
International Journal of Computer Applications (0975 8887)
Volume 86 - No. 8, January 2014

An Algorithm for Browsing the
Referentially-compressed Genomes

Mohammad Nassef
Department of Computer Science

Faculty of Computers and Information
Cairo University, Egypt

Amr Badr
Department of Computer Science

Faculty of Computers and Information
Cairo University, Egypt

Ibrahim Farag
Department of Computer Science

Faculty of Computers and Information
Cairo University, Egypt

ABSTRACT
Genome resequencing produces enormous amount of data
daily. Biologists need to frequently mine this data with
the provided processing and storage resources. Therefore, it
becomes very critical to professionally store this data in order
to efficiently browse it in a frequent manner. Reference-based
Compression algorithms (RbCs) showed significant genome
compression results compared to the traditional text compression
algorithms. By avoiding the complete decompression of the
compressed genomes, they can be browsed by performing partial
decompressions at specific regions, taking lower runtime and
storage resources. This paper introduces the inCompressi
algorithm that is designed and implemented to efficiently
pick sequences from genomes, that are compressed by an
existing Reference-based Compression algorithm (RbC), through
partial decompressions. Moreover, inCompressi performs a
more efficient complete genome decompression compared
to the original decompression algorithm. The experimental
results showed a significant reduction in both runtime and
memory consumption compared to the original algorithm.

General Terms:
Bioinformatics, Compression, Data Management.

Keywords:
Reference-based Genome Compression; Partial Genome
Decompression; Browsing Genome Sequences; inCompressi.

1. INTRODUCTION
Many genomic research projects have been established during
the last decade to study the genomic variations between
individuals from the same species. The HapMap Project [1], the
1000-Genomes Project [2], and the Personal Genome Project [3]
are examples of these projects that are interested in the human
genome. These projects work on huge feeds of hundreds or even
thousands of genome sequences resulted from massive genome
sequencing operations [4, 5]. These sequenced genomes need huge
storage with high cost. The traditional text compression algorithms
compress each genome individually, and so, they cannot exploit
the clear similarities between similar genomes. Consequently, the
overall storage space of similar genomes is still huge.

Challenged by these limitations, Reference-based Compression
algorithms (RbCs) have emerged as a promising alternative. A class
of these RbCs depends on Single Nucleotide Polymorphism (SNP)
maps [6] to compress a target genome with respect to a specific
reference genome. However, they are limited to the discovery and
availability of SNP maps and other sequence variations. Another

class of RbCs avoids the need to SNP maps by manually extracting
the differences of a given target genome with respect to a specific
reference genome. These differences may include substitutions,
insertions, and deletions that should be applied to the reference
genome (during decompression) to reproduce the target genome.
Moreover, these RbCs vary in how exactly these differences are
extracted, clustered, and encoded.

From one hand, some RbCs referentially compress multiple
target genomes together into one dataset by exploiting their
common similarities with respect to one or more reference genomes
[7–9]. Each of these RbCs supports browsing of specific parts of
the compressed genomes in a different way, and with noticeable
overhead. For example, the RbC in [7] suffers from the overhead
of aligning all the target genomes with respect to the reference
genome. It then encodes and stores the differences of every target
genome independent of each other, making it easy to directly
decode the differences related to the queried sequences. Also, the
Rbc in [8] spends high cost on artificially composing the reference
genome with sequences that occur frequently between the target
genomes. It then allows random access to these common sequences
using different indexing techniques. Alternatively, the RbC in [9]
divides every genome into blocks, and then compresses every block
relative to matches with a selected reference genome. Specific
regions of the compressed genomes can be browsed through partial
decompressions of specific blocks.

On the other hand, other RbCs avoid the overhead resulting
from compressing multiple genomes. They focus on the referential
compression of just one target genome with respect to one reference
genome. GRS [10] is a simple RbC that is able to extract
differences below some threshold, thus, it cannot compress a target
genome with excessive differences to a given reference genome.
GReEn [11] is another RbC that is able to handle excessive
differences efficiently by appling a complex probabilistic approach
to determine the frequencies of these differences before encoding
them.

Chern et al. at Stanford University [12] developed an RbC
that is inspired by the sliding window of LZ77 [13]. Because
the work done in this paper is particularly applied to their
RbC, this paper will refer to their algorithm as the ”Stanford”
algorithm. Firstly, Stanford generates all matches between a target
genome and a given reference genome. It then encodes them
into matching instructions that can reproduce the target genome
from the reference genome. After that, it starts merging these
instructions by recording the differences occurring between every
two subsequent instructions. By applying the Stanford algorithm to
James Watson’s (JW) genome with hg18 genome as a reference,
Stanford compresses JW from 2,991 megabytes (MB) down to
6.99 MB, whereas GReEn compresses it into 18.23 MB. Without a
reference genome, Gzip merely compresses JW to 834.8 MB. So, if
one thousand human genomes are to be compressed, then they can

1



International Journal of Computer Applications (0975 8887)
Volume 86 - No. 8, January 2014

Fig. 1: Briefing of how the Stanford’s compression and decompression work, and how inCompressi can outperform the Stanford’s
decompression through performing partial decompressions.

be compressed into 834,800 MB using Gzip. Conversely, Stanford
can utilize the same space to referentially compress around 119,000
genomes in addition to one complete genome as a reference.
Compared to GReEn, Stanford gave very promising compression
ratios in many datasets.

This paper is organized as follows: Section 2 illustrates
the functionality of Stanford, including detailed insights into
its compression and decompression. Section 3 explores the
design of the inCompressi algorithm that efficiently picks
sequences from genomes that are referentially compressed using
Stanford. Moreover, Section 3 illustrate how inCompressi performs
a complete genome decompression compared to the original
Stanford’s decompression. Section 4 discusses the experimental
results of the inCompressi’s implementation. Section 5 concludes
the paper.

2. STANFORD OVERVIEW
This section explains in details the compression and decompression
of the Stanford algorithm that, as depicted by (Figure 1), the
contribution of this paper is based on.

Because genome size is relatively big in most cases, it is
usually available as individual FASTA-formatted chromosomes.
So, Stanford compresses each individual chromosome of a given
genome X with its corresponding chromosome of a given
reference genome Y. After that, it gathers the compression results
(differences) of all chromosomes to form the entire compressed
genome.

Let X be the target chromosome to be referentially compressed
by a reference chromosome Y. Chromosome X contains N
characters: XN = XN

1 = {X1, ..., Xn}, and chromosome Y
contains M characters: Y M = Y M

1 = {Y1, ..., Ym}. Similarly,
sequence Xj

i denotes characters {Xi, ..., Xj}, where 1≤ i≤ j≤ n,
whereas sequence Y b

a denotes characters {Ya, ..., Yb}, where 1≤ a

≤ b≤m. RC(X,Y) denotes the Stanford’s Referential Compression
of X with respect to Y:

Encoded(Hs, Ss, Is,Ds) = RC(X,Y ) (1)

Stanford performs compression by encoding the longest possible
matches (Hs) between X and Y (Figure 2), and similarly encoding
the differences resulted from merging Hs whenever possible. Two
sequences Xj

i and Y b
a form the longest possible match if they

have the same characters, and Xj+1 6= Yb+1. Differences include
substitutions (Ss), insertions (Is), and deletions (Ds) to be applied
to Hs while rebuilding X from Y through a complete Referential
Decompression process:

X = RD(Y,Encoded(Hs, Ss, Is,Ds)) (2)

Stanford performs decompression by firstly decoding the
matching instructions (Hs) and all the differences (Ss, Is, Ds).
It then starts building X by copying the matches Hs from Y, and
applying all differences in their reversed order: (Ds, then Is, and
then Ss).

2.1 The Stanford’s Compression
For some chromosome X to be referentially compressed by a
specific reference chromosome Y, Stanford generates a collection
of primitive match instructions (Hs). (Figure 2) shows an example
of chromosomes X and Y. Those matches (Hs) will be used during
decompression to initially build X from Y. Each instruction is
formatted as Hi(Y offset, length, X char, Y char). X char and
Y char are respectively the different target and reference characters
falling immediately after the match Hi, preventing it from being
longer. (Figure 3.a) illustrates the initial instructions.

Most of the subsequent Hs are then possibly merged to form
longer Hs while substitutions (Ss) being deduced. As in (Figure

2



International Journal of Computer Applications (0975 8887)
Volume 86 - No. 8, January 2014

Fig. 2: The matching instructions (Hs) of chromosome X with respect to chromosome Y.

Fig. 3: Reference-based Instructions and Target-based Differences generated during the Stanford’s compression of sample chromosome X
using sample chromosome Y as a reference. Both chromosomes are shown in (Figure 2). Bold items refer to the new or altered items.

4.a), instructions Hi(mi, li, ti, ri) and Hi+1(mi+1, li+1, ti+1,
ri+1) can be merged if mi+ li+1 = mi+1. In other words, Hi and
Hi+1 were not combined in one match because the characters ti
and ri are different. If so, Hi+1 is merged with Hi, and the new Hi

will be: Hi(mi, li+li+1+1, ti+1, ri+1). The resulted substitution
S(ni, ti, ri) is then appended to Ss, where ni is the target offset of
ti. In (Figure 2), instruction H4 could be merged with instruction
H3 after forming the substitution S0 that contains the reference
character ’G’ which should be replaced with the target character
’T’ during decompression. Similarly, instruction H10 is merged
with instruction H9 after forming the substitution S1. (Figure 3.b)
shows the updated list of instructions as well as the newly created
substitutions.

Next, the remaining Hs are checked for extension with possible
embedded insertions (Is). As in (Figure 4.b), instructions Hi(mi,
li, ti, ri) and Hi+1(mi+1, li+1, ti+1, ri+1) can be merged if:

mi+li = mi+1. This means that ti prevented Hi and Hi+1 from
forming a whole match. Hence, Stanford merges Hi+1 with Hi

to be Hi(mi, li+li+1, ti+1, ri+1), and a new insertion I(ni, ti)
is added to Is, where ni is the target offset of ti. In (Figure 2),
instructions H0 and H1 satisfy the insertion condition because they
are adjacent to each other in the reference chromosome, whereas
they have one character (’G’) falling in between in the target
chromosome. Hence, an insertion I0 is created. (Figure 3.c) shows
the updatd instructions as well as all the created insertions.

At last, a final round of merging Hs is done while exploring
possible deletions (Ds). As in (Figure 4.c), two instructions
Hi(mi, li, ti, ri) and Hi+1(mi+1, li+1, ti+1, ri+1) could be
merged if: 2 ≤ mi+1 – (mi + li) ≤ max del, where Max del
is the maximum allowed length for deletions. This means that ri
(and its successive characters occurring before Hi+1) prevented Hi

and Hi+1 from being combined into one match (Figure 4.c). In this

3



International Journal of Computer Applications (0975 8887)
Volume 86 - No. 8, January 2014

Fig. 4: An example of (a) a substitution, (b) an insertion, and (c) a deletion that could result from merging two subsequent instructions during
the Stanford’s compression. R is a reference chromosome, and T is a target chromosome. Instructions Hi and Hi+1 refer to matches
of T with respect to R. The ”No” symbol denotes the different ending characters in T and R successive to each match instruction.

Fig. 5: Example of Stanford’s decompression of chromosome X previously depicted in (Figure 2) and compressed in (Figure 3).

4



International Journal of Computer Applications (0975 8887)
Volume 86 - No. 8, January 2014

case, Stanford merges Hi+1 with Hi to be Hi(mi, mi+1+li+1–mi,
ti+1, ri+1), and a new deletion D(ni+li, (mi+1–1)–(li+mi)) is
added to Ds. For example, after the past merge of instructions H0

and H1, the new version of instruction H0 can be merged with
instruction H2 after deleting character ’A’ from offset 7 in the
reference chromosome (Figure 2). So, the deletion D0 is created
as in (Figure 3.d). After that, instruction H6 can be merged with
last version of instruction H0, and a new deletion (D1) is created.
During decompression, Stanford copies the match instruction H0

from the reference chromosome, and then, the deletion D1 will
help in deleting the three characters ”AAA” at offset 18 from
the reference chromosome to get a mature part of the target
chromosome.

Notice that the offsets of all differences (Ss, Is, and Ds) refer
to offsets in the target chromosome X, because all differences
will be applied on an initial copy of X built from Y when
the decompression starts. Finally, Huffman and Golomb [14]
encodings are applied to all offset numbers held by (Hs, Ss, Is,
and Ds). Moreover, the characters embedded in (Hs, Ss, and Is)
are then binary encoded to reduce their total size.

2.2 The Stanford’s Decompression
To decompress the target chromosome X, Stanford loads the
reference chromosome Y and decodes all the list of Hs, Ss, Is,
and Ds. After that, it starts building an initial copy of X by copying
all Hs, including their encoded characters, from Y (Figure 5).

Critically, to decompress X correctly, all differences must be
executed in its reverse order: executing all Ds, then all Is, then
all Ss. Violating this constraint will result in a different X, simply
because the offsets of Ss were computed while characters of Is
are already there in X. Similarly, offsets of Is were generated
while characters referred to by Ds are not yet existing in X. So,
for offsets of Ss and Is to be valid during decompression, Ds

must be executed first, followed by Is, and then Ss. In addition,
subsequent Ds must adjust their offsets by the characters deleted
by the execution of past Ds. That is because when an offset of
any Di was computed, the characters of past Ds were already
counted in the past matches. (Figure 5) illustrates the Stanford’s
decompression of the sample chromosome X depicted in (Figure
2). X10 is the mature copy of chromosome X obtained after
complete referential decompression. This is the way adopted by
the Stanford’s decompression in detail. As shown, in order to obtain
any partial sequence from chromosome X, it is necessary to execute
all the match instructions Hs, followed by all the differences in its
reversed order (Ds, then Is, then Ss), resulting in big time and
temporary storage overhead.

2.3 Stanford Character Encoding
The Stanford’s compression encodes every ending-character pair
of (Hs, Ss, and Is) into variable number of bits in order to reduce
their overall size. For example, if the reference and target ending
characters of some Hi are (’A’ and ’G’) respectively, their binary
encoding will be ”01”, whereas if the ending characters are (’A’
and ’N’), their binary encoding will be ”101”.

During the Stanford’s decompression, the reference character
must be in hand in order to contribute in decoding the target
character. So, for the former ending-character pair (’A’ and ’G’),
the target character ’G’ is decoded by using both its corresponding
reference character and its encoded value ”A01”, whereas for the
later character pair (’A’ and ’N’), the target character ’N’ is decoded
using ”A101”.

3. METHODS
This section describes the inCompressi algorithm in detail. It then
provides three simplified examples of how inCompressi operates
while performing partial decompressions.

3.1 inCompressi
The title inCompressi is inspired from the Latin expressions
”in vivo”, ”in vitro”, and ”in silico”, which respectively refer
to biological operations performed on ”living bodies”, ”lab
samples”, and ”computer simulations”. Similarly, inCompressi
refers to picking partial sequences from compressed genomes or
chromosomes without their complete decompression (Figure 1).
Moreover, inCompressi can also decompress an entire chromosome
via successive partial decompressions. The key strength behind
inCompressi is summarized in how it can efficiently re-adjust
the offset of the needed sequence to determine its location
inside the reference chromosome without the real execution of
differences preceding this sequence inside the target chromosome.
In turn, it adjusts the offsets of the differences falling inside the
picked sequence before applying them. Moreover, inCompressi can
efficiently handle cases where the needed sequence spans multiple
match instructions.

Suppose that a biologist want to pick a sequence Q with offset
Oseq and length Lseq from a specific target chromosome T. If
T was referentially compressed by Stanford using a reference
chromosome R, then this biologist have two ways to obtain the
sequence Q. Traditionally, he can decompress the overall genome
using the Stanford’s decompression, and then pick Q from the
decompressed chromosome T using the given (Oseq , Lseq) pair. As
stated in the previous section, the Stanford’s decompression builds
an initial genome (all chromosomes) from the reference genome
(by executing all Hs on all chromosomes), and then obtains the
final genome by executing all the differences (Ds, Is, and Ss) on
the initial genome (Figure 5). Obviously, that traditional genome
decompression results in huge runtime and storage overhead.

Alternatively, the biologist can use inCompressi to pick the
same sequence Q from chromosome T with the same (Oseq , Lseq)
pair, however, without the genome’s complete decompression,
and even without T’s complete decompression. Common to the
Stanford’s decompression, inCompressi loads and decodes the
match instructions (Hs) and differences (Ss, Is, and Ds) of the
overall compressed genome. Unlike the Stanford’s decompression,
inCompressi (1) only keeps the match instructions (Hs) and
differences (Ds, Is, and Ss) related to chromosome T, and then,
(2) correctly locates and picks the sequence Q from the reference
chromosome R (by only executing Hs referring to Q in R), and
finally, (3) only applies the differences (of Ds, Is, and Ss) falling
inside Q. That way, the biologist would obtain the same sequences
that would be traditionally picked after the Stanford’s complete
genome decompression. The core functionality of inCompressi is
shown in (Listing 1).

To pick Q from R, inCompressi has to determine the absolute
offset (Qr) of Q inside R, which is mainly dependent on how far
it is distant (RH−>Q) from Hi’s absolute offset in R (Hr) (Figure
6):

Qr = Hr +RH−>Q (3)

Unfortunately, the biologist only have Oseq , which represents
the actual offset (Qa) of Q inside the final chromosome T.
So, the distance RH−>Q cannot be calculated without knowing
where initially Hi is assumed to start during building the initial
chromosome T. We said ”initially” because when Stanford executes
Hs to build the initial T from R, each Hi will have its own fake
target offset (Hf ), which is calculated by accumulating the lengths
of Hs preceding Hi, in addition to their ending characters (Eqn 4).
For example, in (Figure 5), H9 has fake offset Hf equals to 26
inside the sequence X2.

Hf =

j=i−1∑
j=0

(Hj length+ 1) (4)

Actually, Hf may not necessarily be the actual offset (Ha)
of Hi inside the final chromosome T; because, possible deletions

5



International Journal of Computer Applications (0975 8887)
Volume 86 - No. 8, January 2014

Fig. 6: Calculating RH−>Q, the distance of query Q inside a match instruction H in reference Chromosome R, using either fake (Hf , Qf )
or actual (Ha, Qa) target offsets of H and Q, while assuming that insertions occur more than deletions prior to both H and Q in
chromosome T. DeltaQ provides the calculation of Qf from Qa by backtracking the insertions and deletions that would be done
before Q to have its final offset Qa. Conversely, DeltaH could be used to calculate Ha from Hf by simulating the execution of
deletions and insertions occuring before instruction H.

(preDs) and insertions (preIs) will eventually be applied to
T in offsets preceding Hi. Generally speaking, to calculate the
instruction’s actual offset from its fake offset (Eqn 5), inCompressi
just simulates applying the prior deletions (preDs) by subtracting
their length from the fake offset, and it similarly simulates the
execution of the prior insertions (preIs) by adding their count to
the fake offset. This is highlighted by the term DeltaH in (Figure
6).

Ha = Hf − preDs + preIs (5)

Likewise, Qa, the actual offset of Q inside the final
chromosome T, can be used to calculate the fake offset (Qf ) of
Q inside the initial version of T (Eqn 6). To calculate Qf , Qa

is altered by (1) subtracting how many characters were already
inserted, and (2) adding how many characters were already deleted
before the offset Qa in the final version of T (represented by
DeltaQ in (Figure 6)):

Qf = Qa − preIs + preDs (6)

(Eqn 7) shows and (Figure 6) depicts four equivalent ways
to calculate the distance RH−>Q using target offsets, however,
inCompressi makes use of the first alternative. After calculating
RH−>Q, Qr can be calculated by (Eqn 3), and then inCompressi
can seek to offset Qr in chromosome R to pick the sequence Q with
the given length Lseq .

RH−>Q = TH−>Q =


Qf −Hf

Qf −Ha +DeltaH

Qa −Hf −DeltaQ

Qa −Ha −DeltaQ +DeltaH

(7)

The past scenario is valid in case Q is completely falling inside
the same Hi. Potentially, Q may span multiple subsequent Hs in R,
and so, inCompressi has to determine the subsequent instructions
it should manipulate to build the overall Q. For example, if
executing Hi resulted in the first L characters of Q (SubQ0), then
inCompressi executes instruction Hi+1 from its beginning with
length (Lseq–L). The same process is repeated until inCompressi
recovers the complete Q from the subsequent Hs. The pseudo code
at (Listing 1) briefly states the overall inCompressi algorithm.

Finally, after picking Q (or SubQi) from a specific Hi,
inCompressi has to apply the internal differences (inDs, inIs,
and inSs) that falls inside Q (or SubQi). Before applying these
differences, their offsets have to be corrected and then applied
in separation of their preceding differences. At first, if there are
multiple inDs to be applied to SubQi, then starting from deletion
inD1, each inDi must have its offset adjusted by: (1) subtracting
the number of characters already deleted by inD0 till inDi−1 in
SubQi (Eqn 8), and (2) subtracting inDs and adding inIs that
are already applied inside the past SubQs (SubQ0 till SubQi−1).
Secondly, inIs and inSs must have their offsets corrected by the
number of characters of the preceding non-deleted Ds (preDs)
and non-inserted Is (preIs). That is because for the Stanford’s
decompression to work correctly, it has to apply all Ds before it
starts applying Is or Ss, and then it starts applying all Is before
applying Ss. So, for inCompressi to have corrected offsets for inIs
and inSs, it should shift these offsets forward with the non-deleted
preDs, and shift them backward with the non-inserted preIs. (Eqn
9) shows how inCompressi calculates this shift using the fake offset
Qf that is previously calculated by (Eqn 6).

inDi Offset = inDi Offset−
j=i−1∑
j=0

(inDj length) (8)

PreviousDs&IsShift = Qf −Qa (9)

Sometimes, the characters to be deleted from Q may be more
than the characters to be inserted, or vice versa. In the former case,
the final Q will be shorter than required, and so, inCompressi picks
the remaining characters the same way Q is picked. In the later
case, inCompressi discards the extra characters found at the end of
Q.

Listing 1: A simplified pseudo-code for inCompressi picking a
sequence Q with offset Oseq and length Lseq from a chromosome
T that is referentially compressed using chromosome R. Assuming
that the match instructions (Hs) and differences (Ss, Is, and Ds)
of T are already decoded.

6



International Journal of Computer Applications (0975 8887)
Volume 86 - No. 8, January 2014

PickSequenceFromChromosome(R, Hs, Ss, Is, Ds, Oseq , Lseq):
{
01: NextLT = 0
02: Qa = Lseq

03: Qf = GetQueryFakeOffset(Oseq , Is, Ds)
04: PreviousDs&IsShift = Qf - Qa

05: AppliedDs&IsShift = 0
06:
07: Foreach Hi in Hs:
08: Hf = NextLT

09: Hr = offset of Hi in R
10: LH = length of Hi

11: CharOfHi = Decoded Hi’s character
12: NextLT = NextLT + LH

13:
14: if Hf ≤Qf and Qf + Lseq ≤Hf + LH :
15: V isitHi+1 = false
16: NextQf = -1
17: else if Hf ≤Qf and Qf ¡ Hf + LH :
18: V isitHi+1 = true
19: NextQf = NextLT + 1
20: RemainingLseq = Lseq - (NextLT - Qf )
21: Lseq = Lseq - RemainingLseq

22:
23: RH−>Q = Qf - Hf

24: Qr = Hr + RH−>Q

25: SubQ = R.ReadSequence(Qr , Lseq)
26: SubQ = ApplyDsOnQ(Ds,SubQ,AppliedDs&IsShift)
27: SubQ = ApplyIsOnQ(Is,SubQ,PreviousDs&IsShift)
28: SubQ = ApplySsOnQ(Ss,SubQ,PreviousDs&IsShift)
29: AppliedDsIsShift = Lseq - Length(SubQ)
30: Q = Q + SubQ
31:
32: if V isitHi+1 == false or RemainingLseq == 0:
33: exit loop
34:
35: Qf = NextQf

36: Lseq = RemainingLseq

37: End foreach
38: Print Q
}

3.2 Simple inCompressi Runs
inCompressi works on chromosomes with sizes ranging from tens
to hundreds of Megabytes, however, this paper gives illustrative
examples of picking short sequences from a simple sequence
representing a random chromosome. Assume that chromosome X
is referentially compressed using chromosome Y (as in Figure 2),
and that the match instructions (Hs) and differences (Ss, Is, and
Ds) of the compressed chromosome X are loaded and decoded to
be the same as in (Figure 3.d).

Table 1. : Instructions used throughout the following examples.

Instruction Hi Hr Hf LH + 1

H0(3, 22, C, G) 3 0 22+1=23
H8(22, 2, T, C) 22 0+23=23 2+1=3
H9(27, 4, N, N) 27 23+3=26 4+0=4

(Table 1) respectively shows Hs, their Y offset (Hr), their
fake X offset (Hf ), and their length (LH+1) including the ending
character of each instruction (except the last dummy character).
Recall that the Stanford’s decompression has to use all Hs to
build an initial X chromosome (as X2 in (Figure 5)). Conversely,

inCompressi only uses Hs that are spanned by the sequence to be
decompressed.

Example 1: Q = X(Oseq , Lseq) = X(17, 4)

* Qa = Lseq = 17
* Qf = Qa + (D0+D1) – (I0+I1+I2) = 17 + (1+3) – (1+1+1) = 18
* Q = X(18, 4)⇒ Q ∈H0

* RH−>Q = Qf – Hf = 18 – 0 = 18
* Qr = Hr + RH−>Q = 3 + 18 = 21
* Q = Y(Qr , Lseq) = Y(21, 4) = TGAC
* Applying Ds, Is, Ss, if any, falling inside Q (between offsets 18

and 21):
* No Ds to apply.
* Calculating Is&SsShift = Qa – Qf = 17 – 18 = –1
* Applying I3(19, T) on Q: Offset =19 – (–1) = 20⇒Q = TGTAC
* No Ss to apply.
* Ignoring the extra ’C’ ...⇒ Q = TGTA
* Q is identical to X(17, 4) of X10 in (Figure 5).

Example 2: Q = X(Oseq , Lseq) = X(4, 10)

* Qa = Lseq = 4
* Qf = Qa – I0 = 4 – 1 = 3
* Q = X(3, 10)⇒ Q ∈H0

* RH−>Q = Qf – Hf = 3 – 0 = 3
* Qr = Hr + RH−>Q = 3 + 3 = 6
* Q = Y(Qr , Lseq) = Y(6, 10) = CAGGGCGGCA
* Applying Ds, Is, Ss, if any, falling inside Q (between offsets 3

and 12):
* Applying D0(4, 1) on Q:⇒ Q = C–GGGCGGCA
* Calculating Is&SsShift = Qa – Qf = 4 – 3 = 1
* Applying I1(8, T) on Q: Offset = 8 – 1 = 7 ⇒ Q =

CGGGTCGGCA
* Applying S0(11, T, G) on Q: Offset = 11 – 1 = 10 ⇒ Q =

CGGGTCGTCA
* Q is identical to X(4, 10) of X10 in (Figure 5).

Example 3: Q = X(Oseq , Lseq) = X(21, 7)

* Qa = Lseq = 21
* Qf = Qa + (D0+D1) – (I0+I1+I2+I3) = 21 + (1+3) – (1+1+1+1)

= 21
* Q = X(21, 7)⇒ Q spans H0, H8, and H9.
* Recursively fetching SubQs as shown in the past examples:
* SubQ0 = X(21, 2): SubQ0 = C + (C)
* SubQ1 = X(23, 3): SubQ1 = GA + (T)
* SubQ2 = X(26, 2): SubQ2 = TG
* Q = SubQ0 + SubQ1 + SubQ2 = CC + GAT + TG = CCGATTG
* Q is identical to X(21, 7) of X10 in (Figure 5).

4. RESULTS AND DISCUSSION
4.1 The Experimental Environment
The performed experimental results are based on two datasets.
The first dataset contains two versions of the Arabidopsis thaliana
(TAIR) genome, namely the TAIR8 (TAIR8 Website) and the TAIR9
(TAIR9 Website) genomes. Each of these genomes has a total size
of 120 MB approximately, and is divided into five chromosomes
which are stored separately in FASTA-formatted files. The second
dataset consists of two versions of the human genome, namely the
hg18 (HG18 Website) and the yh (YH Website) genomes. Each of
these genomes has a total size of 3,000 MB approximately, and is
divided into twenty five FASTA-formatted chromosome files.

7

ftp://ftp.arabidopsis.org/home/tair/Sequences/whole_chromosomes/OLD/
ftp://ftp.arabidopsis.org/home/tair/Sequences/whole_chromosomes/OLD/TAIR9_chromosome_file/
http://hgdownload.cse.ucsc.edu/goldenPath/hg18/bigZips/chromFa.zip
ftp://public.genomics.org.cn/BGI/yanhuang/fa/


International Journal of Computer Applications (0975 8887)
Volume 86 - No. 8, January 2014

The TAIR experiments are performed on a machine with an
Intel Core2 Duo CPU @ 2.10 GHz (a single core is used) with
3.77 GB of RAM, whereas the human genome experiments are
executed on a machine with an Intel Core i5 CPU @ 2.50 GHz
(a single core is used) with 3.89 GB of RAM. Both machines run
on LinuxMint-14 OS.

4.2 The Implementation Details
As Stanford was implemented in Python, inCompressi is also
implemented in Python in order to be comparable with the
original performance of the Stanford’s decompression. In addition,
biologists sometimes need to visually analyze specific regions
of the genomic sequences in a convenient way. Motivated by
this need, the inCompressi’s implementation is augmented with
a desktop application, namely, inCompressi Navigator. Aided by
this application, biologists can visually browse their genomes,
which are already compressed by Stanford, without their complete
decompression. The reader can find more details about the
complete implementation of inCompressi at this link: www.fci.
cu.edu.eg/~mnassef/implementations/inCompressi.php.

4.3 Partial Decompressions using inCompressi
This subsection discusses the performance of inCompressi during
its partial decompression of variable length sequences from the
referentially compressed TAIR9 and yh genomes. The performed
experiments picked sequences with lengths ranging from 1,000
characters to entire chromosomes. Most of these sequences were
picked from each chromosome at different offsets, however,
inCompressi gave similar results independent of the queried
offset. To ensure the experimental validity of inCompressi, all
sequences picked from the referentially compressed genomes using
inCompressi were compared with the same sequences from the
original non-compressed chromosomes.

(Table 2) shows the memory usage and the average runtime in
milliseconds (ms) of inCompressi performing miscellaneous partial
decompressions over the five chromosomes of the TAIR9 genome.
(Figure 7.a) shows how inCompressi is efficient in picking
sequences with length ranging from 100 to 100,000 characters. It
almost has the same memory usage (7 MB) and average runtime
(18-20 ms) independent of the offset or the length of the sequence
being queried. Picking sequences with lengths greater than 100,000
characters costs relatively longer runtime and higher memory
consumption.

Table 2. : Average runtime and memory usage for sequences
picked by (a) inCompressi, and (b) inCompressi-Blocks
with block length 100,000, from the referentially
compressed TAIR9 genome.

(a) inCompressi (b) inCompressi-Blocks

Query Length Memory Average Memory Average
Usage Runtime Usage Runtime
(MB) (ms) (MB) (ms)

100 7 18
10,000 7 19

100,000 7 20

500,000 8 24 8 24
1,000,000 11 44 9 30
3,000,000 18 125 13 56
5,000,000 26 242 17 79

10,000,000 45 661 26 136
Chromosome 56 1,428 36 593

The impressive performance of inCompressi was motivating
to perform partial decompressions in subsequent fixed-length

blocks of length 100,000 characters (inCompressi-Blocks),
where the shorter the block to be extracted, the lower the
expected runtime and memory consumption. For example, to
decompress some chromosome X1000

1 in blocks of length 100,
inCompressi-Blocks partially decompress chromosome X in ten
subsequent blocks: X100

1 , X200
101 , ... X1000

901 . (Table 2) shows
the performance of inCompressi-Blocks alongside the normal
performance of inCompressi. Using inCompressi-Blocks, the
complete chromosome decompression is significantly enhanced to
have the maximum memory usage of 36 MB instead of 56 MB, and
average runtime of 593 sec instead of 1,428 sec. (Figure 7.b) shows
how inCompressi-Blocks overcomes inCompressi’s performance
during picking longer sequences.

Table 3. : Average runtime and memory usage for sequences
picked by inCompressi-Blocks with block length
1,000,000 characters from the first chromosome of the
referentially compressed yh human genome. Around 540
MB of memory and 32 sec of runtime are consumed in
loading and decoding the compressed data.

inCompressi-Blocks

Query Length Memory Usage (MB) Average Runtime (sec)

1,000 551 33
10,000 551 33

100,000 551 33
1,000,000 552 33

10,000,000 563 34
100,000,000 745 36

Chromosome 790 42

The performance of picking partial sequences from the
referentially compressed yh human genome is shown in (Table 3).
Compared to Stanford, inCompressi-Blocks significantly consumes
less memory and reduces runtime from 19 minutes to less than one
minute. (Table 3) also shows that picking sequences with length
1,000 to 10,000,000 characters almost have the same memory and
runtime.

4.4 Complete Genome Decompression
This subsection investigates the performance of inCompressi’s
complete genome decompression compared to the original
Stanford’s decompression. (Table 4) shows the measured storage
in MB and runtime in seconds (Sec) for each implementation
during the referential decompression of the TAIR9 genome
using TAIR8 as a reference. Compared to Stanford, inCompressi
significantly takes lower runtime and memory because it builds
the mature target chromosome one match instruction at a time,
and so, it applies insertions (or deletions) to relatively shorter
memory buffers. (Figure 8.a) illustrates the average runtime and
the memory usage obtained by trying inCompressi-Blocks using
different block lengths. It appears that running inCompressi-Blocks
with block length 100,000 resulted in the best performance for
the TAIR9 genome. Compared to Stanford, inCompressi-Blocks
shows a drastic reduction in both memory consumption and
runtime (around the tenth). Also, (Figure 8.a) shows that using
very short block length (such as 100 and 1,000 characters) is
not recommended, because when block length becomes very
short, inCompressi-Blocks has to access the list of matches and
differences more frequently while building more blocks. Thus,
using very short and very long block lengths should be avoided.

The experimental results on the human genome are shown
in (Table 5) during the referential decompression of the yh
genome using the hg18 genome as a reference. (Table 5)
shows how inCompressi is perfectly scalable for manipulating the
human genomes. Moreover, as shown in (Figure 8.b), running

8

www.fci.cu.edu.eg/~mnassef/implementations/inCompressi.php
www.fci.cu.edu.eg/~mnassef/implementations/inCompressi.php


International Journal of Computer Applications (0975 8887)
Volume 86 - No. 8, January 2014

Fig. 7: The performance of partial decompressions using (a) inCompressi, and (b) inCompressi-Blocks with block length 100,000.
inCompressi-Blocks outperforms inCompressi in picking sequences longer than 500,000 characters.

Fig. 8: Average runtime and memory usage of inCompressi-Blocks performing complete genome decompression for (a) the TAIR9 genome,
and (b) the yh human genome, with different block lengths. Using block lengths of 100,000 and 1,000,000 gave the best runtime and
lowest memory consumption for the TAIR9 and yh genomes respectively.

Table 4. : Memory usage and average runtime taken by
the Stanford’s decompression, inCompressi, and
inCompressi-Blocks, while decompressing the TAIR9
genome using the TAIR8 genome as a reference.

Algorithm Memory Usage Average Runtime
(MB) (Sec)

Stanford’s Decompression 300 21.17

inCompressi 83 4.40

inCompressi-Blocks (100,000) 36 2.25

inCompressi-Blocks with block length 1,000,000, on the second
experimental machine, resulted in the best performance for the
yh human genome. It significantly outperforms the Stanford’s
decompression in both runtime and memory consumption.

4.5 The Implementation Challenges
Based on the Stanford’s character encoding described on
Subsection 2.3, if inCompressi is going to decompress a sequence
at a specific region of the compressed genome, it has to decode
the target ending characters of (Hs, Ss, and Is) falling in the

Table 5. : Memory usage and average runtime taken by
the Stanford’s decompression, inCompressi, and
inCompressi-Blocks, while decompressing the yh human
genome using the hg18 human genome as a reference.

Algorithm Memory Usage Average Runtime
(MB) (Sec)

Stanford’s Decompression 2,928 1,150

inCompressi 925 514

inCompressi-Blocks (1,000,000) 794 400

targeted sequence. However, because the character encodings of the
compressed genome differ in length, inCompressi cannot bypass
the encodings preceding the encodings of the targeted sequence
until it has all their reference characters in hand in order to know
their lengths, which is impractical.

Alternatively, we modified the character encoding of
the Stanford’s compression to retain metadata that enables
inCompressi to bypass the encodings preceding the targeted
sequence. This metadata is written before every character encoding
storing its length. For example, by considering the encoding

9



International Journal of Computer Applications (0975 8887)
Volume 86 - No. 8, January 2014

examples in Subsection 2.3, the new encoding of the (’A’ and
’G’) pair is ”1001”, whereas the new encoding of (’A’ and ’N’)
is ”11101”. Retaining this metadata has a slight effect on the
compression ratio of the overall genome. For instance, the altered
Stanford’s compression compresses the TAIR9 genome into 3.7
Kilobytes (KB) instead of 3.5 KB, and compresses the yh genome
into 10.4 MB instead of 8.5 MB.

On the other hand, because the Stanford’s compression
cumulatively encodes the differences of the entire genome into
the same file, inCompressi repeatedly loads and decodes all the
compressed differences of the overall yh genome while picking
each single sequence. The resulting overhead is shown by (Table
3), where picking sequences from the yh human genome consumes
almost the same memory (540 MB) and runtime (32 sec). This
overhead can be avoided by altering the Stanford’s compression
algorithm to compress each chromosome individually, however,
this will slightly affect the compression ratio. Alternatively,
inCompressi could reduce this overhead by loading and decoding
all the differences once, but then picking multiple sequences using
the same decoded differences.

5. CONCLUSION AND FUTURE WORK
This paper showed how it is feasible to browse sequences
from the referentially compressed genomes through partial
decompressions. Partial decompressions saves both runtime and
memory usage, and it also needs no disk space. As the referential
compression algorithms differ in how their decompression
works, each of them have to have its own tailored partial
decompression algorithm. Therefore, the inCompressi algorithm
is designed and implemented to efficiently pick sequences
from genomes referentially compressed using the Stanford’s
compression algorithm. In addition to testing inCompressi on
versions of the relatively short Arabidopsis-Thaliana genome,
inCompressi showed a scalable performance over versions of the
human genomes that are very long. On the other hand, inCompressi
showed more efficient complete decompression compared to the
original Stanford’s decompression algorithm. Hence, the biological
genome analysis algorithms can utilize inCompressi to browse
the Stanford’s referentially compressed genomes in reasonable
response time and computational resources. Additionally, the
inCompressi’s implementation is augmented with a desktop
application, namely inCompressi Navigator, that can be used by
biologists to visually browse the compressed genomes without their
complete decompression.

The inCompressi’s implementation could have further runtime
enhancement by exploiting the multicore capabilities provided by
the nowadays machines. Moreover, inCompressi can be enhanced
to search for specific sequences inside genomes referentially
compressed by Stanford.

6. ACKNOWLEDGEMENTS
We thank the authors of the Stanford algorithm for providing us
with their algorithm’s prototype implementation. We also thank our
colleague Sara Salem for proofreading this article.

7. REFERENCES

[1] R.A. Gibbs, J.W. Belmont, P. Hardenbol, T.D. Willis,
F. Yu, et al. The international hapmap project. Nature,
426(6968):789–796, 2003.

[2] N. Siva. 1000 genomes project. Nature biotechnology,
26(3):256–256, 2008.

[3] G.M. Church. The personal genome project. Molecular
Systems Biology, 1(1), 2005.

[4] D.R. Bentley. Whole-genome re-sequencing. Current opinion
in genetics & development, 16(6):545–552, 2006.

[5] J. Shendure and H. Ji. Next-generation dna sequencing.
Nature biotechnology, 26(10):1135–1145, 2008.

[6] R. Sachidanandam, D. Weissman, S.C. Schmidt, J.M. Kakol,
L.D. Stein, et al. A map of human genome sequence variation
containing 1.42 million single nucleotide polymorphisms.
Nature, 409(6822):928–933, 2001.

[7] L.S. Heath, A. Hou, H. Xia, and L. Zhang. A genome
compression algorithm supporting manipulation. In Proc LSS
Comput Syst Bioinform Conf, volume 9, pages 38–49, 2010.

[8] S. Kuruppu, S.J. Puglisi, and J. Zobel. Reference sequence
construction for relative compression of genomes. In
String Processing and Information Retrieval, pages 420–425.
Springer, 2011.

[9] S. Deorowicz and S. Grabowski. Robust relative
compression of genomes with random access. Bioinformatics,
27(21):2979–2986, 2011.

[10] C. Wang and D. Zhang. A novel compression tool for
efficient storage of genome resequencing data. Nucleic Acids
Research, 39(7):e45–e45, 2011.

[11] A.J. Pinho, D. Pratas, and S.P. Garcia. Green: a tool for
efficient compression of genome resequencing data. Nucleic
Acids Research, 40(4):e27–e27, 2012.

[12] B.G. Chern, I. Ochoa, A. Manolakos, A. No, K. Venkat,
and T. Weissman. Reference based genome compression.
In Information Theory Workshop (ITW), 2012 IEEE, pages
427–431. IEEE, 2012.

[13] A.D. Wyner and J. Ziv. The sliding-window lempel-ziv
algorithm is asymptotically optimal. Proceedings of the
IEEE, 82(6):872–877, 1994.

[14] M.C. Brandon, D.C. Wallace, and P. Baldi. Data structures
and compression algorithms for genomic sequence data.
Bioinformatics, 25(14):1731–1738, 2009.

Websites
TAIR8 Website: ftp://ftp.arabidopsis.org/home/tair/
Sequences/whole_chromosomes/OLD/ [Accessed: 5 December
2012]

TAIR9 Website: ftp://ftp.arabidopsis.org/home/tair/
Sequences/whole_chromosomes/OLD/TAIR9_chromosome_
file/ [Accessed: 5 December 2012]

HG18 Website: http://hgdownload.cse.ucsc.edu/
goldenPath/hg18/bigZips/chromFa.zip [Accessed: 6
Jan 2013]

YH Website: ftp://public.genomics.org.cn/BGI/
yanhuang/fa/ [Accessed: 7 Jan 2013]

10

ftp://ftp.arabidopsis.org/home/tair/Sequences/whole_chromosomes/OLD/
ftp://ftp.arabidopsis.org/home/tair/Sequences/whole_chromosomes/OLD/
ftp://ftp.arabidopsis.org/home/tair/Sequences/whole_chromosomes/OLD/TAIR9_chromosome_file/
ftp://ftp.arabidopsis.org/home/tair/Sequences/whole_chromosomes/OLD/TAIR9_chromosome_file/
ftp://ftp.arabidopsis.org/home/tair/Sequences/whole_chromosomes/OLD/TAIR9_chromosome_file/
http://hgdownload.cse.ucsc.edu/goldenPath/hg18/bigZips/chromFa.zip
http://hgdownload.cse.ucsc.edu/goldenPath/hg18/bigZips/chromFa.zip
ftp://public.genomics.org.cn/BGI/yanhuang/fa/
ftp://public.genomics.org.cn/BGI/yanhuang/fa/

	Introduction
	Stanford Overview
	The Stanford's Compression
	The Stanford's Decompression
	Stanford Character Encoding

	Methods
	inCompressi
	Simple inCompressi Runs

	Results and Discussion
	The Experimental Environment
	The Implementation Details
	Partial Decompressions using inCompressi
	Complete Genome Decompression
	The Implementation Challenges

	Conclusion and Future Work
	Acknowledgements
	References

