
International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 3, January 2014

15

Enhancing Parallel Recursive Brute Force Algorithm for

Motif Finding

Marwa A. Radad
 Faculty of Electronic
Engineering Menoufia

University
El-Gaish st.,Menouf, Menoufia,

Egypt, Post code: 32952

Nawal A. El-fishawy
Faculty of Electronic

Engineering
 Menoufia University
El-Gaish st. , Menouf,

Menoufia, Egypt, Post code:
32952

Hossam M. Faheem
 Faculty of Computer and

Information Sciences
 Ain Shams University

El-Abbasiah, Cairo, Egypt

ABSTRACT

Motif search is a fundamental problem in bioinformatics. Its

main application is locating transcription factor binding sites

(TFBSs) in DNA sequences. Numerous algorithms have been

proposed in the literature to solve this problem. The exact

algorithms solve M(l,d) problem by reporting all l-length

motifs M with at most d mutations. Recursive Brute Force (R-

BF) algorithm is an exact algorithm that has solved M(l,d)

problem in exponential time with d. Multicore

implementations of R-BF have efficiently utilized

computation resources of modern multicore architectures to

achieve more advantageous operation than sequential one. In

this paper, we explore an enhanced version of R-BF

algorithm. The new algorithm is called R-BF2. R-BF2

enhances the running time of R-BF by memorizing more

information about each node in search space. R-BF2 pays

more than 40% memory space to achieve a speedup factor of

3. However, parallel implementations of R-BF2 keep the same

scalability just like R-BF on multicore systems.

General Terms

Computational Biology, Pattern Recognition, Parallel

Computing.

Keywords

Bioinformatics; Motif finding; Branch & Bound search;

Parallel programming; OpenMP; MPI

1. INTRODUCTION
Activating a gene is mainly controlled by special proteins

known as Transcription Factors(TFs). TFs bind to specific

DNA patterns in a promoter region of a gene. TFs can switch

a gene on or off with some existing cofactors. If we can

identify the sites where transcription factors bind, we gain

some insight into the regulation of genes. As a result,

identifying transcription factor binding sites (TFBSs) is a very

important task for decoding a genome. TFBSs are called

motifs and finding these motifs computationally is an area of

active research[1].

The motif search is an approximate pattern search problem in

computational biology where a common pattern, albeit with a

few mismatches, needs to be found from a set of DNA

sequences. A precise definition of motif finding problem is

given by [2] as follows:

Planted (l,d)-Motif Problem: Suppose there is a fixed but

unknown nucleotide sequence M(the motif) of length l. Given

t length-n sequences, each of which contains exactly one

planted variant (binding site) of M, we want to determine M

without knowing the positions of the planted variants. A

variant is a length-l string derivable from M with maximum d

point substitutions.

This problem becomes increasingly difficult as the number of

allowed mutations grows relative to the length of the motif.

Pevzner and Sze[2] presented the challenge problem (15,4),

which determines particular values for the planted motif

problem. The motif is of length-l=15, with allowed mutations

d=4 and the number of sequences is t=20, each of size n=600.

This problem is hard since the signal is too weak for applying

probabilistic methods while exhaustive search is impractical

since the motif is too long.

Two kinds of algorithms have been proposed in the literature

for PMS: exact and approximate. Exact algorithms can

guarantee finding the optimal solution. On the other hand,

approximate algorithms employ local search techniques such

as Expectation Maximization EM and Gibbs sampling.

MEME[3] is the most popular implementation of EM method.

Gibbs sampling technique is implemented firstly by Gibbs

Sampler[4]. AlignACE[5], BioProspector[6] and

GibbsDST[7] adopt Gibbs sampling approach in different

ways.

While exact algorithms for the motif problem take longer to

complete than approximate algorithms, they are preferable

since they are guaranteed to report all the (l, d)-motifs. Some

of these algorithms are based on enumeration methods such as

Brute Force algorithm[8] which exhaustively search for all 4l

l-mers to find the motifs. While PMS series algorithms[9-14]

extract l-mers from input sequences. Other algorithms use the

suffix tree data structure like Weeder[15] and FLAME[16].

Mismatch tree is a novel data structure that was proposed by

MITRA[17].

In this paper, we interest in an efficient exact algorithm that

called Recursive Brute Force R-BF[18]. R-BF solves M(l,d)

problem by examining only 4d+1 prefix patterns. R-BF extends

recursively good prefixes and prunes others. Its main idea is

keeping an occurrence list for each good prefix. Two parallel

implementations of R-BF were proposed[18]. OMP-RBF

based on OpenMP[19]. It lacked the scalability as a result of

heap contention problem. Conversely, MPI-RBF that based on

MPI[20] obtained high scalability.

We introduce in this paper R-BF2 algorithm that enhance the

running time of R-BF. The big thought behind R-BF2 is:

"keeping more information about a parent node to decrease its

children processing time". To keep more information about a

node, we must pay more memory price. We study this time-

memory tradeoff on sequential and shared memory parallel

implementations.

The rest of this paper is organized as follows: In Section 2 we

describe the Recursive-Brute Force algorithm. Our advanced

algorithm R-BF2 and its parallel implementations are

explained in section 3. The performance of R-BF2 and R-BF

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 3, January 2014

16

is compared experimentally in Section 4. Finally, Section 5

concludes our work and presents future work.

2. RECURSIVE BRUTE FORCE

ALGORITHM R-BF
R-BF is a word-based enumeration method. It is an advanced

version of the will known Brute Force algorithm. It traverses

the search space in depth first order and uses branch and

bound technique to prune the search space. In this section, we

explain R-BF algorithm steps in details.

R-BF algorithm takes a set of t DNA sequences. The length of

each sequence is n. In addition, it takes three input

parameters; l: the motif length, d: the allowed mutations, q:

the Quorum that is the minimum number of input sequences

where the motif must appear. The algorithm creates a prefix

array of size (d+1). For each prefix it examines all the input

sequences. If the prefix occurs in at least q sequences with

hamming distance less than or equal to d, it considers a good

prefix. On the other side, bad prefixes are discarded.

Discarding one prefix will save 4(l-d+1) match operations. A

good prefix is extended with the four basis (A,C,G,T), then

the algorithm examines each child. This process is repeated

until finding all existing motifs. Skipping bad prefixes also is

allowed at any level of the search tree and it would save 4(l-d+i)

match operations, where i is the current level of the search

tree. The key idea of the algorithm is to keep in mind the

locations of good prefixes, so when go more deep it examines

the parent’s archive only, instead of examining all sequences

each time. It creates an occurrence list for a good prefix that

contains all positions of input sequences where the

corresponding pattern matches it. The occurrence list will be a

reference for the children of this prefix. Also, the occurrence

list of a child will be a subset of it's parent's. R-BF recursively

allocates occurrence list of each node, then frees this

allocation when it return back. After catching a motif, the

algorithm continues to search for other motifs in depth-first

order.

For example: given t input DNA sequences, each of size n.

Find the motif of length l=8, with allowed mutations d=2. The

motif should occur in at least q input sequences.(The

different values of t, n and q do not affect the algorithm steps)

Firstly R-BF generates an array of l-mers prefixes. As

illustrated in Figure 1, the array width= (d+1) = 2+1 = 3.

Then, it performs the following steps:

1. For each prefix, it searches all sequences. The good prefix

is the one that occurs in at least q sequences with at most 2

mutations. Skipping one prefix will save 4(8-2+1)=1024

match operations.

2. For good prefix, the algorithm saves an occurrence list that

gives all the positions of input sequences where the

corresponding pattern matches it.

3. R-BF goes more deep by extending the good prefix with

the four basis (A,C,G,T).

4. R-BF examines the new children by searching the parent's

archive only. The occurrence list of a good child will be a

subset of its parent's.

5. Repeat these operations.

Fig 1: Recursive Brute Force steps

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 3, January 2014

17

The complexity analysis of R-BF indicates that it does not

enhance the worst case of the original Brute Force algorithm.

However, the average case complexity reflexes the

performance enhancement that achieved by the R-BF. Table 1

summarize the time/space complexity of R-BF as proved by

[18].

Table 1. R-BF Complexity Analysis

Time Complexity Space Complexity

Best

case

O(cnt)

O(cnt)

Average

case

Worst

case

O(nt4l)

O(nt4l)

The best case situation occurs when d=0, that is when R-BF

searches for exact motif matching. Time/space complexity in

this case is O(cnt), where c is a constant. The average time

complexity of the R-BF is exponential with the allowed

mutations (d). Where E(l, d) is the expected number of length-

l strings with at least one d-variant in each sequence in t ,and

P(l,d) is the probability that a fixed l-mer occurs with up to d

mutations at a given position of a random sequence. On the

other hand, the worst case occurs when (l=d+1), that is

incredible case because almost all the l-length patterns will be

motifs. It is exactly the complexity of the original Brute Force

O(nt4l).

2.1 Parallel R-BF
R-BF was parallelized according to SPMD (Single Program

Multiple Data)[18]. The array of prefixes acts as a queue of

tasks. In a parallel environment, each thread or process gets a

prefix and all of them run simultaneously. When one worker

finishes its task (returns back with or without a motif), it

catches the next task from the queue (the next prefix). Two

versions of R-BF were implemented on multicore shared-

memory architecture. First, OMP-RBF is based on

OpenMP[19]. In this version, OpenMP directives use

compiler to automatically thread the loop. The details are

hidden from the programmer. When a thread in OMP-RBF

finishes its current job, it gets a new task (new prefix) from

the prefixes array in despite of its id. Some threads may

process more prefixes than others. There are no idle threads

until finishing all the work. OMP-RBF suffers from a serious

performance degradation due to the heap contention problem.

The extensive (allocate/free) operations of different size

memory blocks is the main cause of this problem. Different

Solutions have been investigated to solve the heap contention

problem[18].

Second, MPI-RBF is based on Message Passing Interface

MPI[20]. MPI-RBF algorithm uses the process id to distribute

the jobs among the running processes. Each process gets

approximately the same number of prefixes. When a process

finishes its quota early, it waits idle until the other processes

finish their work. MPI-RBF outperforms OMP-RBF on

multicore system. The high scalability of MPI-RBF is a result

of its efficient handling of the data locality.

3. ENHANCED RECURSIVE BRUTE

FORCE ALGORITHM R-BF2
R-BF is a simple algorithm that depends on the basic search

algorithm Brute Force. As we shown before, it collects several

ideas to enhance the running time of the search process. It is

still easy to understand. In addition, it uses only simple data

structures with clear computing operations. This makes R-BF

a flexible algorithm. It is easy to add further improvement

ideas.

In this section, we show an enhanced version of R-BF. We

call this version of the algorithm : R-BF2. We illustrate that

time-memory trade off is the master rule that control the

algorithm enhancement. In other words, enhancing running

time means paying more memory cost and vice versa.

The main idea behind R-BF2 is memorizing more information

about a prefix node. The original R-BF creates an occurrence

list for a good prefix that contains all positions of input

sequences where the corresponding pattern matches it. The

child of a good prefix will go to each position in the list and

begin comparison operations character by character to decide

if saving this location in its own occurrence list or discarding

it. On the other hand, R-BF2 saves the matching positions

plus the corresponding hamming distances in the occurrence

list of a good prefix. The occurrence list is constructed as a

two dimensional array. As we know, the child of a good

prefix is equal to its parent plus a single character at the end

of the string. In this case, The child of a good prefix will go to

each position in the list and compare only its last character

with its correspondence in the input sequences. If matched,

the child prefix will save this location with the same hamming

distance of the parent. On the other case, the child prefix adds

one to the parent hamming distance. If the hamming distance

is less than or equal to the allowed mutation, the child prefix

will save this location with the new hamming distance. Else, it

discards this location. We illustrate this idea in figure 2.

We illustrate the steps of R-BF2 based on the above example

in figure 3. It is similar to R-BF at figure 1 except a simple

change. At level1, R-BF2 calls match function for each prefix

with all prefix-length substrings in the input sequences. Each

match function does prefix-length comparison operations just

like R-BF. Matching position means that the hamming

distance between the occurrence and the motif is less than or

equal to d. R-BF2 saves the matching positions and their

hamming distances. In the extension levels, the match

function does a single comparison operation in despite of the

prefix length to decide the matching positions. This will save

[(prefix-length – 1) * parent_occurence _list _size]

comparison operations at each node.

nt4(d+1) + Σ

j=1

l-(d+1)

4nt * E(d+j, d) P(d+j, d) nt4(d+1) + Σ
j=1

l-(d+1)

4nt * E(d+j, d) P(d+j, d) Σ
j=1

l-(d+1)

4nt * E(d+j, d) P(d+j, d)

Σ
j=1

l-(d+!)

nt * P(d+j, d) + nt*E(l,d)P(l,d)Σ
j=1

l-(d+!)

nt * P(d+j, d) Σ
j=1

l-(d+!)

nt * P(d+j, d) + nt*E(l,d)P(l,d)

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 3, January 2014

18

Fig 2: R-BF2 main idea

Fig 3: Enhanced Recursive Brute Force (R-BF2) steps

Memorizing a hamming distance archive for each prefix node

will speed up the algorithm in practical experiments.

However, R-BF time complexity is the same as that of R-BF.

On the other hand, it doubles the required memory space.

Because each prefix occurrence list array will be replaced by a

two dimensional array with the same length. We study this

time-memory tradeoff practically in section 4.

3.1 Parallel R-BF2
We parallelize R-BF2 such as parallel R-BF. Prefix array

elements are distributed on the worker threads or processes.

We implement two versions of parallel R-BF2 to compare

them with their R-BF correspondence. First, we use OpenMP

to implement OMP-RBF2. We expect that the heap

contention problem will be worsen in OMP-RBF2 because

OMP-RBF2 allocates and frees larger blocks of memory than

OMP-RBF. In fact, heap contention problem is not affected

by the size of allocated memory blocks. In stead, it is excited

by the number of calling (allocate/free) functions and hence

the number of allocated/freed objects. Fortunately, OMP-

RBF2 allocates and frees the same number of occurrence lists

with the same number of calling (allocate/free) functions such

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 3, January 2014

19

as OMP-RBF. We conclude that OMP-RBF2 will outperform

OMP-RBF in practical experiments.

Second, we implement MPI-RBF2 using MPICH2[21] library.

While MPI paradigm is a distributed memory programming

model, researchers tend to compare between MPI and

OpenMP on a shared memory architecture[22,23]. We expect

that memory-intensive characteristic of MPI-RBF2 will not

affect its scalability on multicore systems. This because MPI-

RBF2 has no communication among its processes.

4. EXPERIMENTAL EVALUATION
In this section, we evaluate our advanced algorithm R-BF2 for

motif finding problem and compare it with its base algorithm

R-BF. We indicate the time-memory tradeoff practically. We

implement and compile both algorithms using MS

VC++2008. Our evaluation experiments are done on synthetic

data. Problem instances are generated according to the planted

(l, d)-motif model. Problem instances are generated according

to the planted (l, d)-motif model. We followed up the (Fixed

number of Mutations or FM) model described by [2]. In this

approach, a randomly mutated pattern with exactly d

substitutions is implanted in each sequence. Datasets are

produced using rMotifGen tool [24] which provides an

efficient and convenient method for creating random DNA or

amino acid sequences with a variable number of motifs. For

each set of parameters l and d, we generate 10 test cases to get

the average of the results.

4.1 R-BF2 Versus R-BF
These experiments are done on Intel Core2Duo, 2GHz, 2GB

RAM machine. Table 2 shows the running time of the two

algorithms. R-BF2 achieves 2.6 to 3.1 speedup. The speedup

increases with the difficulty of the problem, because R-BF2

saves more comparison operations such as seen in table 3. R-

BF2 performs only 0.125 comparison operations for small

motif length with mutations d=3 and less than 0.1 comparison

operations for long motifs with d=4.

Table 2. Comparison between R-BF and R-BF2 in terms

of time needed to perform comparison operations in

CPUsec

M(l,d) R-BF

Tcomp (sec)

R-BF2

Tcomp (sec)
Speedup

l d

11 3 86.6 33.7 2.6

12 3 87.9 33.8 2.6

13 4 1025.3 361.6 2.8

14 4 1085.8 366.1 3

15 4 1136.2 368.9 3.1

Table 3. Comparison between R-BF and R-BF2 in terms

of performed comparison operations.

M(l,d) R-BF

Comp.

Operations

R-BF2

Comp.

Operations

Ratio of comp.

operations
performed by R-

BF2 %
l d

11 3 2.044E+09 2.56E+08 0.125006

12 3 2.050E+09 2.57E+08 0.125223

13 4 2.533E+10 2.54E+09 0.100327

14 4 2.535E+10 2.55E+09 0.100724

15 4 2.537E+10 2.53E+09 0.099822

The memory space required by the two algorithms is reported

in table 4. RB-F2 requires 32.5% more memory to solve

(11,3). The ratio is increased with the difficulty of the

problem to reach 43.7% to solve (15,4) problem. However, R-

BF2 needs only 3.5MB to solve (15,4) problem in 6.1min

instead of 19min by R-BF. In fact, R-BF2 behaves well and it

is considered a step forward to enhance motif finding problem

solutions.

Table 4. Comparison between R-BF and R-BF2 in terms

of required memory space

M(l,d) R-BF

Memory KB

R-BF2

Memory KB

Ratio of Memory
Required by R-

BF2 % l d

11 3 2004 2656 1.325349

12 3 2272 3075 1.353433

13 4 2480 3400 1.370968

14 4 2388 3320 1.390285

15 4 2452 3524 1.437194

4.2 Parallel R-BF2
We implement two parallel versions of R-BF2 that called

OMP-RBF2 and MPI-RBF2.To evaluate our parallel

algorithms, we use a Dual, Quad -Core Intel(R) Xeon(R) CPU

E5520 @ 2.27GHz 2.26 GHz (8-cores) machine, with

hyperthreading enabled (enabling each core to run up to 2

threads for a total of 16threads). The system has 24GB of

main memory and runs 64-bit Windows Server 2008

operating system.

4.2.1 OMP-RBF2 versus OMP-RBF2
In this experiment, we implement OMP-RBF2 using the

standard malloc() function. We use the data set of (15,4)

problem. Figure 4 shows a comparison between OMP-RBF2

and OMP-RBF in terms of execution time. Speedup and

efficiency are illustrated in figure 5.

OMP-RBF2 is outstanding in terms of execution time. We can

observe that OMP-RBF2 behaves with a similar curves like

OMP-RBF in the relative speedup and efficiency, but OMP-

RBF2 curves are slightly below OMP-RBF ones. The

similarity between curves is a result of the similarity between

the two algorithms in the allocate/free functions calling

number. The small lake in the OMP-RBF2 curves is due to the

large memory space that allocate/free functions deal with.

4.2.2 MPI-RBF2 Versus MPI-RBF2
We implement an MPI version of the enhanced algorithm

RBF2. Then, we run MPI-RBF2 on the same machine with

the same dataset. We report the execution time of MPI-RBF2

and compare its performance with MPI-RBF in fig. 6 and

figure7.

We can see the execution time enhancement achieved by

MPI-RBF2. In addition, It competes with MPI-RBF

successfully in terms of speedup and efficiency. MPI-RBF2

scales well with the number of processes because each

process has its own memory and its own memory manager.

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 3, January 2014

20

Fig 4: The execution time of OMP-RBF2 versus OMP-RBF

Fig 5: The speedup and efficiency of OMP-RBF2 & OMP-RBF algorithms

4.2.3 MPI Versus OMP
We combine between figure 4 and figure 6 to compare

between MPI implementations and OMP ones. Figure 8 shows

the success of MPI over OpenMP in both algorithms R-BF

and R-BF2. Even the single thread OpenMP timing is slower

than the single process MPI timing. This shows the overhead

of creating threads in OpenMP. The efficient handling of the

data locality boost the scalability of the MPI implementations.

It is clear that MPI-RBF2 is the best algorithm.

5. CONCLUSION
Motif finding problem plays an important rule in

bioinformatics. Although approximate algorithms are

acceptable in some cases in practice, exact algorithms are

preferable since they are guaranteed to find optimal solution.

We focus in this paper on an efficient exact algorithm that

called R-BF2. R-BF2 is an advanced version of R-BF. It

enhances running time by memorizing more information

about a prefix node. R-BF2 saves the matching positions plus

the corresponding hamming distances in the occurrence list of

a good prefix. R-BF2 performs less than 0.1 of the operations

performed by R-BF, but it needs about 40% more memory.

Parallel computing is a promising solution for such

computationally intensive problems. Two parallel versions of

R-BF2 are implemented. OMP-RBF2 uses OpenMP directives

and MPI-RBF2 bases on MPICH2 library. We compare both

algorithms with their R-BF correspondences. OMP-RBF2

outperforms OMP-RBF in running time. The speedup and

efficiency of OMP-RBF2 are slightly below OMP-RBF

curves. However, we emphasize on the fact that the excessive

memory required by OMP-RBF2 does not worsen the heap

contention negative effects. On the other hand, MPI-RBF

behaves just like MPI-RBF in terms of speedup and

efficiency. However, it is outstanding in terms of execution

time.

We strongly believe that our algorithm R-BF2 is a step

forward to enhance exact motif search methods. Parallel

implementations are also promised. Modern high performance

computing architectures like computer clusters and Grids

could be more efficiently utilized to achieve more

advantageous operation in this crucial domain.

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 3, January 2014

21

Fig 6: The execution time of MPI-RBF2 versus MPI-RB

Fig 7: The speedup and efficiency of MPI-RBF2 & MPI-RBF algorithms

Fig 8: Compare MPI and OpenMP implementations of both algorithms R-BF and R-BF2

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 3, January 2014

22

6. REFRENCES
[1] Gopal, S., Haake, A., Jones, R.P. and Tymann, P. 2009.

Bioinformatics, A Computing Perspective, McGrawHill,

International Edition.

[2] Pvzner, P. and Sze, S. H. 2000. Combinatorial approaches

to finding subtle signals in DNA sequences. In

Proceedings of the 8th International Conference on

Intelligent Systems for Molecular Biology, 269–278.

[3] Bailey, T. L., Williams, N., Misleh, C., and Li, W. W.

2006. "MEME: discovering and analyzing DNA and

protein motifs", Nucleic Acid Research, Vol. 34, 369–

373.

[4] Lawrence, C. E., Altschul, S. F., Boguski, M. S., Liu, J. S.,

Neuwald, A. F., and Wootton, J. C. 1993. "Detecting

subtle sequence signals: a Gibbs sampling strategy for

multiple alignment", Science, Vol. 262, 208–214.

[5] Roth, F., Hughes, J., Estep, P., and Church, G. 1998.

"Finding DNA regulatory motifs within unaligned

noncoding sequences clustered by whole genome mRNA

quantitation", Nature Biotechnology, Vol. 16, 939–945.

[6] Liu, X., Brutlag, D.L. and Liu, J.S. 2001. BioProspector:

discovering conserved DNA motifs in upstream

regulatory regions of co-expressed genes. In Proceedings

of Pacific Symposium on Biocomputing, 127-138.

[7] Shida, K. 2006. Hybrid Gibbs-Sampling algorithm for

challenging motif discovery: GibbsDST. In Proceedings

of the 17th International Conference on Genome

Informatics, 3-13.

[8] Jones, N. C. and Pevzner, P. A. 2004. An Introduction to

Bioinformatics Algorithms. The MIT Press.

[9] Rajasekaran, S., Balla, S. and Huang, C-H. 2005. "Exact

algorithms for planted motif challenge problems",

APBC, 249-259.

[10] Rajasekaran, S., Balla, S., Huang, C-H, Thapar, V., Gryk,

M., Maciejewski, M. and Schiller, M. 2005. "High-

performance exact algorithms for motif search", Journal

of Clinical Monitoring and Computing, Vol 19. 319–328.

[11] Rajasekaran, S. and Dinh, H. 2011. A speedup technique

for (l, d) motif finding algorithms, BMC Research Notes,

Vol. 4, No. 54, 1–7.

[12] Dinh, H., Rajasekaran, S., and Kundeti, V. 2011. "Pms5:

an efficient exact algorithm for the (l,d) motif finding

problem", BMC Bioinformatics, Vol. 12, No. 410.

[13] Bandyopadhyay, S., Sahni, S., and Rajasekaran, S. 2012.

Pms6: A fast algorithm for motif discovery. In Second

IEEE International Conference on Computational

Advances in Bio and Medical Sciences (ICCABS).

[14] Dinh, H., Rajasekaran, S., Davila, J. J. 2012. "qPMS7: A

Fast Algorithm for Finding (l, d)-Motifs in DNA and

Protein Sequences", PLoS ONE, Vol. 7, No. 7, e41425.

[15] Pavesi, G., Mauri, G. and Pesole, G. 2001. "An

algorithm for finding signals of unknown length in DNA

sequences", ISMB (Supplement of Bioinformatics),Vol

17, No.1, 207-214.

[16] Floratou, A., Tata, S. and Patel, J. M. 2010. Efficient and

accurate discovery of patterns in sequence datasets, In

Proceedings of the IEEE 26th International Conference

on Data Engineering – ICDE, 461-472.

[17] Eskin, E. and Pevzner, P.A. 2002. "Finding composite

regulatory patterns in DNA sequences", Bioinformatics,

Vol 18, No.1, 354-363.

[18] Radad M. A., El-Fishawy, N. A., Faheem, H. M. 2013.

"Implementation of Recursive Brute Force for Solving

Motif Finding Problem on Multi-core", International

Journal of Systems Biology and Biomedical Technology

(IJSBBT), 2013, in press.

[19] OpenMP: http://www.openmp.org (Last visited 14-12-

2013).

[20] MPI Forum: http://www.mpi-forum.org (Last visited

14-12-2013)

[21] MPICH: http://www-unix.mcs.anl.gov/mpi/ mpich2

(Last visited 14-12-2013)

[22] Eadline, D. 2007. MPI on Multicore, an OpenMP

Alternative, Linux Magazine, http://www.linux-

mag.com/id/4608/(Last visited 14-12-2013).

[23] Mallón, D. A., Taboada, G. L., Teijeiro, Ca., Touriño, J.,

Fraguela, B. B., Gómez, A. , Doallo, R., Mouriño, J. C.

2009. Performance Evaluation of MPI, UPC and

OpenMP on Multicore Architectures, In proceeding of

the 16th Recent Advances in Parallel Virtual Machine and

Message Passing Interface, PVM/MPI2009, Espoo,

Finland, 174-184.

[24] Rouchka, E. C. and Hardin, C. T. 2007. "rMotifGen:

random motif generator for DNA and protein sequences",

BMC Bioinformatics, Vol. 8, 2007.

IJCATM : www.ijcaonline.org

http://www.openmp.org/
http://www.researchgate.net/researcher/70586959_Andres_Gomez/
http://www.researchgate.net/researcher/69693915_Jose_Carlos_Mourino/
http://www.researchgate.net/researcher/69693915_Jose_Carlos_Mourino/

