y

coordinates are determined.

 To generate new solutions, the neighbourhood operator is

used.

Read netlist (input file)

Set temperature Temp at high value

Generate an initial valid sequence of cells randomly

(Solution: SK)

Based on the sequence K calculate x and y coordinates

of each cell

Calculate the energy EK of the initial solution

SBest = SK

EBest = EK

LOOP

International Journal of Computer Applications (0975 – 8887)

Volume 87 – No 1, February 2014

24

 LOOP

 Iteration = Iteration +1

 Apply neighborhood operator to modify SK

 generating new solution SL

 For SL calculate x and y coordinates of each cell

 For SL calculate the energy EL

IF EL< EK THEN

 SK =SL and EK = EL

 SBest = SL and EBest = EL

Else

 Choose a random number n between 0 and 1

 IF p< exp[-(EL -EK)/Temp] THEN

 SK =SL and EK = EL

 SBest = SL and EBest = EL

UNTIL Iteration reaches a fixed given number

IF PO & PR != 0 THEN switch to external cycle

Lower the value of Temp

UNTIL termination criteria

Algorithm 1: SA Algorithm for SCP problem

2.2 Results of SAA with Different Cooling

Schedules
A large number of tests were performed with test cases of

varying problem sizes and varying complexities of netlists

[12]. The problem sizes range from 20 cells to 120 cells. The

description of the test cases is given in table 2.

Table 2 : Test cases for establishing the results

Test

Case

Number of Average

cells per

Net

Average

width of

cells
Cells

ami- lib

Nets Rows

A 20 20 4 6 30

B 20 18 4 5 30

C 20 16 4 5 30

D 40 15 5 8 25

E 40 14 5 8 25

F 40 11 5 10 25

G 80 22 8 10 25

H 80 24 8 12 20

I 120 36 12 8 35

J 120 44 12 10 35

The important parameters of simulated annealing are the

stating temperature, the factor by which temperature is

reduced and the lowest temperature at which the algorithm

should stop.

The temperature after each inner loop is lowered by a fixed

factor 0.995. Hence the cooling can be expressed

mathematically as Tnew=0.995*Told.

The most factor parameter is the cooling factor. With regard

to this factor, four versions of SAA were tested:

SAA-I: with cooling factor: 0.98

SAA-II: with cooling factor: 0.999

SAA-III: with cooling factor: 0.9999

SAA-IV: with cooling factor: 0.99999

Table 3: Results of SAA [Wire Length]

Test

Case

Number of Average

Cell

Width

Result

Quality

Wire Length (μm)

Cells Nets
SAA

I

SAA

II

SAA

III

SAA

IV

A 20 20 30 Best 3708 3695 3715 3680

B 20 18 30 Best 2886 2828 2768 2744

C 20 16 30 Best 2744 2728 2720 2720

D 40 15 25 Best 3548 3526 3486 3428

E 40 14 25 Best 2528 2546 2528 2528

F 40 11 25 Best 2465 2564 2465 2465

G 80 22 25 Best 3777 3726 3688 3658

H 80 24 20 Best 3850 3850 3850 3850

I 120 36 35 Best 5788 5723 5640 5638

J 120 44 35 Best 6754 6003 5988 5947

Table 4 : Results of SAA [CPU-Time]

Test

Case

No. of Average

Cell

Width

Result

Quality

CPU Time (in second)

Cell Net
SAA

I

SAA

II

SAA

III

SAA

IV

A 20 20 30 Best 97 130 288 935

B 20 18 30 Best 103 144 296 944

C 20 16 30 Best 104 148 303 948

D 40 15 25 Best 224 246 964 2488

E 40 14 25 Best 215 238 948 2344

F 40 11 25 Best 208 234 932 2283

G 80 22 25 Best 648 1224 2432 7826

H 80 24 20 Best 785 1438 2834 9276

I 120 36 35 Best 1546 3012 5882 14586

J 120 44 35 Best 1726 3649 7512 18442

3. SCP BY PARALLEL MOVES SAA
In Parallel Moves Simulated Annealing Algorithm, each

processor generates and evaluates moves independently as if

the other processors are not making any moves. One problem

with this approach is that the cost function calculations may

be incorrect due to the moves made by the other processors.

This can be handled by either evaluating only moves that do

not interact, or handle interacting moves with some error

tolerance procedure [4,5,6,7].

3.1 Parallel Moves SAA [PMSAA]
PMSAA exploits parallelism by using parallel moves and

allowing errors in the cost function. Using the Accumulate

feature of the PMSAA, an Accumulate named Design is

constructed to manage access to the Design structure and

maintain a coherent state of the current placement. Each

processor will have one manager of Accumulate responsible

for its local copy of the Design. In addition, an Anneal

Process [AP] is created per physical processor to perform the

annealing steps - i.e. move, evaluate, and decide.[4] Figure 1

shows the relationship between the accumulate and its

dependent AP.

Figure 1: Processes in PMSAA

After the creation of the AP, the placement is divided up

topographically by rows, with the rows and its cells assigned

to separate AP. If the number of rows is not greater than or

equal to the number of processors, the rows must be split into

a number of sub-rows, in which case some overlap penalties

may be calculated erroneously..

AP0

AP1

AP2

AP3

Design

Manager 0

Manager 1

Manager 2

Manager 3

International Journal of Computer Applications (0975 – 8887)

Volume 87 – No 1, February 2014

25

A valid cell is selected for perturbation, and then a

displacement or exchange is performed on that cell. As

detailed below, there are two sub-classes of moves for both

displacement and exchange, or four move types in total. The

move type is determined by the intended location of the

selected cell A.

move1: Cell A moves to a new location owned by the same

AP.

move2: Two cells B and C owned by the same AP exchange
their locations.

move3. Cell D moves to a new location owned by a different
AP.

move4. Two cells E and F owned by different APs are
exchanged.

An example of each type of move is shown in Figure 2. In the

figure, assume that each row is owned by different Anneal

APs. Notice that the three moves (move1, move2, move3) can

be done alone by AP0, the owner of cell A. For move4,

however, AP0 needs permission from AP1 which owns cell F,

as it is possible that cell F may have already been moved to

another location or is frozen due to some pending move.

Because the information about cell F may be out of date in the

database of AP0, it locks (or freezes) cell E and cell F and

sends a SeekPermission message to AP1. After receiving the

SeekPermission message, AP1 examines the state of cell F

and determines whether to allow the exchange. The decision

is sent back to AP0 by sending the Reply message. Upon

receipt of the Reply message, AP0 unlocks cells E and F, and

the move is attempted if the reply is yes. AP0 does not wait

idly until the Reply message is received - instead, it continues

annealing by making other moves with unfrozen cells that it

owns. Since the inter-AP exchange ‘move4’ takes the most

time due to extensive message passing, we introduce a

‘Message Priority’ scheme to reduce the time taken by move4.

Figure 2: Moves in PMSAA demonstrated

If a move is accepted, then the accepting AP must send the

move to the Design accumulate so a consistent cell position

database can be maintained. In order to amortize the startup

cost of sending a message, position update messages are held

until a number of moves have been accepted. Although this

reduces the total number of messages sent among processors.

As the frequency of messages is reduced, the local cell

position database on each Design representative becomes

increasingly inaccurate, thereby causing the cost function

calculation error to increase as well. This error, if too large,

may prevent the algorithm from converging to an optimal

solution.

Since AP methods are non-blocking, the AP’s annealing

process must give up control every so often to allow the

accumulate to gain computation time to perform the updates.

Therefore, a limit is placed on the number of moves that may

be performed in succession without interruption. The Design

Accumulate can then process any waiting Update messages to

keep the local database up-to-date. AP will have rescheduled

itself by sending itself a Continue message that will enable

control to come back to the AP and the next set of moves can

then be proposed and evaluated.

After broadcasting its set of moves through the Accumulate,

an AP does not wait idly until all the Update messages sent by

other APs have been processed, but it goes ahead with the

next sequence of simulated annealing moves. In synchronous

approach to parallelization APs finishing a block of moves

must wait for slower APs to finish. The time to evaluate

different moves is not the same, leading to some APs

remaining idle, and thus reducing the overall speedup. In an

asynchronous approach, APs become idle only at the end of

the entire simulated annealing procedure. The overall idle

time will have been reduced leading to greater speedup than

the synchronous method. However, synchronization does

offer an advantage in that the error in the cost function

calculation becomes zero at each synchronization barrier,

thereby making error control much easier. In the

asynchronous approach an effective error control scheme is

necessary to control the accumulated error in the system.

3.3 Results for PMSAA

Results obtained by using PMSAA on test cases A-J discussed

in table table 2 are shown in table 5.

Table 5 presents the wire-length in case of PMSAA for two,

four and eight parallel processors in comparison to uni-

processor based SAA-IV. PMSAA gives a small overhead of

2% to 7% increase in wire lengths in all the test cases.

Table 5: Results of PMSAA viz. a. viz. SAA [WL]

Test

Case

Number of
Average

Cell

Width

Result

Quality

Wire Length (μm)

Cells Nets
SAA

IV

PM

SAA

2P

PM

SAA

4P

PM

SAA

8P

A 20 20 30 Best 3680 3761 3788 3938

B 20 18 30 Best 2744 2804 2826 2936

C 20 16 30 Best 2720 2774 2800 2902

D 40 15 25 Best 3428 3503 3531 3668

E 40 14 25 Best 2528 2580 2598 2710

F 40 11 25 Best 2465 2520 2532 2638

G 80 22 25 Best 3658 3738 3768 3914

H 80 24 20 Best 3850 3928 3958 4128

I 120 36 35 Best 5638 5762 5807 6033

J 120 44 35 Best 5947 6078 6125 6363

Table 6: Results of PMSAA viz. a. viz. SAA [CPU-Time]

Test

Case

No. of Avg.

Cell

Width

Result

Quality

CPU Time (in second)

Cells Nets SAA

I

PM

SAA

2P

PM

SAA

4P

PM

SAA

8P

A 20 20 30 Best 935 497 443 322

B 20 18 30 Best 944 502 447 326

C 20 16 30 Best 948 504 449 327

D 40 15 25 Best 2488 1220 1091 818

E 40 14 25 Best 2344 1149 1028 771

F 40 11 25 Best 2283 1119 1001 751

G 80 22 25 Best 7826 3692 3316 2516

H 80 24 20 Best 9276 4375 3931 2983

I 120 36 35 Best 14586 6570 5881 4354

J 120 44 35 Best 18442 8307 7436 5505

 move1 move2

 move3 move4

AP0

AP1

Cell A Cell

B

Cell

C

Cell

D

Cell E

Cell F

International Journal of Computer Applications (0975 – 8887)

Volume 87 – No 1, February 2014

26

4. CONCLUSIONS
Simulated Annealing is tolerant to some error in cost function

calculations while in PMSAA the frequency of sending

position Update messages is determined adaptively such that

the error in the cost function is kept small at all times. As

shown in table of result for PMSAA and SAA, PMSAA gives

a significant improvement in execution time as compare to

SAA. The improvement is in the order of 2 to 3 times to that

of SAA-IV. Also as the size of test set increases the speed-ups

are more significant. All these indicators point to the fact that

the parallel algorithms are better utilized for higher end

complex designs. From the above tables it is clear that

PMSAA produces acceptable speedups, while maintaining

quality comparable to that of SAA (refer figure 3 and figure

4).

5. REFERENCES
[1] Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. 1989.

Optimization by Simulated Annealing. Science 220,

671-680.

[2] Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N.,

Teller, A.H., Teller, E. 1953. Equation of State

Calculation by Fast Computing Machines. J. of Chem.

Phys., 21, 1087-1091.

[3] Khushro, Shahookar, Pinaki, Mazumder 1990. A Genetic

Algorithm for Standard cell Placement”, Proceedings of

EURO-DAC, 660-664.

[4] Banerjee, M., Jones, H. & Sargent, J. S. 1990. Parallel

Simulated annealing algorithms for standard cell

placement on hypercube multiprocessors. IEEE

Transaction on Parallel and Distributed Systems.

[5] Durand, M. D. 1989. Accuracy vs. speed in placement.

IEEE Design & Test of Computer. 8-34.

[6] Kravitz, S. A., & Rutenbar, R. A. 1987). Placement by

simulated annealing on a Multiprocessor. IEEE

Transaction on Computer-Aided Design 6.

[7] Rose, J. S., Snelgrove, W. M., & Vranesic, Z. G. 1988.

Parallel standard cell placement algorithms with quality

equivalent to si.mulated annealing. IEEE Transactions on

Computer- Aided Design 7.

[8] Rutenbar, R. A. 1989. Simulated Annealing Algorithms,

An Overview. IEEE Circuits and Devices Magazine, 5,

No. 1, 19-26.

[9] Bunglowala, A., & Singhi, B. M. Memetic Algorithms as

a Solution to combinatorial Optimization Problem.

Proceedings of 2nd PIMR International Conference.

[10] Bunglowala, A., Singhi, B.M. 2008. Performance

Evaluation And Comparison and Improvement of

standard Cell placement in VLSI Design. International

Conference on Emerging Trends in Engineering and

Technology.

[11] Bunglowala, A., & Singhi, B. M. 2008. A solution to

Combinatorial Optimization Problem using Memetic

Algorithm. International Journal of Computer System

Application.

[12] Hajek, B. 1988. Cooling Schedules for Optimal

Annealing. Mathematics of Operations Research, 13,

No. 2, 311-329.

[13] Beumont, O., Legrand, A. and Robert, Y. 2003. Optimal

algorithms for scheduling divisible workloads on

heterogeneous systems. Processing Symposium.

[14] Mitra, D., Romeo, F., and Sangiovanni-Vincentelli, A.

1986. Convergence and Finite Time Behavior of

Simulated Annealing. Advances in Applied Probability,

18, 747-771.

 Figure 3: WL of PMSAA-2, 4, 8P viz. a. viz. SAA-IV Figure 4: CPU Time of PMSAA-2, 4, 8P viz.a.viz. SAA-IV

Wire Length …
0

2000

4000

6000

8000 Wire Length (µm)
SAA IV

Wire Length (µm)
PMSAA 2P

Wire Length (µm)
PMSAA 4P

Wire Length (µm)
PMSAA 4P CPU Time [in …

0

5000

10000

15000

20000 CPU Time [in
seconds] SAA IV

CPU Time [in
seconds] PMSAA 2P

CPU Time [in
seconds] PMSAA 4P

CPU Time [in
seconds] PMSAA 8P

IJCATM : www.ijcaonline.org

