A New Perspective to the Sequences of t-Order

Neşe Ömür
Kocaeli University
Department of Mathematics 41380 İzmit Kocaeli Turkey

Sibel Koparal
Kocaeli University
Department of Mathematics
41380 İzmit Kocaeli Turkey

Cemile Duygu Şener
Kocaeli University
Department of Mathematics
41380 İzmit Kocaeli Turkey

Abstract

In this paper, we consider two sequences of t-order $\left\{\alpha_{i}\right\}_{i=0}^{\infty}$ and $\left\{\beta_{i}\right\}_{i=0}^{\infty}$ defined by $\alpha_{0}=a_{1}, \beta_{0}=a_{2}, \alpha_{1}=a_{3}$, $\beta_{1}=a_{4} \ldots \alpha_{t-1}=a_{2 t-1}, \quad \beta_{t-1}=a_{2 t}$ $\alpha_{n+t}=\sum_{i=0}^{t-1} \beta_{n+i}, \beta_{n+t}=\sum_{i=0}^{t-1} \alpha_{n+i}, n \geq 0$,

where $a_{1}, a_{2}, \ldots, a_{2 t-1}, a_{2 t}$ are fixed real numbers and $\mathrm{t} \in$ $\mathbb{Z}^{+}\{\{1\}$. Furthermore, some interesting properties of these sequences are given

Keywords

Sequences of t -order, integer function.

1. INTRODUCTION

In [1], the authors gave some identities involving the terms of two sequences $\left\{\alpha_{i}\right\}_{i=0}^{\infty}$ and $\left\{\beta_{i}\right\}_{i=0}^{\infty}$ defined by
$\alpha_{0}=a, \beta_{0}=b, \alpha_{1}=c, \beta_{1}=d$,
$\alpha_{n+2}=\beta_{n+1}+\beta_{n}, \beta_{n+2}=\alpha_{n+1}+\alpha_{n}, n \geq 0$,
where $\mathrm{a}, \mathrm{b}, \mathrm{c}$, and d are fixed real numbers.
For example, for $n \geq 0$, the authors obtained the following identities:
$\alpha_{3 k+2}=\sum_{i=0}^{3 k} \beta_{i}+\beta_{1}, \beta_{6 k+5}=\sum_{i=0}^{3 k+2} \alpha_{2 i}-\beta_{0}+\alpha_{1}$.
In [4], the authors considered the generalized recursive form of (1). In [2, 3, 7], the authors described new ideas for 3Fibonacci sequences. In [8], the authors showed fundamental properties of 3-Fibonacci sequences. In [5], the authors gave some properties of two sequences $\left\{\alpha_{i}\right\}_{i=0}^{\infty}$ and $\left\{\beta_{i}\right\}_{i=0}^{\infty}$ which have given initial values $\mathrm{a}, \mathrm{c}, \mathrm{e}, \mathrm{g}$ and $\mathrm{b}, \mathrm{d}, \mathrm{f}, \mathrm{h}$ (which are real numbers), and called 4 -order sequences.

In [5], the authors obtained some interesting results for two sequences $\left\{\alpha_{i}\right\}_{i=0}^{\infty}$ and $\left\{\beta_{i}\right\}_{i=0}^{\infty}$ which have given initial values $\mathrm{a}, \mathrm{c}, \mathrm{e}, \mathrm{g}, \mathrm{i}$ and $\mathrm{b}, \mathrm{d}, \mathrm{f}, \mathrm{h}, \mathrm{j}$ (which are real numbers), and called 5 -order sequences.

In this paper, we consider two sequences of t-order $\left\{\alpha_{i}\right\}_{i=0}^{\infty}$ and $\left\{\beta_{i}\right\}_{i=0}^{\infty}$ defined by $\alpha_{0}=a_{1}, \beta_{0}=a_{2}, \alpha_{1}=a_{3}$, $\beta_{1}=a_{4}, \ldots, \alpha_{t-1}=a_{2 t-1}, \beta_{t}=a_{2 t}$

$$
\begin{equation*}
\alpha_{n+t}=\sum_{i=0}^{t-1} \beta_{n+i}, \beta_{n+t}=\sum_{i=0}^{t-1} \alpha_{n+i}, n \geq 0, \tag{2}
\end{equation*}
$$

where $a_{1}, a_{2}, \ldots, a_{2 t-1}, \quad a_{2 t}$ are fixed real numbers. Furthermore, some interesting properties of these sequences are given.

Taking $\mathrm{t}=2$ in (2), the sequences $\left\{\alpha_{i}\right\}_{i=0}^{\infty}$ and $\left\{\beta_{i}\right\}_{i=0}^{\infty}$ in (1) are obtained:

Table 1. The first nine terms of the sequences of 2-order are shown in table below

n	α_{n}	β_{n}
0	a	b
1	c	d
2	$\mathrm{~b}+\mathrm{d}$	$\mathrm{a}+\mathrm{c}$
3	$\mathrm{a}+\mathrm{c}+\mathrm{d}$	$\mathrm{b}+\mathrm{c}+\mathrm{d}$
4	$\mathrm{a}+\mathrm{b}+2 \mathrm{c}+\mathrm{d}$	$\mathrm{a}+\mathrm{b}+\mathrm{c}+2 \mathrm{~d}$
5	$\mathrm{a}+2 \mathrm{~b}+2 \mathrm{c}+3 \mathrm{~d}$	$2 \mathrm{a}+\mathrm{b}+3 \mathrm{c}+2 \mathrm{~d}$
6	$3 \mathrm{a}+2 \mathrm{~b}+4 \mathrm{c}+4 \mathrm{~d}$	$2 \mathrm{a}+3 \mathrm{~b}+4 \mathrm{c}+4 \mathrm{~d}$
7	$4 \mathrm{a}+4 \mathrm{~b}+7 \mathrm{c}+6 \mathrm{~d}$	$4 \mathrm{a}+4 \mathrm{~b}+6 \mathrm{c}+7 \mathrm{~d}$
8	$6 \mathrm{a}+7 \mathrm{~b}+10 \mathrm{c}+11 \mathrm{~d}$	$7 \mathrm{a}+6 \mathrm{~b}+11 \mathrm{c}+10 \mathrm{~d}$

2. SOME PROPERTIES RELATED TO THE SEQUENCES OF t-ORDER

In this section, we will give the sums of terms of the sequences of t-order and some interesting results.

Theorem1. For every integer $n \geq 0$ and $0 \leq k \leq t$,

$$
\begin{equation*}
\alpha_{(t+1) n+k}+\beta_{k}=\beta_{(t+1) n+k}+\alpha_{k} \tag{3}
\end{equation*}
$$

Proof. Since $\alpha_{k}+\beta_{k}=\beta_{k}+\alpha_{k}$, the given statement is clearly true when $\mathrm{n}=0$.

Assume that the result is true for some integer $n \geq 1$. From (2) and induction hypothesis, then

$$
\begin{aligned}
& \alpha_{(t+1)(n+1)+k}+\beta_{k}=\sum_{i=1}^{t} \beta_{(t+1) n+k+i}+\beta_{k} \\
& =\alpha_{(t+1) n+k+t}+\beta_{k+t}-\alpha_{k+t}+\alpha_{(t+1) n+k+t-1}+\beta_{k+t-1} \\
& -\alpha_{k+t-1}+\ldots+\alpha_{(t+1) n+k+1}+\beta_{k+1}-\alpha_{k+1}+\beta_{k} \\
& =\sum_{i=1}^{t} \alpha_{(t+1) n+k+i}+\sum_{i=1}^{t} \beta_{k+i}-\sum_{i=1}^{t} \alpha_{k+i}+\beta_{k} \\
& =\beta_{(t+1) n+k+(t+1)}+\alpha_{k+t+1}-\beta_{k+t+1}+\beta_{k} \\
& =\beta_{(t+1)(n+1)+k}+\alpha_{k}-\beta_{k}+\beta_{k} \\
& =\beta_{(t+1)(n+1)+k}+\alpha_{k}
\end{aligned}
$$

So the statement is true for $\mathrm{n}+1$. Thus it is true for every positive integer n .

For example, taking $t=3$ in (3), we write

$$
\begin{aligned}
& \alpha_{4 n}+\beta_{0}=\beta_{4 n}+\alpha_{0} \\
& \alpha_{4 n+1}+\beta_{1}=\beta_{4 n+1}+\alpha_{1} \\
& \alpha_{4 n+2}+\beta_{2}=\beta_{4 n+2}+\alpha_{2} \\
& \alpha_{4 n+3}+\beta_{3}=\beta_{4 n+3}+\alpha_{3}
\end{aligned}
$$

Theorem2. For every integer $n \geq 1$ and $0 \leq k \leq t-1$,

$$
\begin{aligned}
& \alpha_{t n+k}=\sum_{i=0}^{t n+k-1} \beta_{i}-\sum_{i=1}^{n-1} \alpha_{t i+k}-\sum_{i=0}^{k-1} \beta_{i}, \\
& \beta_{t n+k}=\sum_{i=0}^{t n+k-1} \alpha_{i}-\sum_{i=1}^{n-1} \beta_{t i+k}-\sum_{i=0}^{k-1} \alpha_{i} .
\end{aligned}
$$

Proof. The proof is obtained by induction method on n.
Theorem3. For every integer $n \geq 0$ and $t+1 \leq k \leq 2 t+1$,

$$
\begin{aligned}
& \alpha_{(t+1) n+k}=\sum_{i=k-t}^{(t+1)^{n+k-1}} \beta_{i}-\sum_{i=k-t}^{(t+1) n+k-t-1} \alpha_{i} \\
& \beta_{(t+1) n+k}=\sum_{i=k-t} \alpha_{i}-\sum_{i=k-t}^{(t+1)^{n+k-1}} \beta_{i}^{(t+1) n+k-t-1} .
\end{aligned}
$$

Proof. For $n=0$, by (2), we have

$$
\sum_{i=k-t}^{k-1} \beta_{i}-\sum_{i=k-t}^{k-t-1} \alpha_{i}=\beta_{k-t}+\beta_{k-t+1}+\ldots+\beta_{k-1}=\alpha_{k}
$$

Thus the result is true for $n=0$.
Assume that the result is true for some integer $n \geq 1$. From (2), then

$$
\begin{aligned}
& (t+1)(n+1)+k-1 \\
& \sum_{\mathrm{i}=\mathrm{k}-\mathrm{t}} \beta_{i}-\sum_{\mathrm{i}=\mathrm{k}-\mathrm{t}}^{(t+1)(n+1)+k-t-1} \alpha_{i}=\sum_{\mathrm{i}=\mathrm{k}-\mathrm{t}}^{(t+1) n+t+k} \beta_{i}-\sum_{\mathrm{i}=\mathrm{k}-\mathrm{t}}^{(t+1) n+k} \alpha_{i} \\
& =\beta_{(t+1) n+t+k}+\ldots+\beta_{(t+1) n+k}+\sum_{\mathrm{i}=\mathrm{k}-\mathrm{t}}^{(t+1) n+k-1} \beta_{i}-\sum_{\mathrm{i}=\mathrm{k}-\mathrm{t}}^{(t+1) n+k-t-1}{ }^{(n+1} \alpha_{i} \\
& -\alpha_{(t+1) n+k}-\ldots-\alpha_{(t+1) n+k-t} \\
& =\sum_{(t+1) n+k-1} \beta_{i}-\sum_{(t+1) n+k-t-1} \alpha_{i}+\beta_{(t+1) n+k}+\alpha_{(t+1)(n+1)+k} \\
& -\beta_{(t+1) n+k}-\alpha_{(t+1) n+k}
\end{aligned}
$$

From induction hypothesis, then

$$
\begin{aligned}
& (t+1)(n+1)+k-1 \\
& \sum_{\mathrm{i}=\mathrm{k}-\mathrm{t}} \beta_{i}-\sum_{\mathrm{i}=\mathrm{k}-\mathrm{t}}^{(t+1)(n+1)+k-t-1} \alpha_{i} \\
& =\beta_{(t+1) n+k}+\alpha_{(t+1)(n+1)+k}-\beta_{(t+1) n+k} \\
& =\alpha_{(t+1)(n+1)+k}
\end{aligned}
$$

Hence the result is true for all integers $n \geq 0$.

We express the terms of the sequences of t-order $\left\{\alpha_{i}\right\}_{i=0}^{\infty}$ and $\left\{\beta_{i}\right\}_{i=0}^{\infty}$, when $n \geq 0$, as follows:
$\alpha_{n}=a_{1} \gamma_{n}^{1}+a_{2} \gamma_{n}^{2}+\ldots+a_{2 t-1} \gamma_{n}^{2 t-1}+a_{2 t} \gamma_{n}^{2 t}$,
$\beta_{n}=a_{1} \delta_{n}^{1}+a_{2} \delta_{n}^{2}+\ldots+a_{2 t-1} \delta_{n}^{2 t-1}+a_{2 t} \delta_{n}^{2 t}$
Thus, the sequences $\left\{\gamma_{i}^{j}\right\}_{i=0}^{\infty}$ and $\left\{\delta_{i}^{j}\right\}_{i=0}^{\infty}(1 \leq j \leq 2 t)$ are obtained.

Now, we will show how these sequences are related to each other.

Theorem4. For every integer $n \geq 0$ and $1 \leq i \leq t$,
$\delta_{n}^{2 i-1}=\gamma_{n}^{2 i}, \delta_{n}^{2 i}=\gamma_{n}^{2 i-1}$.
Proof. For i=1, we prove $\delta_{n}^{1}=\gamma_{n}^{2}$ and $\delta_{n}^{2}=\gamma_{n}^{1}$.
We shall apply induction method on n.
For $\mathrm{n}=0$, since $\delta_{0}^{1}=0=\gamma_{0}^{2}, \delta_{0}^{2}=1=\gamma_{0}^{1}$, the result is true for $\mathrm{n}=0$.

Assume that the statement is true for all integers less than or equal to some integer $n \geq 1$. From (2) and induction hypothesis, then

$$
\begin{aligned}
& \delta_{n+1}^{1}=\gamma_{n}^{1}+\gamma_{n-1}^{1}+\ldots+\gamma_{n-t+1}^{1} \\
& =\delta_{n}^{2}+\delta_{n-1}^{2}+\ldots+\delta_{n-t+1}^{2}=\gamma_{n+1}^{2},
\end{aligned}
$$

and

$$
\begin{aligned}
& \delta_{n+1}^{2}=\gamma_{n}^{2}+\gamma_{n-1}^{2}+\ldots+\gamma_{n-t+1}^{2} \\
& =\delta_{n}^{1}+\delta_{n-1}^{1}+\ldots+\delta_{n-t+1}^{1}=\gamma_{n+1}^{1}
\end{aligned}
$$

Hence the desired statement is true for all integers $n \geq 0$.
Similarly, for $2 \leq i \leq t$, the proof is obtained.

Theorem 5. For every integer $n \geq 0$ and $2 \leq i \leq t$,
$\gamma_{n+1}^{1}+\delta_{n+1}^{1}=\gamma_{n}^{2 t-1}+\delta_{n}^{2 t-1}$
$\gamma_{n+1}^{2 i-1}+\delta_{n+1}^{2 i-1}=\left(\gamma_{n}^{2 t-1}+\delta_{n}^{2 t-1}\right)+\left(\gamma_{n}^{2 i-3}+\delta_{n}^{2 i-3}\right)$
Proof. The proof is obtained by induction method on n.
Let Ψ be the integer function defined for every $k \geq 0$ by
$\Psi((t+1) k+r)=\left\{\begin{array}{lc}-1, & \text { if } r=t, \\ 1, & \text { if } r=\left\lceil\frac{i}{2}\right\rceil-1, \\ 0, & \text { otherwise, },\end{array}\right.$
where $1 \leq i \leq 2 t$.
Obviously, taking $n=(t+1) k+r$ in (10), we write
$\Psi(n+1)=-\Psi(n)-\Psi(n-1)-\ldots-\Psi(n-t+1)$.
Now, we will give the some relations related to the sequences $\left\{\gamma_{i}^{j}\right\}_{i=0}^{\infty},\left\{\delta_{i}^{j}\right\}_{i=0}^{\infty}$ and function $\Psi(n)$.

Theorem 6. For every integer $n \geq 0$ and $1 \leq i \leq 2 t$,

$$
\begin{equation*}
\gamma_{n}^{i}=\delta_{n}^{i}-(-1)^{i} \Psi(n) \tag{11}
\end{equation*}
$$

Proof. Using the definition of the function Ψ, the proof is easily obtained by induction on n.

For example, for every integer $n \geq 0$, taking $t=3$ and $\mathrm{i}=3$ in Theorem 6, we obtain

$$
\gamma_{n}^{3}=\delta_{n}^{3}+\Psi(n)
$$

where Ψ is the integer function defined for every $k \geq 0$ as follows:

r	$\Psi(4 k+r)$
0	0
1	1
2	0
3	-1

Theorem 7. For every integer $n \geq 0$ and $1 \leq j \leq 2 t$,

$$
\begin{aligned}
\gamma_{n+t}^{j} & =\sum_{i=0}^{t-1} \gamma_{n+i}^{j}-(-1)^{j} \Psi(n+t) \\
\delta_{n+t}^{j} & =\sum_{i=0}^{t-1} \delta_{n+i}^{j}+(-1)^{j} \Psi(n+t)
\end{aligned}
$$

Proof. To prove this, we shall apply induction method on n.
Using (2) and (11), for $n=0$, we get
$\sum_{i=0}^{t-1} \gamma_{i}^{j}-(-1)^{j} \Psi(t)$
$=\gamma_{0}^{j}+\gamma_{1}^{j}+\ldots+\gamma_{t-1}^{j}-(-1)^{j} \Psi(t)$
$=\delta_{t}^{j}-(-1)^{j} \Psi(t)=\gamma_{t}^{j}$
Thus the result is true for $n=0$.
Assume that the assertion is true for some integer $n \geq 2$. Using (2), (11) and induction hypothesis, then
$\sum_{i=0}^{t-1} \gamma_{n+1+i}^{j}-(-1)^{j} \Psi(n+1+t)$
$=\gamma_{n+1}^{j}+\gamma_{n+2}^{j}+\ldots+\gamma_{n+t}^{j}-(-1)^{j} \Psi(n+1+t)$
$=\delta_{n+t+1}^{j}-(-1)^{j} \Psi(n+1+t)=\gamma_{n+t+1}^{j}$.
Hence the result is true for all integers $n \geq 0$.
Similarly, the proof of the other result is obtained.

From (4) and (5), we write
$G_{n}=\alpha_{n}+\beta_{n}$
$=a_{1} G_{n}^{1}+a_{2} G_{n}^{2}+\ldots+a_{t} G_{n}^{t}+\ldots+a_{2 t} G_{n}^{2 t}$,
and
$H_{n}=\alpha_{n}-\beta_{n}$
$=a_{1} H_{n}^{1}+a_{2} H_{n}^{2}+\ldots+a_{t} H_{n}^{t}+\ldots+a_{2 t} H_{n}^{2 t}$,
where $G_{n}^{i}=\gamma_{n}^{i}+\delta_{n}^{i}, H_{n}^{i}=\gamma_{n}^{i}-\delta_{n}^{i}, 1 \leq i \leq 2 t$.
Now, we define the integer function θ for every $k \geq 0$ as follows:
$\theta(n)=\theta((t+1) k+r)=\left\{\begin{array}{lc}-1, & \text { if } r=t, \\ 1, & \text { if } r=i-1, \\ 0, & \text { otherwise, }\end{array}\right.$
where $1 \leq i \leq t$.
Theorem8. For every integer $n \geq 0$ and $1 \leq i \leq t$,
$G_{n}^{2 i-1}=G_{n}^{2 i}=\sum_{k=0}^{i-1} G_{n-k}^{1}$,
$H_{n}^{2 i-1}=-H_{n}^{2 i}=\theta(n)$
Proof. Firstly, we prove equality in (15). From (9) and (8), then
$G_{n}^{2 i-1}=G_{n-1}^{2 t-1}+G_{n-1}^{2 i-3}$
$=G_{n-1}^{2 t-1}+G_{n-2}^{2 t-1}+G_{n-2}^{2 i-5}$
$=\ldots=G_{n-1}^{2 t-1}+G_{n-2}^{2 t-1}+\ldots+G_{n-i}^{2 t-1}$
$=G_{n}^{1}+G_{n-1}^{1}+\ldots+G_{n-i+1}^{1}=\sum_{k=0}^{i-1} G_{n-k}^{1}$.

Adding $\gamma_{n}^{2 i}=\delta_{n}^{2 i-1}$ and $\gamma_{n}^{2 i-1}=\delta_{n}^{2 i}$, we have
$G_{n}^{2 i-1}=G_{n}^{2 i}$.
Thus, by (17) and (18), the claimed result is obtained.
Secondly, we prove equality in (16).
By (2) and (13), we have
$H_{(t+1) n+k++1}=\alpha_{(t+1)_{n+k+t+1}}-\beta_{(t+1) n+k+t+1}$
$=\beta_{(t+1) n+k+t}-\alpha_{(t+1) n+k+1}+\beta_{(t+1) n+k+-1}$
$-\alpha_{(t+1) n+k+t-1}+\ldots+\beta_{(t+1) n+k+1}-\alpha_{(t+1) n+k+1}$
Using (2) and (3), for $0 \leq k \leq t$, we write
$H_{(t+1) n+k+t+1}$
$=\beta_{k+t}-\alpha_{k+t}+\beta_{k+t-1}-\alpha_{k+t-1}+\ldots+\beta_{k+1}-\alpha_{k+1}$
$=\alpha_{k+t+1}-\beta_{k+t+1}=\alpha_{k}-\beta_{k}=H_{k}$.
From definition of H_{k} in (13) and (2), we get
for $k=0, H_{0}=\alpha_{0}-\beta_{0}$,
for $k=1$,
$H_{1}=0\left(\alpha_{0}-\beta_{0}\right)+1\left(\alpha_{1}-\beta_{1}\right)$,
for $k=t-1$,
$H_{t-1}=0\left(\alpha_{0}-\beta_{0}\right)+\ldots+0\left(\alpha_{t-2}-\beta_{t-2}\right)$
$+1\left(\alpha_{t-1}-\beta_{t-1}\right)$,
for $k=t$,
$H_{t}=-\left(\alpha_{0}-\beta_{0}\right)-\left(\alpha_{1}-\beta_{1}\right)-\ldots-\left(\alpha_{t-1}-\beta_{t-1}\right)$.

Since
$H_{n}=a_{1} H_{n}^{1}+a_{2} H_{n}^{2}+\ldots+a_{t} H_{n}^{t}+\ldots+a_{2 t} H_{n}^{2 t}$,
the claimed result $H_{n}^{2 i-1}=-H_{n}^{2 i}$ is obtained..
Using $n=(t+1) k+r$ and the integer function θ, the desired result is proved.
$\gamma_{n}^{2 i-1}=\frac{G_{n}^{2 i-1}+H_{n}^{2 i-1}}{2}=\frac{\sum_{k=0}^{i-1} G_{n-k}^{1}+\theta(n)}{2}$,
$\gamma_{n}^{2 i}=\frac{G_{n}^{2 i}+H_{n}^{2 i}}{2}=\frac{\sum_{k=0}^{i-1} G_{n-k}^{1}-\theta(n)}{2}$,
and
$\delta_{n}^{2 i-1}=\frac{G_{n}^{2 i-1}-H_{n}^{2 i-1}}{2}=\frac{\sum_{k=0}^{i-1} G_{n-k}^{1}-\theta(n)}{2}$,
$\delta_{n}^{2 i}=\frac{G_{n}^{2 i}-H_{n}^{2 i}}{2}=\frac{\sum_{k=0}^{i-1} G_{n-k}^{1}+\theta(n)}{2}$.
Hence, from (4) and (19), then

$$
\begin{align*}
& \alpha_{n}=a_{1} \gamma_{n}^{1}+a_{2} \gamma_{n}^{2}+\ldots+a_{2 t-1} \gamma_{n}^{2 t-1}+a_{2 t} \gamma_{n}^{2 t} \\
& =a_{1} \frac{G_{n}^{1}+\theta(n)}{2}+a_{2} \frac{G_{n}^{1}-\theta(n)}{2} \\
& +\ldots+a_{2 t} \frac{\sum_{k=0}^{t-1} G_{n-k}^{1}-\theta(n)}{2} \\
& =\frac{1}{2}\left(a_{1} G_{n}^{1}+\ldots+a_{2 t} \sum_{k=0}^{t-1} G_{n-k}^{1}\right) \tag{20}\\
& +\frac{\theta(n)}{2}\left(a_{1}-a_{2}+\ldots-a_{2 t}\right) \\
& =\frac{1}{2} \sum_{j=0}^{t-1} \sum_{i=1}^{2(t-j)} a_{i+2 j} G_{n-j}^{1}+\frac{\theta(n)}{2} \sum_{i=1}^{t}\left(a_{2 i-1}+a_{2 i}\right)
\end{align*}
$$

Similarly, the result for β_{n} is obtained.
For example, taking $\mathrm{t}=2$ in (20), we write
$\alpha_{n}=\frac{1}{2}\left(\left(G_{n}^{1}+\theta(n)\right) a_{1}+\left(G_{n}^{1}-\theta(n)\right) a_{2}\right.$
$\left.+\left(G_{n}^{1}+G_{n-1}^{1}+\theta(n)\right) a_{3}+\left(G_{n}^{1}+G_{n-1}^{1}-\theta(n)\right) a_{4}\right)$.

From (12), then
$\alpha_{n}=\frac{1}{2}\left(\left(\gamma_{n}^{1}+\delta_{n}^{1}+\theta(n)\right) a_{1}+\left(\gamma_{n}^{1}+\delta_{n}^{1}-\theta(n)\right) a_{2}\right.$
$+\left(\gamma_{n}^{1}+\delta_{n}^{1}+\gamma_{n-1}^{1}+\delta_{n-1}^{1}+\theta(n)\right) a_{3}$
$\left.+\left(\gamma_{n}^{1}+\delta_{n}^{1}+\gamma_{n-1}^{1}+\delta_{n-1}^{1}-\theta(n)\right) a_{4}\right)$.
Since $\gamma_{n}^{1}+\delta_{n}^{1}=F_{n-1}$ in [1], then
$\alpha_{n}=\frac{1}{2}\left(\left(F_{n-1}+\theta(n)\right) a_{1}+\left(F_{n-1}-\theta(n)\right) a_{2}\right.$
$\left.+\left(F_{n}+\theta(n)\right) a_{3}+\left(F_{n}-\theta(n)\right) a_{4}\right)$,

By (15) and (16), we write
where F_{n} is n th Fibonacci number.

3. CONCLUSION

In this study, the sequences of t-order are defined and some properties are given. In future, we define the sequences of t order under different schemes and the results are obtained for these schemes.

4. ACKNOWLEDGMENTS

The authors would like to thank the referee for helpful comments.

5. REFERENCES

[1] K. Atanassov, L. Atanassov, and D. Sasselov (1983), A New Perspective to the Generalization of the Fibonacci Sequence, The Fibonacci Quarterly, Volume 23, Issue 1, Pages:21-28.
[2] K. Atanassov, On a second new generalization of the Fibonacci sequence (1986), The Fibonacci Quarterly, Volume 23, Issue 4, Pages:362-365.
[3] K. Atanassov, V. Atanassova, A. Shannon and J. Turner (2002), New Visual Perspectives on Fibonacci Numbers, New Jersey.
[4] J.Z. Lee and J.S. Lee (1987), Some Properties of the generalization of the Fibonacci sequence, The Fibonacci Quarterly, Volume 25, Issue 2, Pages:111-117.
[5] V.H. Badshah and I. Khan (2009), New generalization of the Fibonacci sequence in case of 4-order recurrence, International Journal of Theoretical and Applied Sciences, Volume 1, Issue 2, Pages:93-96.
[6] M. Singh, O. Sikhwal and S. Jain (2010), Coupled Fibonacci sequences of fifth order and some properties, Int. Journal of Math. Analysis, Volume 4, Issue 25, Pages:1247-1254.
[7] K. Atanassov (1989), on a generalization of the Fibonacci sequence in the case of three sequences, The Fibonacci Quarterly, Volume 27, Pages:7-10.
[8] B. Singh and O. Sikhwal (2010), Fibonacci-triple sequences and some fundamental properties, Tamkang Journal of Mathematics, Volume 41, Issue 4, Pages:325333.

