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ABSTRACT 

In this paper, we consider two sequences of t-order  
0ii

and  
0ii  

defined by 10 a , 20 a , 31 a ,

41 a ,... ,121   tt a  tt a21   
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where 1a , 2a ,…, 12 ta , ta2 are fixed real numbers and t

ℤ⁺\{1}. Furthermore, some interesting properties of these 

sequences are given 
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1. INTRODUCTION 
In [1], the authors gave some identities involving the terms of 

two sequences  
0ii  and  

0ii  defined by 

,,,, 1100 dcba    

)1(,0,, 1212   nnnnnnn   

where a, b, c, and d are fixed real numbers. 

For example, for ,0n  the authors obtained the following 

identities: 
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In [4], the authors considered the generalized recursive form 

of (1). In [2, 3, 7], the authors described new ideas for 3-

Fibonacci sequences. In [8], the authors showed fundamental 

properties of 3-Fibonacci sequences. In [5], the authors gave 

some properties of two sequences  
0ii  and  

0ii  

which have given initial values a, c, e, g and b, d, f, h ( which 

are real numbers), and called 4-order sequences. 

In [5], the authors obtained some interesting results for  two 

sequences  
0ii  and  

0ii  which have given initial 

values a, c, e, g, i and b, d, f, h, j ( which are real numbers), 

and called 5-order sequences. 

In this paper, we consider two sequences of t-order  
0ii  

and  
0ii  defined by 10 a , 20 a , 31 a , 

41 a ,..., 121   tt a , tt a2  
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where 1a , 2a ,…, 12 ta , ta2 are fixed real numbers. 

Furthermore, some interesting properties of these sequences 

are given. 

Taking t=2  in (2), the sequences  
0ii  and  

0ii  in  

(1) are obtained: 

 

Table 1. The first nine terms of the sequences of 2-order 

are shown in table below 

n 
n  n  

0 a b 

1 c d 

2 b+d a+c 

3 a+c+d b+c+d 

4 a+b+2c+d a+b+c+2d 

5 a+2b+2c+3d 2a+b+3c+2d 

6 3a+2b+4c+4d 2a+3b+4c+4d 

7 4a+4b+7c+6d 4a+4b+6c+7d 

8 6a+7b+10c+11d 7a+6b+11c+10d 

 

2. SOME PROPERTIES RELATED TO 

THE SEQUENCES OF t-ORDER 
In this section, we will give the sums of terms of the 

sequences of t-order and some interesting results. 

Theorem1.  For every integer 0n  and tk 0 , 

kkntkknt    )1()1( .                                 (3) 

Proof. Since kkkk   , the given statement is 

clearly true when n=0. 

Assume that the result is true for some integer 1n . From 

(2) and induction hypothesis, then 
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So the statement is true for n+1. Thus it is true for every 

positive integer n.                                                         □ 

For example, taking t=3 in (3), we write 

.

,

,

,

334334

224224

114114

0404























nn

nn

nn

nn

 

Theorem2. For every integer 1n  and 10  tk , 
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Proof. The proof is obtained by induction method on n . 

Theorem3. For every integer 0n  and 

121  tkt , 
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Proof. For 0n , by (2), we have 
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Thus the result is true for 0n . 

Assume that the result is true for some integer 1n . From 

(2), then 

         

   

   

   

   

    

    .

...

...

11

111

11

t-ki

11

t-ki

11

11

t-ki

11

t-ki

11

1

t-ki

1

t-ki

111

t-ki

111

t-ki

kntknt

kntknt

tknt

i

knt

i

tkntknt

tknt

i

knt

ikntktnt

knt

i

ktnt

i

tknt

i

knt

i



































































 

From induction hypothesis, then 
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Hence the result is true for all integers .0n

□
 

We express the terms of the sequences of t-order  
0ii  

and  
0ii  , when 0n ,  as follows: 
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Thus, the sequences  
0i

j

i  and  
0i

j

i  )21( tj   

are obtained.  

Now, we will show how these sequences are related to each 

other. 

Theorem4. For every integer 0n  and ti 1 , 
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Proof. For i=1, we prove 
21

nn    and
12

nn   .  

We shall apply induction method on n . 

For n=0,  since
1

0
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0
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0 1,0   , the result is 

true for n=0. 

Assume that the statement is true for all integers less than or 

equal to some integer 1n . From (2) and induction 

hypothesis, then 
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Hence the desired statement is true for all integers 0n . 

Similarly, for ti 2 , the proof is obtained. 

□

 

Theorem 5. For every integer 0n  and ti 2 , 
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Proof. The proof is obtained by induction method on n . 

Let   be the integer function defined for every 0k  by 
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where ti 21  . 

Obviously, taking rktn  )1(  in )10( , we write 

).1(...)1()()1(  tnnnn  
Now, we will give the some relations related to the sequences 
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Theorem 6. For every integer 0n  and ti 21  , 
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Proof. Using the definition of the function Ψ, the proof is 

easily obtained by induction on n . 

For example, for every integer 0n , taking t=3 and i=3  in 

Theorem 6, we obtain 

)(33 nnn   , 

where Ψ is the integer function defined for every 0k  as 

follows: 
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Theorem 7.  For every integer 0n  and tj 21  , 
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Proof. To prove this, we shall apply induction method on n . 

Using (2) and (11), for n=0, we get 
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Thus the result is true for 0n . 

Assume that the assertion is true for some integer 2n . 

Using (2), (11) and induction hypothesis, then 
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Hence the result is true for all integers 0n . 

Similarly, the proof of the other result is obtained.

 □

 

From (4) and (5), we write 
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Now, we define the integer function   for every 0k  as 

follows: 
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Theorem8. For every integer 0n  and ti 1 , 
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Proof. Firstly, we prove equality in (15). From (9) and (8), 

then 
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Thus,by (17) and (18), the claimed result is obtained. 

Secondly, we prove equality in )16( . 

By (2) and (13), we have 
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Using (2) and (3), for tk 0 , we write 

.

...

11

1111

1)1(

kkktktk

kktktktktk

tknt

H

H













  

From definition of kH  in (13) and (2), we get 

for 0k , ,000  H  

for 1k , 

 ),(1)(0 11001  H
 

… 

for 1 tk ,

),(1

)(0...)(0

11

22001









tt

tttH





 

for tk  ,

).(...)()( 111100   tttH 
 

Since 

,...... 2

2

2

2

1

1

t

nt

t

ntnnn HaHaHaHaH   

the claimed result 
i

n

i

n HH 212 
 is obtained.. 

Using  rktn  )1(  and the integer function  , the 

desired result is proved.

                                                □ 

By (15) and (16), we write
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Hence, from (4)  and (19), then 
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Similarly, the result for n  is obtained. 

For example, taking t=2 in (20), we write 
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where nF  is n th Fibonacci number. 

3. CONCLUSION 
In this study, the sequences of t-order are defined and some 

properties are given. In future, we define the sequences of t-

order under different schemes and the results are obtained for 

these schemes. 
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