
International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 9, January 2014

40

New Patterns for Reducing Number of Access to

Database in Layered Information Systems

GholamAli Nejad HajAli Irani
University of Bonab

Velayat Avenue, East Azerbaijan, Bonab
5551761167, Iran

Ali Akbarpour Bonab
University of Bonab

Velayat Avenue, East Azerbaijan, Bonab
5551761167, Iran

ABSTRACT

Nowadays, most information systems are developing based on

layered architectures. Connecting to database is the most

important part of layered architectures and there are many

connections to database. So, the performance of information

systems can be improved by reducing the number of such

connections.

For this purpose, new patterns have proposed; also solution

domain and structure of provided patterns have been

explained by practical examples.

Finally, reusability and performance of provided patterns have

been examined and the results approve the productivity of

provided patterns in comparison with previous methods.

As a future work, a standard and reusable category of patterns

will be reached by developing and categorizing other new

patterns.

General Terms
Software Architecture, Layered Architectures

Keywords

Software Analysis and Design, Three Layer Software

Architecture, Quality Attributes, XML.

1. INTRODUCTION
The usage of software systems is increasing in real-world

applications; therefore, the size of storing and retrieving data

is growing.

Data access performance optimization is the most important

feature in system development. There are variety of

optimization techniques based on the system size and its

development.

Software architecture is an important issue in development of

information systems. Optimizing the architecture affects the

whole system optimization. One of the most applicable

architectural patterns is the three-layer architecture.

This architecture is composed of the DAL (Data Access

Layer), the BLL (Business Logic Layer) and the UI (User

Interface) layers. The BLL consists of the majority of codes in

three layer architecture. So, optimizing the BLL will affect the

whole system optimization.

Due to characteristic of the BLL, the major part of Business

Process (BP) is placed in the BLL. According to the anatomy

of BP, any process for its operations requires storing and

editing data. It is usually accomplished in the process body.

 Any access to data in the BLL may cause access to database

in the DAL. Any access to the database needs time.

Furthermore, increasing the number of accesses to data in the

BLL will increase the number of access to the database.

In this paper, to improve the productivity of the BLL, number

of accesses to database has been reduced. To achieve this

goal, the following steps have been recommended:

1. To investigate and categorize the problems of current

approaches and architectures.

2. To develop and explain two new patterns for decreasing

number of accesses to database.

3. To evaluate provided patterns and investigating their

advantages.

2. RENIEW THE PROBLEMS OF

EXISTING SOLUTIONS
In most object-oriented methodologies, each system is

composed of a set of Use Cases, which is identified as Process

or Core Asset in the other methodologies.

Based on UCP (Use Case Point) methods [1], system Use

Cases, can be divided into main and non-main Use Cases. The

main Use Cases have more access to data than the non-main.

In order to optimize the number of accesses to data,

optimizing the main Use Cases, will improve the whole

system productivity. For example, the Borrow Use Cases of

library system have evaluated. Alternative flows of these Use

Cases are similar to Figure 1.

In the Use Case of Borrow, the sent data from the UI to BLL

includes BNO (book’s number) and MNO (Member ID). For

BLL optimization, many architectures and methods have been

presented.

For example, Martin Fowler in [2], investigates the

institutional architectures of system each of which leads to

optimize the system development. The architecture of Oracle

Suite [3] writes all BLL codes into database functions for

reducing the number of accesses to data.

Microsoft's architecture used in [4], writes all DAL codes into

database’s Stored Procedures in order to reduce the number of

access to data.

Table 1 classifies available methods to decrease number of

accesses to data in database. All methods can be divided into

two major categories. First category uses Stored Procedures or

Functions of Database and second category doesn’t use them.

Table 1: classification of current approaches

First category

(by Stored

Procedures)

To decrease number of access to

database and improve system

performance, all of BLL layer codes

must be written in database such as [3],

[4].

Second category

(without Stored

Procedures)

To decrease number of access to

database and improve system

performance by object oriented patterns,

techniques and heuristics such as [2].

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 9, January 2014

41

The first category of methods implies the BLL codes into

database. Furthermore, less time is required to access data, but

the code inside the database does not have common

programming language strengths, because its structure is not

fully formed.

The BLL codes include major part of project. So it is not easy

to write BLL codes into database. For example, languages that

used in the database such as PL-SQL [5], TSQL [6] and

SQL*PLUS [7] do is not as powerful as Object-Oriented.

Writing large amounts of code without object-oriented and

other programming language techniques, neglects other

capabilities such as extendibility, modifiability and

reusability. Furthermore, the methods of database languages

are not recommended for large software systems.

In the second group of approaches, using design patterns and

object-oriented heuristics such as [2] which are trying to

optimize and reduce the number of access to data in BLL and

DAL.

None of the existing approaches are ideal for optimizing the

number of accesses to the system. In some references, such as

[9], one or two methods have been provided. But none of

them have been investigated comprehensively.

Fig 1: Alternative flows of Borrow Use Case

3. PRESENTED PATTERNS
In this section, new patterns are provided for reducing number

of accesses to data in the BLL. Following steps are considered

for each pattern:

1. Describing the problem domain

2. Describing the solution domain

3. Describing the structure of pattern

4. Supporting the provided pattern by practical example

3.1 Multi Command Pattern (MCP)
3.1.1 Describing the problem
In Use Case implementation, multiple requests or multiple

data from database may be required. Usually, these requests

apply from the BLL and using the DAL is unavoidable to

access each data for each request. These requests may occur

for storing and editing in database system.

3.1.2 Describing the solution
The purpose of this pattern is storing and editing the data in

the DAL when these data do not interact with each other. This

pattern is usable to request all commands from the DAL in

one time, and the DAL returns all data and results to the BLL

in one time.

For example, in library system, consider the Borrow Use

Case; the Alternative Flow is presented in Figure 1. Different

entities that are in relationship with Borrow Use Case have

been showed. For Use Case operations, member, borrow,

document and book entities must be modified.

It is essential to access DAL for each request in usual

methods. Furthermore, it is required to connect to database for

each request in usual methods. But, in this pattern, all

operations can be performed just in one access to database.

In order to implement this pattern, the class named Multi

Command Entity (MCE) in the DAL is required. Every entity

(like Book Entity) is composed of commands such as select,

insert or update. And it is possible for user to use these

commands in the BLL. Thus, MCE class should support all

methods of system entities.

3.1.3 Describing the structure of pattern
Using all methods of entity classes in this pattern are possible

by adding additional methods without any change in methods

of entities; the purpose of these methods is creating and

returning the relevant SQL command without executing it.

For example, consider the Insert method from Book’s

methods. The responsibility of this method is getting data and

creating SQL command and executing it. Naming these new

methods are following this format: previous method

name_MCP(…).

These new methods have same parameter as previous

methods. In addition, the task of these new methods is same

as previous ones, but without executing the command. Also

BLL should be replaced like Table 2.

As a result, the MCP class in the DAL takes all SQL

command by Add method and storing it in a list. Then by Run

method, all commands should be sent to execute into

database. In order to execute sent command by MCP class, the

method named MCP_SP is required into database.

This method’s duty is getting and executing all SQL

commands and returning the result(s).

 In order to execute the set of sent command by MCP class,

MCP_SP method must be create into database. As regards that

sent commands may have different state of CRUD; the result

of executing output may have different state. For simplicity,

XML format is used for sending data to database. The DTD of

MCP_SP result will be like Table 3.

 class Alternatives

check validity of

Book Number

is Book reference

type

check Book

availability

check Member

Number validity

is Book reserved check Member

codition to get Book

UseCase

start

UseCase

end

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 9, January 2014

42

Table 2: replacing previous codes by applying MCP

pattern

Previous method New method

Book.Insert(BookInfo b);

MCP x=new MCP();

x.add(Book.Insert_MCP(BookInfo B));

x.Run();

Table 3: DTD of MCP_Sp result

<?xml version="1.0"?>
<!DOCTYPE DTDsend [
<!ELEMENT MCP_Sp (Response+)>
 <!ATTLIST MCP_Sp
 ResponseCount CDATA #REQUIRED >

<!ELEMENT Response (FieldNames,Records)>
 <!ATTLIST Response
 No CDATA #REQUIRED
 Type CDATA #REQUIRED
 Name CDATA #REQUIRED >

<!ELEMENT FieldNames (Name+)>
 <!ATTLIST Name
 Value CDATA #REQUIRED >

<!ELEMENT Records (Row+)>
 <!ELEMENT Row (Col+)>
 <!ATTLIST Col
 Value CDATA #REQUIRED>]>

3.2 One Many Pattern (OMP)
3.2.1 Describing the problem
In some Use Cases, because of one-to-many relations between

system entities, entity’s data or recorded data may be required

several times. In this case, the primary key will be used in

storing other entities.

For example, in Accounting Systems, for storing data more

than two references to entities may be needed, meaning that

more than two times access to database is required. For

example, entities like Figure 2, for inserting data of A, B, and

C entities, more than three accesses is required to access data

of entities in database. This problem can be even more

sophisticated.

Fig 2: example for one many relationship

3.2.2 Describing solution
For problem like that, OMP pattern minimizes the number of

accesses to one access to database. The problems like this

problem are caused by using the primary key of entity A in

other entities like B and C. For this reason, entity B should be

started after recording data of entity A, and this is the reason

that they could not send all data from the BLL in one access

to database. Furthermore, for solving this problem and

sending more than one inserting command for A, B and C

entities in one access to database, the following instructions

are required in provided OMP pattern:

1. Getting commands from OMP entity class in DAL.

2. Using OMP_PK key in entity B instead of primary key of

entity A.

3. Sending commands to function named OMP_SP into

database and inserting data of entity A by OMP_SP

function.

4. Using primary key of entity A instead of OMP_PK key for

entity B inserting command.

5. Replacing new codes in BLL according to Table 5.

This pattern output is similar to MCP pattern. Namely, the

output of more insert commands by OMP can be returned by

DTD of Table 3 to the BLL.

Table 5: replacing previous codes by applying OMP

pattern

Previous New

AInfo a = new AInfo();

a.Attr1=Value1;

a.Attr2=Value2;

PK=Aentity.Insert(a);

BInfo b=new BInfo();

b.FK=PK;

b.attr1=Value1;

Bentity.Insert(b);

AInfo a=new AInfo();

a.Attr1=Value1;

a.Attr2=Value2;

OMP Entity x=new OMP Entity();

PK= x.Add(Bentity.Insert_MCP(A));

BInfo b=new BInfo();

b.FK=PK;

b.attr1=Value1;

b.attr2=Value2;

x.Add(Bentity.Insert_MCP(b));

x.Run()

For two or more than one many relations like Figure 2, all

commands can be perform just by one access to DAL by

OMP pattern and the codes must replace according to Table 5.

4. EVALUATION
In this section, the performance of one of provided patterns

(OMP) have evaluated. The presented pattern decreases the

access numbers to database to one. However, using this

pattern adds new codes and depletes performance. Minimizing

the access number is worthy in expense of depleting the

performance.

The Borrow Use Case of library system have been examined

by normal coding and with new provided pattern for diversity

of data in both formats. Results are illustrated in Figure 3.

 class Multi Entities

AEntity BEntity CEntity
1 * 1 *

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 9, January 2014

43

Fig 3: performance comparison between OMP pattern

and common methods

Examination codes exist in [10].

5. CONCLUSION AND FUTURE WORK
In this paper, two patterns named MCP and OMP have been

provided for reducing the number of access to database.

Patterns have been evaluated and it is obvious that system

productivity improved without any additional overhead.

Therefore, these patterns can be used to improve system

productivity in any system.

By providing new patterns or extending the existing ones, new

Framework can be produce for provided patterns. By creating

Framework for provided patterns, system productivity can be

improve in any project.

6. REFERENCES
[1] S. Diev, Number 2, 2006.Software Estimation in the

Maintenance Context, ACM SIGSOFT Software

Engineering Notes, Volume 31.

[2] M. Fowler, D. Rice, M. Foemmel, E. Hieatt, R. Mee, R.

Stafford, 2002. Patterns of Enterprise Application

Architecture, Addison Wesley.

[3] A. Passi, ‎V. Ajvaz, 2009 Oracle E-Business

Suite Development & Extensibility Handbook, Oracle

Press.

[4] Microsoft Patterns & Practices Team, 2009 Microsoft

Application Architecture Guide, Second Edition, Patterns

and Practices, Microsoft Press.

[5] M. Rosenblum, ‎D. Delmolino, ‎L. Cunningham, 2011 et

al, Expert PL/SQL Practices: for Oracle Developers and

DBAs, Apress.

[6] D. Comingore, D. Hinson, 2007. Professional SQL

Server 2005 CLR Programming: with Stored Procedures,

Functions, Triggers, Aggregates, and Types, Wiley Press.

[7] J. Gennick, 2005. Oracle SQL*Plus: The Definitive

Guide, O'Reilly Press.

[8] B. Meyer, 1994. Object Oriented Software Construction,

Second Edition, Prentice Hall International Series in

Computer Science.

[9] J. Goodson, R.A. Steward, 2009. The Data Access

Handbook Achieving Optimal Database Application

Performance and Scalability, Pearson Education.

[10] Full source codes are available online at:

http://www.4shared.com/zip/YYyqCRb4/OMP-

Final_Source_Codes.html

0

50

100

150

200

250

Common Methods OMP Pattern

X: Repetation Frequency
Y: The Result Time By Second

IJCATM : www.ijcaonline.org

https://www.google.com/search?sa=X&biw=1454&bih=703&tbm=bks&tbm=bks&q=inauthor:%22Anil+Passi%22&ei=SZuLUtiAM-Ho4gTG2oHoAg&ved=0CC4Q9AgwAA
https://www.google.com/search?sa=X&biw=1454&bih=703&tbm=bks&tbm=bks&q=inauthor:%22Vladimir+Ajvaz%22&ei=SZuLUtiAM-Ho4gTG2oHoAg&ved=0CC8Q9AgwAA
http://books.google.com/books?id=040Rb-vTirsC&q=book+for+oracle+e+business+suite+architecture&dq=book+for+oracle+e+business+suite+architecture&hl=en&sa=X&ei=SZuLUtiAM-Ho4gTG2oHoAg&ved=0CCwQ6AEwAA
http://books.google.com/books?id=040Rb-vTirsC&q=book+for+oracle+e+business+suite+architecture&dq=book+for+oracle+e+business+suite+architecture&hl=en&sa=X&ei=SZuLUtiAM-Ho4gTG2oHoAg&ved=0CCwQ6AEwAA
https://www.google.com/search?biw=1454&bih=703&tbm=bks&tbm=bks&q=inauthor:%22Michael+Rosenblum%22&sa=X&ei=I6CLUqS-FKfe4QT5moDwCg&ved=0CEAQ9AgwAw
https://www.google.com/search?biw=1454&bih=703&tbm=bks&tbm=bks&q=inauthor:%22Dominic+Delmolino%22&sa=X&ei=I6CLUqS-FKfe4QT5moDwCg&ved=0CEEQ9AgwAw
https://www.google.com/search?biw=1454&bih=703&tbm=bks&tbm=bks&q=inauthor:%22Lewis+Cunningham%22&sa=X&ei=I6CLUqS-FKfe4QT5moDwCg&ved=0CEIQ9AgwAw
http://books.google.com/books?id=C-W-KHrsvvMC&pg=PA344&dq=PL-SQL+is+Object+Oriented&hl=en&sa=X&ei=I6CLUqS-FKfe4QT5moDwCg&ved=0CD4Q6AEwAw
http://books.google.com/books?id=C-W-KHrsvvMC&pg=PA344&dq=PL-SQL+is+Object+Oriented&hl=en&sa=X&ei=I6CLUqS-FKfe4QT5moDwCg&ved=0CD4Q6AEwAw
http://eu.wiley.com/WileyCDA/Section/id-302479.html?query=Derek+Comingore
http://eu.wiley.com/WileyCDA/Section/id-302479.html?query=Douglas+Hinson
http://www.google.com/search?tbo=p&tbm=bks&q=inauthor:%22Jonathan+Gennick%22

