
International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 6, January 2014

41

An Efficient Software Clone Detection System based on

the Textual Comparison of Dynamic Methods and

Metrics Computation

Gurunadha Rao Goda

Tata consultancy Services, Chennai, India

Avula Damodaram, Ph.D
Professor of CSE & Director Academic Audit

Cell, JNTUH, Hyderabad, India

ABSTRACT
Code clone is a kind of software recycling that has a greater

influence on the maintenance of huge software systems. The

business services are provided by web applications that employ

a combination of page design and language code scripting.

Usually, code redundancy in applications result from copy and

paste practices called code clones. Searching for software

clones is the key objective of this research. The clone

identification procedure which is introduced in this paper is a

hybrid approach that depends on template conversion and

metrics comparison. There are four phases involved in the

proposed scheme, namely, input and pre-processing, template

conversion, metrics computation and clone type detection. File

integration, elimination of white noise and statement

normalization are the steps involved in the pre-processing

stage. The metrics that are calculated includes numerous lines

of code, arguments, looping statements, return statements and

conditional statements. The pairs that have identical

characteristics during textual evaluation are termed as the

clones. This method of clone detection seems to be less

complex with better accuracy and efficiency in contrast to other

existing methods. The performance analysis is made against the

prevailing systems to show efficiency improvement obtained

through this method. The implementations are carried out with

the help of JAVA.

Keywords
Clone detection, Template conversion, Metrics computation,

File integration, Normalization.

1.INTRODUCTION
The software development process includes frequent actions

like code fragment copying and reuse by means of pasting

with or without slight variations or adjustments [5]. This kind of

reuse technique for existing code is called as Code Cloning and

the pasted code fragment is termed as Clone of the original.

Improved results and lower complexity are offered by Software

Clone Detection [8]. Clone Detection approach is to discover

the reused code fragment in any application to retain. Clones

are mostly the outcome of copy-paste events that are very

simple and try to decrease the programming difficulties and

time [2] by making use of the fragment of code that is

previously available and not rewriting similar code from

scratch. This functioning is usual, primarily in device drivers of

operating systems with identical algorithms. Another cloning

called the ‘Accidental Cloning’ [4] arises occasionally due to

the utilization of the similar set of APIs to realize similar

protocols rather than using direct copy and paste activities.

The quality, maintainability and comprehensibility of the

software systems are greatly influenced by code clones [5-6].

The abnormality in probability update increases with cloning.

Identification of all the cloned fragments that are related to a

code fragment with a bug is necessary to fix the bug in

question. Excessive cloning results in the system size increment

and commonly specify design problems like missing inheritance

and missing procedural abstraction [1-3] Moreover, the expense

dealt with the maintenance of clones over a system’s lifespan is

high. Improved results with huge complexity have lead to the

significant advancements in Clone Detection [10]. Greater part

of the methods were restricted to discovering program

fragments that are identical to their syntax or semantics, despite

the fact that the smaller part of candidates which are really

clones and fraction of actual clones known as candidates

normally stay similar. The functional clones in C source code

[8] can be detected by means of the estimation of Metric based

[11] approach merged with the textual comparison of the source

code. Detection procedure uses the values of a range of metrics

that has been devised. The metric based method seems to be the

least complex, largely accurate and well-organized way of

detecting clones.

2. RELATED WORKS
Metrics-based approaches [6] involve the comparison of metric

vectors of various metrics of code fragments that are collected,

despite making direct comparison of codes. Numerous clone

detection methods have evolved so far, that uses a wide range

software metrics for identifying identical codes. A collection of

software metrics known as fingerprinting functions are

computed for one or more syntactic units like a class, a

function, or a method or even statement and then the clone

detection takes place by the comparison of the metric values

over these syntactic units.

Mayrand et al. [15] have computed quite a few metrics for each

function unit of a program. The code clones that are detected

are nothing but the units having identical metric values. The

units that partially similar units are not identified. Each and

every function in the source code is embodied by the source

code representation named Intermediate Representation

Language (IRL). Names, design, expression and uncomplicated

control flow of functions are used for metrics computation. A

clone [2] can be described merely by pair of whole function

bodies that possess similar metric values. This approach does

not hold good for the identification of copy-paste at other

granularity like segment-based copy-paste, which arise more

repeatedly than function-based copy-paste.

Kontogiannis et al. [10] has made use of an abstract pattern

matching tool that is based on Markov models to recognize

possible matches. This method has failed to discover copy-

pasted code but helps in determining the relationship among

two programs. The approach makes a direct comparison of the

metrics values to categorize a code fragment in the granularity

[7] of begin − end blocks with the belief that two code

fragments are related if their respective metric values are

adjacent. In addition, the metric-based methods find application

in detecting duplicated web pages or clones in web documents.

Di Ducca et al. [14] has put forward a method that uses the

computation of distance between objects in web pages and for

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 6, January 2014

42

finding the extent of similarity to detect similar static HTML

pages. A string representation for each and every HTML/ASP

pages of a Web Application (WA) is achieved through the

replacement of each HTML/ASP control elements with a

separate symbol from one of the two distinct set of alphabets,

one for HTML tags and the other for ASP objects.

Lanubile, Calefato and colleagues [13-15] has introduced a

semi automated method to detect cloned script functions.

Initially, the method uses an automated approach to identify the

potential function clones followed by a visual inspection in the

chosen script functions. eMetrics is the tool used for

recognizing the potential function clones [8] and the reports

from the tool allow the visual inspection of the code of the

selected script functions, sorting of suspect clones, and

assembling of revealed function clones based on refactoring

opportunities.

Davey et al. [12] uses the estimation of specific code block

attributes to identify accurate, parameterized and near-miss

clones followed by the utilization of neural networks to detect

similar blocks based on their characteristics.

3.PROBLEM DEFINITION
The branch of Clone Detection has undergone a great progress

in the past ten years. This advancement is due to the

development of various methods, which makes use of complex

algorithms and tool chains to offer clone detection with

improved results and increased complexity. Various clone

detection methods that are already available include textual

comparison, token comparison, comparison of Abstract Syntax

trees, Suffix trees and Program Dependency Graphs. The

scalable and semantics-based approaches, which are prevailing

today, are restricted to the discovery of program fragments that

are identical in their syntax or semantically equivalent control

structures alone. The above-mentioned techniques are in need

of more complex parsing techniques that provide comparatively

same precision and recall. In addition, these Clone Detection

techniques are limited to a particular clone type only.

4.PROPOSED METHODOLOGY
In the preceding paper, the repeatedly used important methods

and functions were recognized through dynamic coupling

measurement. When the search for important methods has been

completed, a new search for the clones has to be made in that

function list. This research deals with the development of a

novel technique for code clone detection that assist in detecting

two or three clone types as specified in literature. It is a

lightweight process for the identification of clones. Besides, it is

capable of offering refactoring support for getting additional

solutions with the detected clones. A new technique is

introduced, which is the hybrid combination of metric-based

approach and textual comparison of the source code for the

detection of Clones. Several metrics have been developed to

make use of their values during the detection process. The

method introduced consists of 4 segments, namely, input and

pre-processing, template conversion, metrics computation and

detection of the clone types. The pairs that are identical in

textual comparison are known to be the clones. In contrast to

the other approaches, this method is of less complexity with

higher accuracy, providing a better means for Clone Detection

and it is implemented using the Java tool.

Fig 1: Architecture of the proposed methodology

4.1. Data Preprocessing
The undesired source codes for the comparison phase are

filtered out in this stage of clone detection. This phase also

offers file integration, white noise elimination and statement

normalization.

(a). File Integration

File integration does the job of grouping or concatenation of all

the files of the same project in to a single huge file for external

parsing. The comments and the pre-processor statements can

be eliminated during file integration.

(b). White noise removal

Following the removal of unwanted codes, the source code that

continue to stay is partitioned into a set of disjoint fragments

known as source units. These source units form the major

source fragments that deal with direct clone relationship with

one another and can be at any stage of granularity like files,

classes, functions/methods, begin-end blocks, statements, or

sequences of source lines. The comparison technique used by

the tool decides whether, further partition of source units is

necessary or not. For instance, source units may be further

divided into lines or even tokens for comparison. Comparison

units can be even obtained from the syntactic structure of the

source units.

(c). Statement normalization

The source units may also be used as comparison units in

situations where the subdivision of source units is not

required.. For instance, the metric values can be evaluated

from source units of any granularity in a metrics dependent

tool. The similarity between the cloned fragments can be set up

through the reorganization of source code into a standard

format. Thus in the stage of normalization, all the identifiers in

the source code are replaced by the same single identifier.

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 6, January 2014

43

4.2. Template Conversion
Template conversion can be defined as the process of

converting the source code input into a pre-defined collection

of statements or into a standard form. It involves the renaming

of data types, variables and function names. In textual

evaluation, this kind of format is termed as the template. The

textual comparison of the chosen candidates are modified

while detecting the clones, function identifiers, variable names,

types etc., and the textual comparison that is made, not during

the cloning process, will not meet the requirements. The

application of metrics necessitates the immediate storage of the

source file and template file in the database after the

completion of template conversion. This transformation can be

as simple as elimination of white space and comment or very

complex.

Fig 2: Example for template conversion

4.3. Metrics computation
This phase of clone detection is used to evaluate the metrics

required for detecting clones and it involves a set of five

metrics that are as follows:

1. Number of lines of code

The number of lines of code can be obtained by,

 Subtracting white space lines.

 Subtracting comment lines.

 Subtracting the lines that have block constructs alone.

2. Number of arguments

By denoting the function name followed by the function call

operator and any data values that the function expect to

receive, a function call can be made These values are the

arguments for the parameters described for the function, and

the process is termed as passing arguments to the function.

3. Number of conditional statements

In computer science, conditional statements, conditional

expressions and conditional constructs are characteristics of a

programming language that can achieve various computations

or activities based on whether a programmer-specified Boolean

condition proves to be true or false.

4. Number of looping statements

A looping statement allows a statement to be evaluated several

times as required. It is of much use when some constraints are

to be verified with a certain value.

5. Number of return statements

A return statement is used to stop the processing of the recent

function and returns control to the caller of the function. A

value-returning function must incorporate a return statement,

holding an expression.

For each and every method that is detected, the metrics are

evaluated to store its respective values in a database. Following

the metric values evaluation, the records in the database are

compared to detect the method pairs with equal or similar set

of values. The resulting set of candidates is then processed to

obtain the clone pairs.

The metrics acquired through the metrics computation are then

compared and the Euclidean distances were calculated.

Euclidean distance is calculated by means of the formula:

       
2

21

2

21

2

21stanceEuclidean zzyyxxEDdi 

 (1)

A threshold is set after the estimation of the Euclidean

distance. The metrics with values larger than or equal to

Euclidean distance is known as clone.














EDcloneNot

EDClone
result

,

,,
 (2)

Thus the detection of software clones is made.

5. RESULTS AND DISCUSSION
The proposed software clone detection system has been

implemented in the working platform of JAVA (version JDK

1.5). The key objective of the proposed method is to detect the

clones in the source code. This can be realized through the

combination of both textual conversion and metrics

computation. The step by step results obtained from the

proposed method is described as follows.

Fig 3: Initial process in the proposed methodology

The initial process of the proposed clone detection system is

given in fig 3. The application that was used for the

implementation of the methods is represented in fig 4.

Fig 4: Application for the execution of methods

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 6, January 2014

44

Fig 5: Executed output dynamic methods

Table 1: Sample metric values

Fig 6: Sample output for the proposed methodology

The executed dynamic output methods are shown in fig 5. The

sample of clones detected is given in fig 6.

5.1. Performance Measures
The quality of the system can be estimated through the quality

metrics. The quality metrics considered in the proposed

methodology are:

 Precision

 Recall

 Accuracy

1. Precision

Precision measures the proportion of actual clones which are

correctly identified.

clonesofnumberTotal

foundcorrectlyclonesofNumber
 Precision (3)

2. Recall

Recall measures the proportion of non-clones which are

correctly identified.

codesourcetheinclonesofnumberTotal

correctfoundclonesofNumber
 Recall (4)

Fig 7: Graph for comparison of precision and recall

Table 2: Performance measure

Fig 7: shows the comparison of the proposed methodology with

the suffix tree method that currently exists. It shows that the

proposed methodology has precision and recall rates higher

than that of the existing techniques. So that it is evident that the

method of clone detection proves to be better than the other

prevailing methods.

6. CONCLUSION
In this paper, a novel clone detection technique that uses

template conversion and metrics computation in a combined

manner is being proposed. The results of the proposed system

are analyzed based on a source code to offer a significant tempo

of accuracy, precision and recall and reveal that more accurate

clone detection is possible from the source code provided. The

comparison results also show that our proposed clone detection

system based on template conversion and metrics computation

has given high exactness than the past methods. Hence, the

proposed clone detection system, by utilizing the template

conversion and metrics computation, is capable of proficiently

identifying the clones in the input source code.

REFERRENCES
[1] L. Almagor, K. D. Cooper, A. Grosul, T. J. Harvey, S. W.

Reeves, D. Subramanian, L. Torczon, and T. Waterman.

Finding effective compilation sequences. In Proceedings of

the Conference on Languages, Compilers, and Tools for

Embedded Systems, 2004.

[2] Mayrand, J., Leblanc, C., Merlo, E.: Experiment on the

automatic detection of function clones in a software system

using metrics. In: Proceedings of the International

Conference on Software Maintenance - IEEE Computer

Society Press, Monterey, 1996, pp. 244-253.

70

80

90

100

Precision Recall

Proposed

method

Suffix tree

method

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 6, January 2014

45

[3] Johnson, J.H.: Identifying redundancy in source code using

fingerprints. In: CASCON, 1993, pp. 171-183.

[4] Kontogiannis, K., De Mori, R., Bernstein, R., Galler, M.,

Merlo, E.: Pattern matching for clone and concept

detection. Journal of Automated Software Engineering 3,

1996, pp. 77-108.

[5] Buss, E., De Mori, R., Gentleman, W., Henshaw, J.,

Johnson, H., Kontogiannis, K., Merlo, E., Muller, H.,

Mylopoulos, J., Paul, S., Prakash, A., Stanley, M., Tilley,

S., Troster, J., Wong, K.: Investigating reverse engineering

technologies for the case program understanding project.

IBM Systems Journal 33, 1994, pp. 477-500.

[6] Merlo, E., Antoniol, G., DiPenta, M., Rollo, F.: Linear

complexity object-oriented similarity for clone detection

and software evolution analysis. In: Proceedings of the

International Conference on Software Maintenance - IEEE

Computer Society Press, IEEE Computer Society Press,

2004, pp. 412-416.

[7] Kamiya, T., Kusumoto, S., Inoue, K.: Ccfinder: A multi-

linguistic token-based code clone detection system for

large scale source code. IEEE Transactions on Software

Engineering, 2002, pp. 654-670.

[8] C. Kapser and M. Godfrey. “Cloning Considered Harmful”

Considered Harmful. In WCRE, 2006, pp. 19-28.

[9] Chanchal K. Roy, James R. Cordy, NICAD: Accurate

Detection of Near-Miss Intentional Clones using Flexible

Pretty-Printing and Code Normalization in ICPC, 2008,

pp. 172-181.

[10] M. Kim and G. Murphy. An Empirical Study of Code

Clone Genealogies. In FSE, 2005, pp. 187-196.

[11] Merlo, Detection of Plagiarism in University Projects

using Metrics based Spectral Similarity. In the Dagstuhl

Seminar: Duplication, Redundancy, and Similarity in

Software, 2007.

[12] Giuseppe Antonio Di Lucca, Damiano Distant, and Mario

Luca Bernardi. Recovering Conceptual Models from Web

Applications. In Proceedings of the 24th Annual

Conference on Design of communication (SIGDOC’06),

October 2006, pp. 113-120.

[13] Saumya K. Debray, William Evans, Robert Muth, and

Bjorn De Sutter. Compiler techniques for code

compaction. ACM Transactions on Programming

Languages and Systems (TOPLAS’00), March 2000, pp.

378-415.

[14] Andrea De Lucia, Rita Francese, Giuseppe Scanniello and

Genoveffa Tortora. Reengineering Web Applications

Based on Cloned Pattern Analysis. In Proceedings of 12th

International Workshop on Program Comprehension

(IWPC’04), June 2004, pp. 132-141.

[15] Ekwa Duala-Ekoko, Martin Robillard. Tracking Code

Clones in Evolving Software. In Proceedings of the

International Conference on Software Engineering

(ICSE’07), May 2007, pp. 158-167.

IJCATM : www.ijcaonline.org

