
International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 9, January 2014

14

AN Effective Parallel XML Fuzzy Query Processing

K. Naresh Kumar
Research Scholar
Dept. of CS & SE
Andhra University

N.V.E.S Murthy
Dept. of Mathematics

Andhra University
Visakhapatnam, India

Ch. Satyanand Reddy, Ph.D
Dept. of CS & SE
Andhra University

Visakhapatnam, India

ABSTRACT

Representation and handling of inexactness in information has

become the major issues in modern database system and next

generation information systems. In order to deal with the

information inexactness, fuzzy logic is integrated with various

database model and theories. This paper presents a query

processing model could coupled with fuzzy logic in XML

database system. Our system is based on traditional XML

databases, while permitting the storage of fuzzy data as well as

crisp data. Crisp data are the usual precise data handled by the

traditional databases whereas fuzzy logic gives the output in

certain range. In this paper we are dealing with the concept of

critical architectural component named fuzzy meta- knowledge

base. The main aim of fuzzy meta- knowledge basis to keep the

different types of fuzzy divisions for database attributes. Fuzzy

meta- knowledge base defines and demonstrates data of fuzzy

nature is stored in the fuzzy meta- knowledge base. The fuzzy

query language is based on X-PATH. It can accept any type of

fuzzy expressions in any condition in query part. For improving

the performance of X-PATH, we are using Parallel Path Stack

algorithm. Parallel Path Stack algorithm speed XML Query

processing performance significantly.

Keywords

XML, Fuzzy logic, X-PATH, fuzzy query, Fuzzy meta-

knowledge base.

1. INTRODUCTION
In the last three decades, there has been comprehensive research

investigating how imprecise and variable data can be stored in

databases given that it is extensive in most real-world scenario

[1]. Imprecise data contains subjective views and conclusions in

areas such as personnel assessment, policy choices and

economic prognosis [2]. An immediate direction of

investigation that is instantly suitable to numerous applications

is how the traditional relational model can be expanded to

include fuzzy data. Another highly researched domain

concentrates on how relational data can be described in the

Extensible Markup Language (XML), e.g., [3, 4, 5, 6].

Furthermore, Lee et al [7] and Turowski and Weng [8] depict

examples of XML representation for fuzzy data modeling.

The Extensible Markup Language (XML) has a standard way to

represent the data in a proper manner. With the regular progress

in the XML data, the caliber to handle large set of XML data

and to finding information from them becomes important for

the Web-based knowledge systems [9, 10]. A proper solution is

to cluster the resemble XML data based on their reference and

structure. The grouping of XML data facilitates a number of

standard applications such as developed knowledge reflow, data

and schema integration, document classification analysis,

structure summary and indexing, and query processing and

optimization [11,12].

XML database systems are essential technique to handle strong

XML data, permitting specification, storage, and querying of

XML. Conventional database systems endorsement crisp data,

where the data stored and queries given are accurate. In the

current scenario, there become a lot of variable and unclear

data. Human being obtains an innate brilliance to naturally

analyzed various parameters and process all modes of data. For

example, the approximation besmeared in determining the

speed of a car get in from an aspect street to the road and its

chances to pull up in front of other car are totally fuzzy. The

essence to store obscure words motivates us to consolidate

fuzzy techniques into database systems.

In this paper, we demonstrate a fuzzy XML database system

that is used to manage the fuzzy XML data. The system was

made on top of conventional XML systems, permitting the

storage of both crisp data and fuzzy knowledge. The system is a

generic system such that the perspective can be applied to any

XML database system. Together with the incorporation of the

fuzzy example in more phase of computer science, a simple and

robust way of handling, manipulating and storing fuzzy data is

becoming more essential. These facts make fuzzy database

management systems (FDBMS) an essential part of difficult

soft-computing systems, and encourage research in this area.

This leads to various proposals of fuzzy database models and

executions [14, 15, 16, 17, 18, 19, 20]. The system permits

users to query the given database using fuzzy techniques. The

query language is worked on the basis of XPATH mode

permitting users to query fuzzy and crisp data over the database.

Since XML database users are already familiar with XPATH

commands, this characteristics much improves the usability of

our query language. In rising to language specification, our

system gives an environment helping fuzzy query execution at

run time. The system also helps a fuzzy active rule language to

handle integrity duress management and business point

specification. This paper discussed the two essential

characteristics of our fuzzy system; these are data storage and

query management [13].

2. LITERATURE SURVEY
JianLiu·Z.M. Ma·XueFeng[21] proposed the incertitude of

XML data found now as well as the ductility of demonstration

given by XML emerge challenging themes for storing fuzzy

XML data in conventional relational systems. In given paper,

they have proposed a new mapping technique for collecting

fuzzy XML data into a concerned database system based on an

edge-based mapping technique. The exclusive characteristics of

their technique were that no schema knowledge needed for the

data storage. On the proposed basis, they have given a generic

approach to interpret path expressions to SQL queries for

processing XML queries. There were a number of routs for

future research. They were currently working on a prototype

giving the possibility of the approach for large practical usages.

As future work, they planned to enhance their mapping

technique by taking constraints during the data mapping,

evolution query interpret techniques to translate complex XML

queries such as XQuery queries into given SQL statements, and

improving their technique by introducing query optimization

methods.

R.D. Rodrigueset.al [22] described and presented the main

features of the new fuzzy database Aliança, which incorporated

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 9, January 2014

15

the main characteristics essential to treat knowledge of a wide

range of likelihood. Peculiarly, imprecise knowledge was well

handled. The given name showed the fact that the application

was the union of fuzzy logic methods, a database relational

management application and a fuzzy meta-knowledge database

given in XML, in order to support and present obscure

knowledge. The supplement gain was the use of XML to show

the fuzzy meta-knowledge which made it was easy to maintain

and consider the structure of imprecise knowledge. The fuzzy

database techno tics Aliança approximates the interaction with

databases to the generally way human beings reason.

Ying Jin, Sangeetha Veerappan [23] proposed a XML-based

fuzzy application, permitting both crisp and fuzzy XML data.

The application supported the three most famous applied

distributions, namely trapezoidal, triangle, and interval

distributions. The present application used permanent with

given layer of fuzzy system, while supplementary functionality

of fuzzy data storage and fuzzy queries have given by their

system. The given paper proposed the execution of the data

representation, fuzzy query syntax, and fuzzy query processing

logic. The system was made on top of conventional XML

databases, while permitted the storage of fuzzy data as well as

crisp data. The system has been implemented in Java. Their

future direction was the performance analyzing of the system.

Ting Yanget.al [24] has given expanded edge matching

technique for comparing the structural resemblances between

XML documents and clustering analysis. The given technique

planned few demerits of edit distance based techniques and

conventional edge matching based techniques. They have

assigned various weights for the nodes in various levels and

finding complete matching edges, EEM further detected

topological edges and repeated substructures. The development

had made structural resemblances comparison more reasonable

and accurate. The clustering results have showed the advantage

of EEM in comparison with other existing techniques.

Ying Jin, Hemal J Mehta[25] presented their active fuzzy XML

database application, concerning on the support of adjunct

events. A set of events have incorporated using composition

factors to trigger active rules. The system implemented rules

upon tapers of events automatically. Events have primitive that

rose by a single database operation, such as insert, delete, and

replace. Users have determined composite events that grouped

by multiple primitive events. The formation of those events

triggered one or more rules. In the given paper, they proposed

their techniques of handling composite events in a fuzzy XML

database system. Fuzzy logic has permitted people to specify

obscure knowledge directly. Their research has made a fuzzy

active rule-based database system on top of conventional XML

databases, while permitted calculation of fuzzy data, as well as

implementation of fuzzy active rules. A future direction was the

performance evaluation on event processing, and further

refinement to optimize the process.

Jian Liu et.al [26] demonstrated a fuzzy XML databases have

been intensively analyzed, for instance. The proposed efforts

were mainly built in representing fuzzy knowledge in XML

databases; less satisfied the needs of managing fuzzy XML

queries, particularly in fuzzy twig pattern queries. In order to

processed the queries, a novel fuzzy labeling technique to hold

the structural information of fuzzy XML databases, as well as

some essential fuzzy XML algebraic operations have given in

proposed paper. On the basis, they have given Algorithm

“FTwig” for supporting fuzzy twig pattern queries.

3. PROPOSED METHODOLOGY
Here we are presenting our methodology based on concept of

critical architectural component named fuzzy meta- knowledge

base. We are describing fuzzy query language which is based

on X-PATH. It can accept any type of fuzzy expressions in any

condition in query part. The proposed methodology are

describing below:

3.1 Fuzzy Meta-Knowledge base and data

storage
In this paper Fuzzy Meta-Knowledge Base is used to store data

related to the imprecise representation for data. In our current

paper, we are dealing with four types of data types which are

describing below:

Linguistic label with possibility distribution
The Linguistic variable used as a values which are in the form

of a, b, c, d. We estimated the numerical value using trapezoidal

distribution. When a property is related to an obscure value it

gets a linguistic label with a possibility distribution. This kind

of data is of “type” and it has a related trapezoidal possibility

distribution and its description is saved in the fuzzy meta-base

knowledge. Mostly trapezes are used to represent obscure

values.

Figure 1: Linguistic label for the concept “Medium”

In the given in Figure1, for linguistic variable “popularity”, the

linguistic value “medium” is compatible to the trapezoidal

delivery with a, b, c, d values of 20, 30, 40, 50 respectively. The

values of threshold lie between 0 and 1.

In the FMKB, trapezoidal delivery is shown in the given XML

format as labeled by the “type” attribute, as shown below:

<Linguistic Variable name="popularity">

<Type T="trapezoidal">

<Linguistic Term name="MEDIUM">

<alpha>20

<beta>30

<gamma>50</d>

</Linguistic Term>

Linguistic label with possibility interval
The Linguistic variable related to an interval possibility

distribution. Figure 2 describes the interval possibility delivery

for the price is from 80 to 100. The book store system contains

the information related to book sold at every book store

between the intervals [70,100].

1

0 20 30 40 50 Age (years)

Medium

1

0 20 30 40 50 Age (years)

Medium

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 9, January 2014

16

Figure 2: Distribution with possibility Interval

Approximate values
If the value d is in the field, the obscure concept almost d is

named by a triangular potential distribution allocated around

with a ledge as shown inFig.3.Here we are taking an example,

in the bookstore system; we use quantity_in_demand to current

future requirement on the book. We can state

“quantity_in_demand is almost 90”. Triangular delivery

receives a median value (d) and a ledge value (m) with the

threshold between 0.0 and 1.0. In a given database value with a

median value d, the compatible range of value for the given

linguistic variable generated by using the ledge and threshold.

Figure 3: Distribution with Approximate Values

Threshold can also be applied to those two types of distribution.

…

<title> Flowers </title>

…

<Popularity>LOW</popularity>

<threshold_value>0.8</threshold_value>

…

Crisp data
Crisp data are the common exact data supported by the

conventional databases. Crisp data receive the same resource as

the imprecise data. It does not necessary require more

information added to the fuzzy meta-knowledge base. Strings,

real and natural numbers, dates are few paradigm of common

crisp data formats.

Fuzzy XML XPath query
We have to satisfy users’ fuzzy query motive, this paper applies

fuzzy predicates (close to, at most, at least) to fill XPath query

language. In our paper the concept of fuzzy is used to cluster

the input data. The fuzzy cluster the data on the basis of

properties. It does cluster on the basis of different properties of

the data. One of the main characteristics of XML data is the

disparity between content and structure. Here, we have taken

the XML fragments:

<Employees>

<Employee emplid="1111" type="admin">

<firstname>John</firstname>

<lastname>Watson</lastname>

<age>30</age>

<email>johnwatson@sh.com</email>

</Employee>

<Employee emplid="2222" type="admin">

<firstname>Sherlock</firstname>

<lastname>Homes</lastname>

<age>32</age>

<email>sherlock@sh.com</email>

</Employee>

<Employee emplid="3333" type="user">

<firstname>Jim</firstname>

<lastname>Moriarty</lastname>

<age>52</age>

<email>jim@sh.com</email>

</Employee>

<Employee emplid="4444" type="user">

<firstname>Mycroft</firstname>

<lastname>Holmes</lastname>

<age>41</age>

<email>mycroft@sh.com</email>

</Employee>

<Employee emplid="4445" type="user">

<firstname>Mycroft1</firstname>

<lastname>Holmes1</lastname>

<age>40</age>

<email>mycroft@sh.com1</email>

</Employee>

<Employee emplid="4446" type="user">

<firstname>Mycroft6</firstname>

<lastname>Holmes6</lastname>

<age>45</age>

<email>mycroft@sh.com6</email>

</Employee>

<Employee emplid="4447" type="user">

<firstname>Mycroft7</firstname>

<lastname>Holmes7</lastname>

<age>34</age>

<email>mycroft@sh.com7</email>

</Employee>

<Employee emplid="4448" type="user">

<firstname>Mycroft8</firstname>

<lastname>Holmes8</lastname>

<age>35</age>

<email>mycroft@sh.com8</email>

</Employee>

<Employee emplid="4449" type="user">

<firstname>Mycroft9</firstname>

<lastname>Holmes9</lastname>

<age>45</age>

<email>mycroft@sh.com9</email>

</Employee>

<Employee emplid="5410" type="user">

<firstname>Mycroft10</firstname>

1

M=30 m

d=90

Quantity_in_demand

70 100

Price_of_other_book_store

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 9, January 2014

17

<lastname>Holmes10</lastname>

<age>46</age>

<email>mycroft@sh.com10</email>

</Employee>

<Employee emplid="4411" type="user">

<firstname>Mycroft11</firstname>

<lastname>Holmes11</lastname>

<age>23</age>

<email>mycroft@sh.com11</email>

</Employee>

<Employee emplid="4412" type="user">

<firstname>Mycroft12</firstname>

<lastname>Holmes12</lastname>

<age>22</age>

<email>mycroft@sh.com12</email>

</Employee>

</Employees>

These XML part check the common knowledge. In the given

paper, we appropriate three fuzzy expanded expressions:

(A) When we will apply fuzzy predicate to a quality value of

XML document, the fuzzy query picks nodes in which the

quality has a value near to the value represented in the fuzzy

query. The syntax is shown below:

Path[{@attribute name FuzzyPredicate compares value}]

(B)When the fuzzy predicate applied to label or to entity name,

the query chooses nodes of with a name same to the explained

in the fuzzy query, with the under mentioned syntax:

Path [{/tagname() Fuzzypredicate compare value}]

(C)When the fuzzy predicate is pour into an axis of a path

expression, the collecting efforts to extract the all elements,

attributes or text that are successors of the present node. The

following syntax is used like:

Path1 {Fuzzypredicate} // …//pathn

In the next step we are performing P-Path Stack: Parallel-Path

Stack Algorithm for improving the efficiency of XPath

algorithm. Here we are describing the algorithm:

3.2 P-path stack: parallel path stack

algorithm:
In this part, we first of all introducing even partition based

technique, and then defining the algorithm P-PATHSTACK in

the detail.

3.2(a) even partition
We assign region encoding <start, level, and end> to encode

XML documents. Using region encoding, the relationship

between two nodes, like as parent-child or ancestor-descendant

relation. Like as the size of XML document gains, the space

cost by region encoding gains similarly.

Suppose that AList or DList denote the ancestor attribute list

and the descendant data list and they are in the document order.

The dividing in a part of AList and DList into many buckets

bucket (k=0,1,…,), where bucket contains both AList and

DList. Now we are introducing two Rules to partition DList and

AList into different buckets.

RULE 1: Division DList

For k = 0 … (nb -1)

bucketk.dstartpos = k * bs

if k < bs – 1;

else

bucketk.dendpos = (k +1) * bs -1;

else

bucketk.dendpos = |DList| -1;

end for

Regulation 1 that means DList is divided into buckets, and

each one buckets (except the last one) contains descendant

elements and the last contains the remaining elements. The

variable denotes the start position of bucket, while

 denotes shows the end position.

RULE 2: DIVISION AList

For k = 0 … (nb -1)

bucketk.dstartpos = min {p|ap.end > bucketk.minstart

0 ≤ p < |AList|, ap є AList}

bucketk.aendpos = max {p|ap.start < bucketk.maxend

0 ≤ p < |AList|, ap є AList}

end for

bucketk.minstart that means the minimal start value of region

encode of descendant data in bucketk, while bucketk.maxend

means the maximal end value of region encode <start, end,

level>.

Rule 2 means that if one or more ancestor elements have

descendants in bucketk, there is a start position and end position

in AList. The elements between astartpos and aendpos are

contained by bucketk. If aendpos < astartpos, there are no

ancestor elements in bucketk, then the result of Path Stack

algorithm in bucketk will be empty.

For an XPath root-to-leaf path a0//a1//a2//a3, we first divide

leaf node a3 according to RULE 1, and partition a3’s parent a2

according to RULE 2; then it based on the dividing outputs of

a2, division its parent node a1 according to RULE 2. Again and

again these steps, whenever until the root node a0.

In fact, the divide process can be reversed. We can divide the

root-node elements (a0), and then divide its child (a1),

repetition of these steps, until the leaf node (a3). Though the

details are not completely the same with RULE 2 when divided

from the root to the leaf, some idea is the same.

We assume there aren’t nested elements in an XML document

element does not contain sub-elements which have contains the

same name with the parent.

We can use binary search to get the first ancestor element

whose the end value of region encode larger than minstart value

of this bucket. We can also use binary search to get the last

ancestor element whose start value of region encode is smaller

than An Efficient Parallel Path Stack Algorithm for Processing

XML Twig Queries maxend value of this bucket. Using binary

search, the time in partition period is little, less than 5% of total

elapsed time.

3.2(b) Work balances

The purpose of even division is to measure XPath in parallel.

Thus we should make each bucket that contains the same

number of elements as much as possible. It cannot get high

speed up ratio of parallel algorithm for unbalanced division.

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 9, January 2014

18

In RULE 1 in section 3.2(a) makes the number of the leaf-node

element in each bucket almost the same. The two rules cannot

ensure the all number of elements from root to leaf in each

bucket is the same, but for those XML documents with

elements dispensed evenly, the total number in each bucket is

close to each other. Because the number of leaf-node elements

in each bucket is almost the same, and according to division

rules, the number of its parent node elements assigned in each

bucket will be close if the XML document with elements

distributed evenly. We should also assume the balance between

threads in form of parallel. So we should consider the number

of threads used to determine the value of nb (no of buckets) and

bs (the no of leaf-node elements in each bucket). We determine

the values of nband and bsas mention in down:

// thread_number: number of threads used

nb = thread_number * 16;

bs = |DList|/ nb;

/* sizehigh: the upper limt of number of leaf – node elements in

each bucket */

While bs > sizehigh

nb * =2;

bs = |DList|/ nb;

end while

/* sizelow: the lower of number of leaf – node elements in each

bucket * /

While bs < sizelow

If (nb == thread_number)

break;

else

nb / = 2;

bs = |DList|/ nb;

end while

In the above pseudo codes, we divided DList into nb buckets,

and nb is 16 times of number of threads used, then the same

number of buckets there will be assigned to each thread. If bs is

too large, it will be make against some work balance, as the

total number of elements contained in each bucket will many

more; if bs is too small, it will be make against the exertion of

parallel characteristic, as parallel scheduling needs extra cost

and partitioning data costs more time. In same, we can get the

pseudo codes of division from the root node to the leaf node.

3.2(c) Element skips:
We have described the skipping function of even division

below. The priority of skipping ancestor or descendant elements

is much important in our parallel algorithm.

We can see that when doing division AList according to RULE

2 , we need to find the first ancestor element es whose end

value of the region encode is larger than the minstartvalue of

this bucket and the last one whose start value of region

encode is smaller than maxendvalue. In the different words,

elements located before es or after el will be left.

The mentioned method consists of two steps. At first, we

perform conversion from leaf node to root node. We divide

DList into one bucket, and define which elements of its parent

node belong to this bucket according to RULE 2. Repeat these

steps, until the root node. At Second we perform division from

root node to leaf node. We put the remaining elements of the

root node into one bucket, and determine which elements of the

child node belong to this bucket. After this procedure, many

useless elements will be skipped. This approach can skip many

useless elements at the head and at the end of the element list.

As an example, the first step will leave the element a1, and the

second step will skip the elements d7 and d8. The remaining

elements are {a2, a3, a4} and {d1, d2, d3, d4, d5, d6}.

Figure 4: An XML tree (a) and (b) and their corresponding

partition results

3.2(d) P-PATHSTACK: PARALLEL PATH STACK

ALGORITHM:
In this section, we describe the Parallel PathStack algorithm,

which is the key part of this paper. We propose Algorithm P-

PathStack to compute answers of a query twig pattern in the

algorithm. We first divide the data into various different

buckets, and then for the data in each bucket.

Algorithm P-PathStack (q)

a. Define the value of nband and bsas expressed in 3.2 (b).

b. Division each root – to – leaf path into multiple buckets

as in 3.2 (a).

S

a

1

d

4

a

3

C

a

2

C

b

3

d

3

b

2

a

4

b

4

d

5

C

d

7
d

6

d

8 b

1
d

2

d

1

S

a1

d4

a3

C

a2

C

b3

d3 b2 a4

b4

d5 C

d7 d6 d8
b1 d2 d1

A

B

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 9, January 2014

19

c. For each root – to – leaf path, skip elements at the end of

element list, as in section 3.2 (c).

d. call PathStack algorithm for all buckets in parallel

using OpenMP.

e. MergeAllPathSolutions().

We can see that the key idea of the parallel algorithm is data

division and parallel execution. Line (a.) to Line (c.) partition

data into several buckets, and the complexity is

O (nb (log|a1List| + log|a2List| + … + log|anList|)).

|aiList| denotes the number of elements with the name

 and is a node contained by the root-

to-leaf path. The complexity is much cheaper than the

PathStack algorithm’s linear complexity.

In line we called the standard PathStack algorithm to figure

out XPath result in each bucket. Notice that, we put all the

buckets of the all paths into thread pool to effect in parallel. As

a result, not only execute in parallel between different paths,

also between buckets which belong to the in same path. We

make bucket as the parallel unit, because we can reduce the

granularity of parallel and make work load between threads

more balanced, then we can add the efficiency of parallel

algorithm. We use OpenMP to implement parallel execution.

OpenMP uses thread pool technology; we can set the number of

threads used in program, and OpenMP will assign buckets

evenly to the threads and give to the threads to different CPU

cores on multi-core systems.

For example, consider the XPath a [//b][//d]. There are two

root-to-leaf paths, a//d and a//b. For path a//d, after Line 1 in

Fig. 2 we get {a2, a3, a4; d1, d2, d3, d4, d5, d6}. Suppose we

partition them into two buckets, bucket1 {a2; d1, d2, d3} and

bucket2 {a3, a4; d4, d5, d6}. For path a//b, after Line 1 in Fig. 3

we get {a2, a3; b1, b2}; we partition them into two buckets,

bucket3 {a2; b1} and bucket4 {a3; b2}. Now we get all four

buckets and we use OpenMP to evaluate XPath result in the

four buckets in parallel. The results of the four buckets

respectively are {a2, b2, a2}, {a3}, {a2} and {a3}. Combine the

result which belong to the same root to-leaf path, we get

elements {a2, a2, a2, a3} and {a2, a3}, then merge them, and

finally we get the final result {a2, a3}.

4. RESULTS AND DISSCUSSION
The proposed XPath query language using multi-core XML

query processing system has been implemented in the working

platform of JAVA (Net Bean 6.8). In our proposed

methodology we calculated descendent node from XML tree.

All the nodes divided into different buckets. We assigned equal

number of bucket to every thread. Each thread executed

separately, query the input and return output. The gradual

results attained by the proposed methodology are given below:

Figure 5: A Fuzzy input window clustering the input on the

basis of property

Above figure shows the fuzzy input window which takes

different input and clusters them to provide optimized output.

This window takes the property of different application and

provides optimized output after the process.

Figure 6: All employees’ details from XML file

Fig. 6 showing the details of all the employees saved in XMl

file. The above Fig. 6 has an employees.xml file in which all the

operation performed. It searches all the information in the

parallel way.

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 9, January 2014

20

Figure 7: Result for particular employee e-mail id from

given input file employees.xml

In the above Fig. 7, we wrote a query to obtain e-mail id for

individual employee in the given condition.

Figure 8: Result for particular employee details from input

file employee.xml

In the above Fig. 8, it is showing the result generated from input

file employee.xml. We extracted all the details of individual

employee from employee.xml.

Figure 9: Showing the result of employees (age>40)

Above figure showing the result for employees whose age are

greater than 40. All the result runs on parallel fashion. We

calculated descendent node from XML tree. All the nodes

divided into different buckets. We assigned equal number of

bucket to every thread. Each thread executed separately, query

the input and return output.

Figure 10: Showing the XPath output and its execution time

The above figure shows the result of XPath query and its

execution time in completing the process. The XPath process on

the fuzzy input to cluster the data and output of this is applied to

the P-path query.

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 9, January 2014

21

Figure 11: Showing the result of P-path and its execution

time

The above figure shows the result of P-path query and its

execution time in completing the process. P-path takes the input

from the XPath query and processes it to give the output.

5. CONCLUSION
In this paper we described a XML-based fuzzy system which is

used for both crisp and fuzzy XML data. A prior application

can be used permanent with this layer of fuzzy system, while

extra functionality of fuzzy data storage and fuzzy queries are

given by our system. Here we have used XPath query for

processing the query. XPath can accept any type of fuzzy

statement in any situation in the given query part. Performance

is the major issues in current time. For improving the

performance of X-PATH, we have used Parallel Path Stack

algorithm. Parallel Path Stack algorithm propagates the speed of

XML Query processing performance significantly. The results

shows that the process running parallel in the given system.

Thus, algorithm increases the performance of the XPath Query

by lowering the execution time of the system.

6. REFERENCES
[1] Dey D. and Sumit S., “A Probabilistic Relational Model

and Algebra,” ACM TODS, Vol.21, pp.339-369,

Sep.1996.

[2] Buckles B.P. and Petry F.E., “A Fuzzy Representation of

Data for Relational Databases,” Fuzzy Sets and Systems,

7, pp.213 -226, 1982.

[3] Fernandez M., Tan W. -C., and Suciu D., “Silk Route:

Trading between Relations and XML”. Proceedings of

WWW, Amsterdam , May 2000.

[4] Fong J., Pang F. and Bloor C., "Converting Relational

Database into XML Document", Proceedings of the

International Workshop on Electronic Business Hubs ,

September, pp.61 -65, 2001.

[5] Lee, D., Mani, M., Chi u, F., and Chu W. W., “Schema

Conversion Methods between XML and Relational

Models,” Knowledge Transformation for the Semantic

Web, 2003.

[6] Lee, D., Mani, M., Chiu, F., and Chu W. W., “NeT&CoT:

translating relational schemas to XML schemas using

semantic constraints,” Proceedings of ACM CIKM, 2002.

[7] Lee, J., Fanjiang, Y., Kuo, J., and Lin, Y., “Modeling

Imprecise Requirements with XML,” Fuzzy Systems, 2,

pp.861-866, May 2002.

[8] TurowskiK. andWeng U., “Representing and processing

fuzzy information –an XML -based approach

,”Knowledge-Based Systems , Vol.15, pp.67 -75, 2002.

[9] G. Koloniari, E. Pitoura, Peer-to-peer management of

XML data, issues and research challenges, SIGMOD

Record 34 (2), 2005.

[10] R. Nayak, M. Zaki (Eds.), Knowledge discovery from

XML documents, PAKDD 2006 workshop proceedings,

Lecture Notes in Computer Science, vol. 3915, Springer-

Verlag, Heidelberg, 2006.

[11] A. Boukottaya, C. Vanoirbeek, Schema matching for

transforming structured documents, The 2005 ACM

Symposium on Document engineering, Bristol, United

Kingdom, 2005.

[12] R. Nayak, R. Witt, A. Tonev, Data mining and XML

documents, The 2002 International Workshop on the Web

and Database (WebDB 2002), June 24–27, 2002.

[13] Oracle Berkeley DB XML,

http://www.oracle.com/database/berkeley-

db/xml/index.html.

[14] J.M. Medina, J. Galindo, F. Berzal, J.M. Serrano, \Using

Object Relational features to build a Fuzzy Database

Server", VIII Intl. Conf. Of information processing and

management of uncertainty in knowledge-based systems

(IPMU 2002), pp 307-314. July 1-5, 2002.

[15] J.C. Cubero, N. Mar¶³n, J.M. Medina, O.Pons, M.A. Vila,

\Fuzzy object Management in an Object-Relational

Framework", X Intl.Conf. of information processing and

management of uncertainty in knowledge-based systems,

pp.1767-1774. July 4-9 2004.

[16] H. Prade, C. Testemale, \Generalizing Database Relational

Algebra for the Treatmentof Incomplete or Uncertain

Information andVague Queries", Information Sciences

Vol.34, 1984

[17] M. Zemankova-Leech, A. Kandel, “Fuzzy Relational

Databases a Key to Expert Systems", KÄ oln, Germany,

TÄUV Rheinland, 1984.

[18] S. Fukami, M. Umano, M. Muzimoto, H. Tanaka, “Fuzzy

Database Retrieval and Manipulation Language", IEICE

Technical Reports, Vol. 78, N. 233, pp. 65{72, AL-78-85

(Automata and Language) 1979.

[19] M. Umano, \Freedom-O: A Fuzzy Database System",

Fuzzy Information and Decision Processes. Gupta-Sanchez

edit. NorthHoland Pub. Comp. 1982.

[20] J. Galindo, J.M. Medina, O.Pons, J.C. Cubero, “A Server

for Fuzzy SQL Queries", Flexible Query Answering

Systems, eds.T. Andreasen, H. Christiansen and

H.L.Larsen, Lecture Notes in Arti¯cial Intelligence

(LNAI) 1495, pp. 164{174. Ed. Springer, 1998.

[21] JianLiu·Z.M. Ma·XueFeng, “Storing and querying fuzzy

XML data in relational databases”, Springer

Science+Business Media New York, 2013.

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 9, January 2014

22

[22] R.D. Rodrigues, A.J.O. Cruz, R.T. Cavalcante, “Aliança:

A proposal for a fuzzy database architecture incorporating

XML”, Elsevier B.V., 2008.

[23] Ying Jin, SangeethaVeerappan,”A Fuzzy XML Database

System: Data Storage and Query Processing”, IEEE, 2010.

[24] Ting Yang, Jinmao Wei, Baoquan Fan, Xu Wang, Haiwei

Zhang, “Structural Similarity Computation Based On

Extended Edge Matching Method”, International

Conference on Fuzzy Systems and Knowledge Discovery,

2012.

[25] Ying Jin, Hemal J Mehta, “Composite Event Processing in

an Active Rule-Based Fuzzy XML Database

System”,IEEE IRI, 2011.

[26] Jian Liu, Z. M. Ma, Li Yan, “FTwig: Efficient Algorithm

for Processing Fuzzy XML Twig Pattern Matching”,

IEEE, 2010.

IJCATM : www.ijcaonline.org

