
International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 5, January 2014

1

Estimating Page Importance based on Page Accessing

Frequency

Komal Sachdeva
Assistant Professor

Manav Rachna College of
Engineering, Faridabad, India

 Ashutosh Dixit, Ph.D

Associate Professor

YMCA University of Science
and Technology, Faridabad,

India

ABSTRACT
With the vast growth of the Internet, many web pages are

available online. Search engines use a component called as

web crawlers for collecting these web pages from the web for

storage and indexing. Many web pages are autonomous and

are updated independent of the users. .As the web pages are

updated autonomously; users do not come to know of how

often the sources change. An incremental crawler visits the

web repeatedly after a specific interval of time for the

updation of its collection. Users are benefited by knowing the

page importance based upon the page accessing frequency.

This paper finds out the page importance based on page

accessing frequency and also architecture for the same is also

proposed.

General Terms

Page Importance Based On Page Accessing Frequency.

Keywords
Search Engine, Web Crawler, Page access Frequency.

1. INTRODUCTION
The World Wide Web [2, 3, 12] is a system that contains

hypertext documents which are linked to each other; world

wide web is accessed by web browser from web servers.

These hypertext documents can contain text, images, audio

and video data. Hyperlinks allow one to move to the other

information resources from the recent one and also come

back. In this way information is explored and creates a rich set

of world wide information.

The web is a large repository of text documents, multimedia,

images and number of other information. Because on www,

large no. of web pages is available, search engine is dependent

upon web crawlers for gathering the required information on

the web.

A web crawler [13, 14] is a computer program that browses

the World Wide Web in a methodical, automated manner or in

an orderly fashion. A crawler starts off by placing an initial

set of URLs, in a queue, where all URLs to be retrieved are

kept and prioritized. From this queue, the crawler extracts a

URL, downloads the page, extracts URLs from the

downloaded pages, and places the new URLs in the queue.

This process is repeated and the collected pages are later used

by other applications, such as a Web search engine.

 Figure1. Architecture of search engine

In Figure 1, the search engine accepts the query from the user.

An interface is provided by the search engine to the user so

that users submit the queries. And it contains the mechanism

for serving these queries. This is the only part which is visible

to the end-users.

The database stores the data crawled by the web crawlers. The

search engine queries the database so as to answer any user’s

request. The database also feeds the downloader with the

URLs to be downloaded .The processor processes the URLs it

takes from the downloader and updates the database with the

fresh information (URLs).

The basic algorithm for the Web Crawler is given below:

1. Read a URL from the set of seed URLs.

2. Find out the IP address for the host name.

3. Download the Robot.txt file that carries

downloading permissions and also identifies the

files to be excluded by the crawler.

4. Find out the protocol of underlying host like http,

ftp, gopher etc.

5. Based on the protocol of the host, download the

document.

6. Identify the document format like doc, html, or PDF

etc.

7. Check whether the document has previously been

downloaded or not.

8. If the document is fresh one

Then Read it and extracts the links.

9. Else

Continue.

10. Convert the URL links into their absolute IP

equivalents.

11. Add the URLs to set of seed URLs.

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 5, January 2014

2

2. RELATED WORK
The incremental crawler selectively and incrementally updates

its index and/or local collection of web pages. Instead of

periodically refreshing the collection in batch mode, the

incremental crawlers improves the “freshness” of the

collection significantly and brings in new pages in a more

appropriate manner.

Figure2. Architecture of Incremental Crawler

 Figure 2 represents the architecture of Incremental Crawler.

 The URLs that are accessed or to be accessed are contained

by the All_URLs module. The Ranking module choses the

URLs in the Coll_URLs. The Local_Collection downloads the

pages related to URLs in the Coll_URLs. The Ranking

Module continuously scans the All_URLs and the

Local_collection and gives proper ranks to the web pages

accordingly. When the Ranking Module finds that the page

present in the Coll_URLs are not the updated pages, then the

page in the Coll_URLs are replaced by the updated pages.

The Update Module takes the URLs from the Coll_URls,

downloads the pages related to the URL, if the page is

changed, then it will be updated in the Local_collection. The

Crawler Module has to crawl the web page and it updates or

saves the web page into the Local_collection according to the

request of Update Module. It also extracts all the links (URLs)

on the crawled page and adds those links in All_URLs

module.

While designing the incremental crawler [2, 6] two issues

must be addressed:-

a) Maintain the local collection with fresh pages:

Freshness of web pages in local collection is based on the

strategy that used for it, that why the crawler should

apply the best policies to maintain the local collection

fresh.

In order to maintain the freshness of local collection,

Revisit Frequency Calculator is used to find the

appropriate revisit frequency of the crawling so that

crawler can update its local collection with fresh

documents.

b) Improve quality by keeping relevant pages in the

local collection:

The web crawler should improve the quality of the local

collection by replacing less relevant pages with more

relevant pages. It is essential because pages are

continuously created and destroyed, and it is also

possible that some of the pages that were created may be

more relevant than existing pages in the local collection.

So, the crawler needs to replace less relevant existing

pages with more relevant web pages.

Another reason is that, the relevancy of existing pages

also changes over time. Thus, when some existing pages

become less relevant than earlier ignored pages, then the

web crawler should replace less relevant existing pages

with earlier ignored new web pages.

Many earlier approaches like Page Rank calculate page

importance through the use of the hyperlink graph of the Web.

Recently, people realized that the hyperlink graph is

incomplete and inaccurate as a data source for determining

page importance.

In approach, [1] it proposed a way to calculate page rank in

incremental crawler .According to it, the hit counter stores the

number of times the page is visited. And there must be some

date on which that page is added on the web.

For estimating the page importance of that page it divide the

hit counter by the total number of days for that page on the

web. This will evaluate the access ratio of that page for the

web.

Another approach, [3] it solves the problem of searching new

information from the web in incremental web search to

evaluate ranking of changed web pages. For solving this

problem it uses an integrated ranking framework by

combining three metrics. The three metrics are Popularity

Ranking, Content-based Ranking and Evolution Ranking

which produce good Ranking for the changed web Pages.

3. PROPOSED WORK
There are three important characteristics of the web page that

generate a scenario in which the web crawling is very

difficult:

i. Large Volume of web pages.

ii. Rate of change on web pages.

iii. Finding the relevant pages on the web.

A large volume of web pages means that the web crawler can

only download a fractional of the web pages and hence it is

very essential that the crawler should be intelligent enough to

prioritize download.

Whereas rate of change on web pages implies that web pages

on the internet change very frequently, as a result, by the time

the crawler is downloading the last page from a site, the web

page may change or a new page has been placed/ updated on

the website.

Relevant pages of the web represents the ’value’ of an

individual page on the web, is a key factor for web search,

Various search engine’s components like, the crawler,

indexer, and ranker are usually guided by this measure.

Because the scale of the web is extremely large, and the web

evolves dynamically, accurately calculating the importance

scores of web pages becomes critical, and also poses a great

challenge to search engines.

The proposed architecture in Figure 3 tries to solve all these

problems

The architecture is composed of the following Modules/Data

Structure:

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 5, January 2014

3

Figure 3. Block Diagram of Page Relevant Incremental Crawler

The block diagram of Page Relevant Incremental Crawler

consists of the various components:

 URL_IP Queue: A set of seed URL-IP pairs.

 Resolved URL_IP Queue: Set of URLs which

have been resolved for their IP addresses.

 Data Base: It contains a database of downloaded

documents and their URL-IP pairs. Priority

queue is used to store URL_IP pairs.

 Refresh Time Calculator: This component uses

the formula for computing the next refresh time.

 Dispatcher: Dispatcher waits for the fetch URL

signal and upon receiving this signal, it fetches

an URL from the URL Buffer so that DSIWC in

turn can download the corresponding web page.

If dispatcher finds the URL Buffer empty during

this operation, then it sends Buffer Empty signal

to the Update Module so that it can add more

URLs in the URL Buffer.

 DNS Resolver: The DNS revolver uses the

services of internet for translating the URLs to

their corresponding IP addresses and stores them

into the resolved URL_IP queue. The new URLs

with the IP addresses are stored in the buffer. A

signal initialize is sent to the Field initializer.

 Buffer: It stores the new URLs with their

corresponding IP addresses.

 Fields Initializer: It initializes the URL_fields in

URL record for which object structure

 Doc ID field is the unique identifier for each

document.

 Refresh Time: field stores the duration of the

document to be refreshed. After initializing by

some default value, this field is dynamically

updated by refresh time calculator module.

 LastCrawlTime: field stores the date Time

stamp of last time page was crawled.

 Status: field represent whether URL is present in

URL-IP queue or not.

If Status is’1’, the dispatcher does not schedule the URL for

Crawling.

If Status is’0’, the dispatcher schedules the URL for

Crawling.

 P1 and Pg: are the boundary conditions i.e.

upper and lower threshold values of Pc

respectively.

 The document pointer: field contains the

pointer to the original document.

 FingerPrintKey: fields store the finger print key

value of the crawled page.

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 5, January 2014

4

The proposed algorithms for the various modules of the Page

Relevant Incremental Crawler are described below:

1. Crawler Module:

The crawling subsystem consists of following functional

components:

Crawl Manager: It creates multiple worker threads named as

Crawl Workers.

Sets of resolved URLs from Resolved URL Queue are taken

and each worker is given to domain separator who then

separate the URLs based on their domain of nearest web

server and each worker is given a domain specific location

aware set of URLs. It sends a signal something to update to

refresh time calculator module.

2. Crawl Worker Module:

They are managed by Crawl Manager which supplies each

crawl worker a list of target web site and monitors them .After

downloading the document from the server it sends the signals

request processed to crawl manager.

3. Domain Separator Module:

The domain separator module takes the URL from

resolved priority queue and separates them in different

sets based on their domains. The algorithm for this is

as follows:

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 5, January 2014

5

4. Save/Update Module:

Save/Update module updates the database in search /insert

method by replacing the less important pages with the more

important page Update module one by one fetches the

URLs and their updated link information (with update

revisit frequencies) from the database..

The Save/Update Module makes use of various functions as

mentioned below:

 Initialize (): To initialize all the variables,

Initialize () is used.

 Update (): To check whether the page has been

refreshed or not.

 Replace (): If the page has been updated, then

Replace() replaces the less important pages with

the more important pages in the database.

 Estimate_Freq (), New_maxf: To estimate the

frequency and based on that frequency, to find

out the max. Frequency.

3.a. Initialize Function: The Algorithm for Initialize

Function is as follows;

 Replace (): If the page has been updated, then Replace() replaces the less important pages with the more important pages in the da

5. Dispatcher:

It waits for the fetch URL signal from Update module and

upon receiving this signal; it fetches an URL from the URL

Buffer so that crawler can download the corresponding web

pages. The algorithm for Dispatcher is as follows:

 Dispatcher ()

 {

 Wait (fetch URL)

 While (not (empty URL Buffer))

 {

 Fetch URL from Buffer;

 Forward the URL to the crawler to download all the

web pages related to that URL.

6. URL Buffer:

It stores all the updated URLs which are need to be recrawled

by the crawler. The URL Buffer is feeding by the Update

Module.

7. Rank Updater:

Rank Updater checks the repository after a particular interval

of time. It calculates the difference between the no. of user

accesses of before updation which is denoted by a1 and after

updation, denoted by a2 of the URLs. And if the difference

between a1 and a2 is equal to the constant value that is

decided by the administrator then it will be add the threshold

value to the no. of user accesses of after updation of those

URLs. Then rank updater updates the relevancy of the web

pages according to it. The algorithm for the Rank Updater is

as follows.

 Rank Updater ()

 {

 While (URLs) // accept URLs from Repository

 {

 Find the no_of _accesses a1 // before updation

 Find the no_of _accesses a2 // after updation

 Diff = a1 - a2

 If Diff > τ // τ equals to constant value

 Then

 Add threshold value to the no_of_accesses of after

updation of the URL.

8. Search Engine:

It is used to the proposed architecture for calculating the no.

of user accesses. The no_of_accesses is calculated as follows:

 Init () /* initialize variables */

 N = 0; /* total number of accesses */

 After first search

 N = N + 1;

9. Repository:

The Repository stores all the web pages and related URLs that

crawled by the crawler.

4. CONCLUSION & FUTURE WORK
The proposed architecture helps in maintaining the freshness

of the repository and provides relevant web pages to the users.

The calculation of the no. of user accesses helps in finding the

importance of the web pages by efficiently managing the

status checker so that the relevant pages are provided to the

users. Moreover, the architecture is suitable for the

applications where relevant search have been required.

As the future work, the limitation of the current work that the

crawler crawl the web pages even after the administrator stops

the crawling process is taken into account. Future work

includes applying a technique to overcome this problem.

5. REFERENCES
[1] Sakshi Goel, Anjana, Akhil Kaushik, Kirtika Goel, “A

Novel Approach for Page Rank in Incremental Crawler”,

IJCST Vol. 3, Issue 1, Jan. - March 2012.

[2] Niraj Singhal, Ashutosh Dixit, Dr. A. K. Sharma,

“Design of a Priority Based Frequency Regulated

Incremental Crawler”, 2010 International Journal of

Computer Applications (0975 – 8887) Volume 1 – No. 1.

[3] Arvind Kumar, Km. Pooja, “An effective method for

ranking of changed web pages in incremental crawler”,

International Journal of Computer Applications (0975 –

8887) Volume 8– No.7, October 2010.

[4] Rosy Madaan, Ashutosh Dixit, A.K. Sharma, Komal

Kumar Bhatia, “A Framework for Incremental Hidden

Web Crawler”, International Journal of Computer

Science and Engineering (IJCSNE), Vol. 02, No. 03,

2010.

[5] Ravita Chahar, Komal Hooda, Annu Dhankhar,

“Management of Volatile Information In Incremental

Web Crawler”, IJCSI International Journal of Computer

Science Issues, Vol. 4, No. 1, 2009(ISSN (Online): 1694-

0784, ISSN (Print): 1694-0814).

[6] Ashutosh Dixit, Harish Kumar and A.K Sharma, “Self

Adjusting Refresh Time Based Architecture For

Incremental Web Crawler”, International Journal of

Computer Science and Network Security (IJCSNS), Vol

8, No12, Dec 2008.

[7] M.P.S.Bhatia, Divya Gupta, “Discussion on Web

Crawlers of Search Engine”. Proceedings of 2nd

National Conference on Challenges & Opportunities in

Information Technology (COIT-2008) RIMT-IET,

Mandi Gobindgarh. March 29, 2008.

[8] Cho, J. and Roy, “Impact of search engines on page

popularity”. In Proc.13th International World Wide Web

Conference, 2004.

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 5, January 2014

6

[9] Arasu, J. Cho, H. Garcia-Molina, A. Paepcke, S.

Raghavan, “Searching the Web”, ACM Transactions on

Internet Technology, Vol. 1, Num. 1, August 2001,

pp.2-43.

[10] Mark Najork, Allan Heydon, “High- Performance Web

Crawling”, September 2001.

[11] B. Mobasher, H. Dai, T. Luo, and M. Nakagawa.

Effective personalization based on association rule

discovery from web usage data. In Proceedings of the 3rd

ACM Workhop on Web Information and Data

Management, pages 9–15, November 2001. Atlanta,

USA.

[12] Arvind Arasu, Junghoo Cho, Hector Garcia-Molina,

Andreas Paepcke, and Sriram Raghavan, “Searching the

Web”, ACM Transactions on Internet Technology

(TOIT), 1(1):2–43, August 2001.

[13] Junghoo Cho and Hector Garcia-Molina, “Estimating

frequency of change”, 2000, Submitted to VLDB 2000,

Research track.

[14] Junghoo Cho and Hector Garcia-Molina. 2000a. “The

evolution of the web and implications for an incremental

crawler”., In Proceedings of the 26th International

Conference on Very Large Databases.

[15] Brian E. Brewington and George Cybenko. “How

dynamic is the web.” In Proceedings of the Ninth

International World-Wide Web Conference, Amsterdam,

Netherlands, May 2000.

[16] Henzinger M. R. Link analysis in web information

retrieval. IEEE Data Engineering Bulletin, 23(3):3-8,

September 2000.

[17] Jenny Edwards, Kevin McCurley, John Tomlin, “An

Adaptive Model for Optimizing Performance of an

Incremental Web Crawler”.

[18] Brin, Sergey and Page Lawrence, “The anatomy of a

large-scale hypertextual Web search engine”. Computer

Networks and ISDN Systems, April 1998.

[19] Mike, Burner, “Crawling towards Eternity : Building an

archive of the World Wide Web”, Web Techniques

Magazine, 2(5), May 1997.

IJCATM : www.ijcaonline.org

