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ABSTRACT 
This paper deals with the computation of the eigenvalues of a 

three-parameter Sturm-Liouville problem in the form of 

ordinary differential equation using Rayleigh-Ritz Method, a 

method which is based on the principle of variational 

methods. This method has been effective in computing the 

eigenvalues of self-adjoint problems.  The resulting equations 

obtained in applying Rayleigh-Ritz method on the problem 

are solved to find the rough estimates of the eigenvalues of 

the problem.  Rough estimates are used as starting 

approximations in the corresponding shooting method to 

obtain their actual values. 
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1. INTRODUCTION 
The finite element method (FEM) is one of the most powerful 

technique for numerical treatment of differential equations. 

FEM is widely used in almost every field of engineering and 

applied sciences such as structural mechanics, fluid 

mechanics, electromagnetism etc. The FEM is based on the 

classical variational method combined with chosen analytical 

functions. This method is known as Rayleigh-Ritz method. 

Multiparameter eigenvalue problems (MPEVP’s) are 

generalization of one-parameter eigenvalue problems and 

arise when the method of separation of variables is applied to 

certain boundary value problems associated with partial 

differential equations. 

One-parameter problems are much developed both 

theoretically and numerically. Extensive theoretical  

development of multiparameter eigenvalue problems found in 

[1], [2], [3], [4].  Also, several authors in their works [5], [6], 

[7], [8], [9], [10], [11] have dealt with numerical analysis of 

two-parameter eigenvalue problems. But theoretical and 

numerical investigation in three-parameter eigenvalue 

problems are still very few. In this paper, the three-parameter 

problem considered for numerical treatment is in the form of a 

linear ordinary differential equation given by 

                                                      (1.1) 

subject to the four point boundary conditions 

                                                             (1.2) 

where        ,      and      are given real valued 

continuous functions of the independent variable        . 
The values of the parameters  ,   and   which are called 

eigenvalues for the problem, for which there is a non-trivial 

solution     , called eigenfunction of (1.1)-(1.2).  Accounts 

of existence of the eigenvalues for two-parameter problems 

can be found in [12]. The points at which      vanishes in 

     ,       and       are called zeros of the eigenfunction 

    .   The function is said to be oscillatory in      ,       
and      , if there exists at least one zero in the interval.     

Due to the boundary conditions imposed on the problem, 

always it is ensured of eigenfunctions which are at best 

oscillatory in this case [13]. 

In this paper a brief account of the method used is given. The 

starting values of the eigenvalues         are obtained by 

solving the algebraic equations obtained on application of 

Rayleigh-Ritz method.  Using these starting values in the 

corresponding shooting method of the problem, actual values 

are obtained.   The shooting  method requires good starting 

values because the convergence and its rapidity both depend 

on starting values. Shooting method of [10] is extended to 

treat the problem (1.1)-(1.2) numerically in the present case.        

2. VARIATIONAL METHOD 
The problem in which it is often possible to replace the 

problem of integrating a differential equation by the 

equivalent problem of seeking a function that gives a 

minimum value of some integral are called variational 

problem.  The method that allows  to  reduce the problem of 

integrating a differential equation to the equivalent variational 

problem are usually called variational methods. 

The variational methods are approximate methods based on 

the criterion of the calculus of variations. The method is 

concerned with seeking the extremum (minima or maxima) of 

an integral expression involving a function of functions or 

functional. In the calculus of  variations, one is interested in 

finding the necessary condition for a functional to achieve a 

stationary value.  This   necessary  condition on the functional 

is generally in the form of differential equation with boundary 

conditions on the required function. The function for which 

the integral attains its minimum value is the solution of the 

given differential equation.  

Consider the problem of finding a function      such that the 

function[14], 

                                                  
 

 
                        (2.1) 

subject to the boundary conditions, 

                                         ,                                   (2.2)                      

takes a maximum or minimum value. The integrand is a 

function of  ,   and its derivative   .      is called functional. 

The problem here is finding an extremizing function      for 

which the functional      has an   extremum.  

Let   is a given function possessing continuous partial 

derivatives with respect to each of its arguments. Also let 

     is continuous and has a continuous derivative       in 

the interval        . 

To obtain a necessary condition for the existence of a 

maximum or minimum value of  (2.1), here it is assumed that  



International Journal of Computer Applications (0975 – 8887)  

Volume 86 – No 3, January 2014 

39 

     is a function for which the integral (2.1) will be greater 

or less than for any other function with continuous derivative 

in         and prescribed values (2.2). 

Any function       in the neighborhood of      may be 

written as 

                                                                           (2.3) 

where   is an arbitrary parameter and      is an arbitrary 

function with continuous derivatives in         and 

                                   ,                                      (2.4) 

Now, on replacing      in (2.1) by      , the equation can be 

obtained as, 

                                             
 

 
                (2.5)  

where      denotes the new integral value. The functional 

     is a function of   and attains a maximum and minimum 

value at    . Hence, the first derivative of      with respect 

to   becomes zero at    , such that  

                        
     

  
   

  

  
    

  

   
   

 

 
                     (2.6)  

Integrating by parts the second term on the right-hand side of 

(2.6) and using (2.4), the equation can be obtained as                               

                  
     

  
       

  

  
 

 

  
 

  

         
 

 
              (2.7) 

Lemma 2.1 If in the integral 

                                         
 

 
                                         (2.8) 

the function      is continuous between     and     and 

if the integral vanishes for all function      which are 

continuously differentiable and vanishes at   and  , then      

must be identically zero in the interval. 

Using this lemma from (2.7), the result that if      maximizes 

or minimizes the integral (2.1), it must satisfy the condition  

                                   
  

  
 

 

  
 
  

  
                                (2.9)  

The Eq. (2.9) is called the Euler equation. 

3. RAYLEIGH-RITZ METHOD 
Variational methods can be classified as direct and indirect 

methods. The classical Rayleigh-Ritz method belongs to the 

direct variational method as it is the direct application of 

variational principle based on the minimization of a given 

functional. The method of Weighted Residuals fall under the 

indirect variational methods, namely, collocation, sub-

domain, Galerkin and least square methods etc. 

The method was first presented by Rayleigh in 1877 and 

extended by Ritz in 1909 as found in [15]. This method can be 

applied to only self-adjoint problems. 

In this method, first a linearly independent set of functions 

called basis functions are selected and then constructed an 

approximate solution to the Eq. (2.1), satisfying some 

prescribed boundary conditions. The approximate solution is 

in the form 

                                         
                 (3.1)  

where    are arbitrary parameters and       and       are 

prescribed functions satisfying inhomogeneous and 

homogeneous boundary conditions respectively of the given 

boundary value problem. Since the essential boundary 

conditions on both ends are homogeneous,     . 

Substituting (3.1) in (2.1), the integral can be obtained as 

                                                                         (3.2) 

The minimum of this function is obtained when its   partial 

derivatives with respect to coefficients are zero : 

          
     

   
   

  

   
  

 

 

 
 

  

  
     ,                 (3.3) 

The system (3.3) obtained above is a set of   simultaneous 

equations. The system of linear or non-linear algebraic 

equations obtained are solved to get the parameters   , which 

are   finally substituted into the approximate solution of the 

Eq. (3.1). 

If    possess continuous second order derivatives, then by 

integrating by parts the first term in the integrand of (3.3) 

gives, 

                   
 

  
 

  

   

 

 
  

  

  
     ,                  (3.4) 

For the differential equation 

                                
 

  
                                       (3.5) 

with the boundary conditions (2.2), it can be verified that with  

                                                                 (3.6) 

the Euler equation (2.9) is identical with the given differential 

equation (3.5). 

4. SELF-ADJOINT OPERATOR 
An operator   is said to be self-adjoint if     . Sturm-

Liouville operator is a well known self-adjoint operator. 

Using differential operator   the general homogeneous linear 

ODE of order   can be written as, 

                                              
                         (4.1) 

where   denote the differential operator. Further, if the 

operator   is self-adjoint then, 

                                             
                   (4.2) 

The problem considered in (1.1) can be written as, 

 

    
 

  
  

  

  
     

                  
   

   
 

  

  

  

  
    

                                             ,   
  

  
      (4.3)  

 

where        and                   . 

The Eq. (1.1) is a special case of Sturm-Liouville problem. 
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                                                                                (4.4) 

 

Since,     , hence the problem is a self-adjoint one.  The 

importance of the self-adjointness lies in the result that if a 

differential operator is self-adjoint then all  eigenvalues of the 

operator are real and eigenfunctions are orthogonal. 

 

5. ILLUSTRATIVE EXAMPLE 
The numerical example of the problem (1.1)-(1.2) considered 

here is a boundary value problem in the form of generalised 

Mathieu’s equation found in [16] :  

                                                  (5.1) 

subject to the boundary conditions 

                                                             (5.2) 

 

The integrand corresponding to the given differential equation 

(5.1) is  

                                              (5.3) 

Since with           defined by (5.3) the Euler equation 

(2.9) is identical with the given differential equation (5.1). 

Using (2.1) and (5.3), the three variational problems can be 

obtained as: 

                     
 

 

               

                                                                                 (5.4)    

 

                     
 

 

               

                                                                                 (5.5) 

 

                     
 

 

            

                                                                               (5.6) 

 

where      satisfies the boundary conditions (5.2). 

The approximate solution of (5.1) satisfying the boundary 

condition (5.2) is chosen as, 

                           
         

           
                                         (5.7) 

 

Following values are now easy derivations : 

                                     

                                            (5.8) 

 

         
                           

              
                      

                     
                  

                               
       

                                    
   

                                   

       
                               

                                                                                       (5.9) 

 

         
                               

           
                          

                      
              

                                   

                                     

                                   

                                      

                                                        

                                                                                   (5.10) 

Therefore, the functional       in              in       and 

      in       become 

 

                                   

          
                               

          
                               

          
                               

                                          

                                          

                                                                              (5.11)       

                                                                                    

                                   

          
                               

          
                               

           
                               

                                          

                                           

                                                                              (5.12) 

                                                                         

                                   

          
                               

           
                        

                      
                      

                                   

                                   

                                                               

(5.13) 

 

For minimization of       ,       and      , differentiaing 

(5.11), (5.12) and (5.13) with respect to   ,    and    

following equations are obtained. 

 

   

   
                              

                                         

                                        

                                                                           (5.14) 
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                                                                           (5.15) 

 

   

   
                              

                                        

                                        

                                                                           (5.16) 

 

   

   
                              

                                        

                                        

                                                                           (5.17) 

 

   

   
                              

                                        

                                        

                                                                          (5.18) 

 

 
   

   
                              

                                        

                                         

                                                                          (5.19) 

 

 
   

   
                              

                                         

                                          

                                                                          (5.20)  

                   

   

   
                              

                                          

                                  

                                                                                   

(5.21) 

              

   

   
                               

            

                                

                                   

                                                           (5.22)    

       

Eliminating   ,    and    from the above equations taking 

three at a time different algebraic equations can be obtained. 

Solving those algebraic equations [17, 18], different sets of 

starting values of the eigenvalues         of the problem 

(5.1)-(5.2) are obtained as shown in Table - 1 below : 

  

 

 

 

 

 

 

Table  1. Starting appox. for shooting method 

Equations considered to 

eliminate   ,    and    

Approximate solutions of 

        

(5.14),(5.15),(5.16) 

(5.17),(5.18),(5.19) 

(5.20),(5.21),(5.22) 

(0.02327, 0.05480, 14.00353) 

(5.14),(5.21),(5.22) 

(5.14),(5.16),(5.18) 

(5.15),(5.16),(5.17) 

(-0.00001,-0.00006, 0.16713) 

(5.15),(5.16),(5.17) 

(5.16),(5.17),(5.18) 

(5.17),(5.18),(5.19) 

(12.59625,-2.57118,-0.17186) 

(5.14),(5.19),(5.20) 

(5.16),(5.18),(5.22) 

(5.15),(5.17),(5.21) 

(0.67515, 0.45573, 14.58217) 

(5.14),(5.17),(5.22) 

(5.15),(5.18),(5.20) 

(5.16),(5.19),(5.21) 

(14.29827, 21.21045, 2.16124) 

(5.14),(5.18),(5.22) 

(5.16),(5.18),(5.20) 

(5.16),(5.19),(5.17) 

(-0.25264, 0.00038, -5.75334) 

(5.17),(5.21),(5.19) 

(5.16),(5.20),(5.21) 

(5.15),(5.19),(5.20) 

(-1.56481, -0.00031, 7.56190) 

(5.15),(5.16),(5.20) 

(5.19),(5.20),(5.21) 

(5.14),(5.17),(5.22) 

(7.13789, -5.77309, -7.35417) 

(5.14),(5.18),(5.22) 

(5.17),(5.20),(5.21) 

(5.15),(5.18),(5.21) 

(-0.03055, 24.81796, 5.03886) 

(5.14),(5.17),(5.20) 

(5.15),(5.18),(5.21) 

(5.16),(5.19),(5.22) 

(0.24213, -0.59145, 6.39447) 

                                

The starting values of the eigenvalues obtained from the   

Table -1 are used in the corresponding  shooting method of 

the problem to obtain the actual values of the eigenvalues.  

The distinct actual values of the eigenvalues         of the 

problem (5.1)-(5.2) are found as  (9.85032, 1.17066, 0.21466), 

(16.55933, 5.64528, -12.95556),  (94.62722, 1.55593,             

-40.89388),  (31.86222, 1.61774, 13.06382),  (37.99081,         

-22.74049, 12.21601), (28.65122, 10.66956, 8.80906), the 

corresponding eigenfunctions of which has number of zeros in 

the intervals (0, 1), (1, 2) and  (2, 3) as  (0, 0, 0), (0, 2, 1), (2, 

4, 3), (2, 0, 2), (0, 0, 3), (2, 1, 1) respectively. 

6. CONCLUSIONS 
In this paper, eigenvalues of three-parameter problem in the 

form of ordinary differential equation are computed using 

Rayleigh-Ritz method, a method which is very effective in 

computing eigenvalues of self-adjoint problems. Here, it is 

observed that starting values of the eigenvalues         are 

dependent on the choice of approximate solution     . The 

problem (1.1)-(1.2) defined in the interval       are 

considered separately in the intervals      ,       and       
so that enough algebraic equations can be generated for 

finding unknowns      together with  ,   and  . 
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