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ABSTRACT 

Motif search is a fundamental problem in bioinformatics. Its 

main application is locating transcription factor binding sites 

(TFBSs) in DNA sequences. Numerous algorithms have been 

proposed in the literature to solve this problem. The exact 

algorithms solve M(l,d) problem by reporting all l-length 

motifs M with at most d mutations. Recursive Brute Force (R-

BF) algorithm is an exact algorithm that has solved M(l,d) 

problem in exponential time with d. Multicore 

implementations of R-BF have efficiently utilized 

computation resources of modern multicore architectures to 

achieve more advantageous operation than sequential one. In 

this paper, we explore an enhanced version of R-BF 

algorithm. The new algorithm is called R-BF2. R-BF2 

enhances the running time of R-BF by memorizing more 

information about each node in search space. R-BF2 pays 

more than 40% memory space to achieve a speedup factor of 

3. However, parallel implementations of R-BF2 keep the same 

scalability just like R-BF on multicore systems. 

General Terms 
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1. INTRODUCTION 
Activating a gene is mainly controlled by special proteins 

known as Transcription Factors(TFs). TFs bind to specific 

DNA patterns in a promoter region of a gene.  TFs can switch 

a gene on or off with some existing cofactors. If we can 

identify the sites where transcription factors bind, we gain 

some insight into the regulation of genes. As a result, 

identifying transcription factor binding sites (TFBSs) is a very 

important task for decoding a genome. TFBSs are called 

motifs and finding these motifs computationally is an area of 

active research[1]. 

The motif search is an approximate pattern search problem in 

computational biology where a common pattern, albeit with a 

few mismatches, needs to be found from a set of DNA 

sequences. A precise definition of motif finding problem is 

given by [2] as follows: 

Planted (l,d)-Motif Problem: Suppose there is a fixed but 

unknown nucleotide sequence M(the motif) of length l. Given 

t length-n sequences, each of which contains exactly one 

planted variant (binding site) of M, we want to determine M 

without knowing the positions of the planted variants. A 

variant is a length-l string derivable from M with maximum d 

point substitutions.  

This problem becomes increasingly difficult as the number of 

allowed mutations grows relative to the length of the motif. 

Pevzner and Sze[2] presented the challenge problem (15,4), 

which determines particular values for the planted motif 

problem. The motif is of length-l=15, with allowed mutations 

d=4 and  the number of sequences is t=20, each of size n=600. 

This problem is hard since the signal is too weak for applying 

probabilistic methods while exhaustive search is impractical 

since the motif is too long. 

Two kinds of algorithms have been proposed in the literature 

for PMS: exact and approximate. Exact algorithms can 

guarantee finding the optimal solution. On the other hand, 

approximate algorithms employ local search techniques such 

as Expectation Maximization EM and Gibbs sampling. 

MEME[3] is the most popular implementation of EM method. 

Gibbs sampling technique is implemented firstly by Gibbs 

Sampler[4]. AlignACE[5], BioProspector[6] and 

GibbsDST[7] adopt Gibbs sampling approach in different 

ways.  

While exact algorithms for the motif problem take longer to 

complete than approximate algorithms, they are preferable 

since they are guaranteed to report all the (l, d)-motifs. Some 

of these algorithms are based on enumeration methods such as 

Brute Force algorithm[8] which exhaustively search for all 4l 

l-mers to find the motifs. While PMS series algorithms[9-14] 

extract l-mers from input sequences. Other algorithms use the 

suffix tree data structure like Weeder[15] and FLAME[16]. 

Mismatch tree is a novel data structure that was proposed by 

MITRA[17].  

In this paper, we interest in an efficient exact algorithm that 

called Recursive Brute Force R-BF[18]. R-BF solves M(l,d) 

problem by examining only 4d+1 prefix patterns. R-BF extends 

recursively good prefixes and prunes others. Its main idea is 

keeping an occurrence list for each good prefix. Two parallel 

implementations of R-BF were proposed[18]. OMP-RBF 

based on OpenMP[19]. It lacked the scalability as a result of 

heap contention problem. Conversely, MPI-RBF that based on 

MPI[20] obtained high scalability.    

We introduce in this paper R-BF2 algorithm that enhance the 

running time of R-BF. The big thought behind R-BF2 is: 

"keeping more information about a parent node to decrease its 

children processing time". To keep more information about a 

node, we must pay more memory price. We study this time-

memory tradeoff on sequential and shared memory parallel 

implementations.  

The rest of this paper is organized as follows: In Section 2 we 

describe the Recursive-Brute Force algorithm. Our advanced 

algorithm R-BF2 and its parallel implementations are 

explained in section 3. The performance of R-BF2 and R-BF 
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is compared experimentally in Section 4. Finally, Section 5 

concludes our work and presents future work. 

2. RECURSIVE BRUTE FORCE 

ALGORITHM R-BF 
R-BF is a word-based enumeration method. It is an advanced 

version of the will known Brute Force algorithm. It traverses 

the search space in depth first order and uses branch and 

bound technique to prune the search space. In this section, we 

explain R-BF algorithm steps in details.  

R-BF algorithm takes a set of t DNA sequences. The length of 

each sequence is n. In addition, it takes three input 

parameters; l: the motif length, d: the allowed mutations, q: 

the Quorum that is the minimum number of input sequences 

where the motif must appear. The algorithm creates a prefix 

array of size (d+1). For each prefix it examines all the input 

sequences. If the prefix occurs in at least q sequences with 

hamming distance less than or equal to d, it considers a good 

prefix. On the other side, bad prefixes are discarded. 

Discarding one prefix will save 4(l-d+1) match operations. A 

good prefix is extended with the four basis (A,C,G,T), then 

the algorithm examines each child. This process is repeated 

until finding all existing motifs. Skipping bad prefixes also is 

allowed at any level of the search tree and it would save 4(l-d+i) 

match operations, where i is the current level of the search 

tree. The key idea of the algorithm is to keep in mind the 

locations of good prefixes, so when go more deep it examines 

the parent’s archive only, instead of examining all sequences 

each time. It creates an occurrence list for a good prefix that 

contains all positions of input sequences where the 

corresponding pattern matches it. The occurrence list will be a 

reference for the children of this prefix. Also, the occurrence 

list of a child will be a subset of it's parent's. R-BF recursively 

allocates occurrence list of each node, then frees this 

allocation when it return back. After catching a motif, the 

algorithm continues to search for other motifs in depth-first 

order.  

For example: given t input DNA sequences, each of size n. 

Find the motif of length l=8, with allowed mutations d=2. The 

motif should occur in at least q input sequences.( The 

different values of t, n and q do not affect the algorithm steps) 

Firstly R-BF generates an array of l-mers prefixes. As 

illustrated in Figure 1, the array width= (d+1 ) = 2+1 = 3. 

Then, it performs the following steps: 

1. For each prefix, it searches all sequences. The good prefix 

is the one that occurs in at least q sequences with at most 2 

mutations. Skipping one prefix will save 4(8-2+1)=1024 

match operations. 

2. For good prefix, the algorithm saves an occurrence list that 

gives all the positions of input sequences where the 

corresponding pattern matches it. 

3.  R-BF goes more deep by extending the good prefix with 

the four basis (A,C,G,T). 

4.  R-BF examines the new children by searching the parent's 

archive only. The occurrence list of a good child will be a 

subset of its parent's. 

5.  Repeat these operations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1: Recursive Brute Force steps 
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The complexity analysis of R-BF indicates that it does not 

enhance the worst case of the original Brute Force algorithm. 

However, the average case complexity reflexes the 

performance enhancement that achieved by the R-BF. Table 1 

summarize the time/space complexity of R-BF as proved by 

[18].  

Table 1. R-BF Complexity Analysis 

 

 
Time Complexity Space Complexity 

Best 

case 

 

O(cnt) 
 

 

O(cnt) 
 

Average 

case 

 

 

 

 

 

Worst 

case 

 

O(nt4l) 

 

 

O(nt4l) 
 

 
The best case situation occurs when d=0, that is when R-BF 

searches for exact motif matching. Time/space complexity in 

this case is O(cnt), where c is a constant. The average time 

complexity of the R-BF is exponential with the allowed 

mutations (d). Where E(l, d) is the expected number of length-

l strings with at least one d-variant in each sequence in t ,and 

P(l,d) is the probability that a fixed l-mer occurs with up to d 

mutations at a given position of a random sequence. On the 

other hand, the worst case occurs when (l=d+1), that is 

incredible case because almost all the l-length patterns will be 

motifs. It is exactly the complexity of the original Brute Force 

O(nt4l). 

2.1 Parallel R-BF 
R-BF was parallelized according to SPMD (Single Program 

Multiple Data)[18]. The array of prefixes acts as a queue of 

tasks. In a parallel environment, each thread or process gets a 

prefix and all of them run simultaneously. When one worker 

finishes its task (returns back with or without a motif), it 

catches the next task from the queue (the next prefix). Two 

versions of R-BF were implemented on multicore shared-

memory architecture. First, OMP-RBF is based on 

OpenMP[19]. In this version, OpenMP directives use 

compiler to automatically thread the loop. The details are 

hidden from the programmer. When a thread in OMP-RBF 

finishes its current job, it gets a new task (new prefix) from 

the prefixes array in despite of its id. Some threads may 

process more prefixes than others. There are no idle threads 

until finishing all the work. OMP-RBF suffers from a serious 

performance degradation due to the heap contention problem. 

The extensive (allocate/free) operations of different size 

memory blocks is the main cause of this problem. Different 

Solutions have been  investigated to solve the heap contention 

problem[18].  

Second, MPI-RBF is based on Message Passing Interface 

MPI[20]. MPI-RBF algorithm uses the process id to distribute 

the jobs among the running processes. Each process gets 

approximately the same number of prefixes. When a process 

finishes its quota early, it waits idle until the other processes 

finish their work. MPI-RBF outperforms OMP-RBF on 

multicore system. The high scalability of MPI-RBF is a result 

of its efficient handling of the data locality. 

3. ENHANCED RECURSIVE BRUTE 

FORCE ALGORITHM R-BF2 
R-BF is a simple algorithm that depends on the basic search 

algorithm Brute Force. As we shown before, it collects several 

ideas to enhance the running time of the search process. It is 

still easy to understand. In addition, it uses only simple data 

structures with clear computing operations. This makes R-BF 

a flexible algorithm. It is easy to add further improvement 

ideas.  

In this section, we show an enhanced version of R-BF. We 

call this version of the algorithm : R-BF2. We illustrate that 

time-memory trade off is the master rule that control the 

algorithm enhancement. In other words, enhancing running 

time means paying more memory cost and vice versa.  

The main idea behind R-BF2 is memorizing more information 

about a prefix node. The original R-BF creates an occurrence 

list for a good prefix that contains all positions of input 

sequences where the corresponding pattern matches it. The 

child of a good prefix will go to each position in the list and 

begin comparison operations character by character to decide 

if saving this location in its own occurrence list or discarding 

it. On the other hand, R-BF2 saves the matching positions 

plus the corresponding hamming distances in the occurrence 

list of a good prefix. The occurrence list is constructed as a 

two dimensional array. As we know, the child of a good 

prefix is equal to its parent plus a single character at the end 

of the string. In this case, The child of a good prefix will go to 

each position in the list and compare only its last character 

with its correspondence in the input sequences. If matched, 

the child prefix will save this location with the same hamming 

distance of the parent. On the other case, the child prefix adds 

one to the parent hamming distance. If the hamming distance 

is less than or equal to the allowed mutation, the child prefix 

will save this location with the new hamming distance. Else, it 

discards this location. We illustrate this idea in figure 2. 

We illustrate the steps of R-BF2 based on the above example 

in figure 3. It is similar to R-BF at figure 1 except a simple 

change. At level1, R-BF2 calls match function for each prefix 

with all prefix-length substrings in the input sequences. Each 

match function does prefix-length comparison operations just 

like R-BF. Matching position means that the hamming 

distance between the occurrence and the motif is less than or 

equal to d. R-BF2 saves the matching positions and their 

hamming distances. In the extension levels, the match 

function does a single comparison operation in despite of the 

prefix length to decide the matching positions. This will save 

[(prefix-length – 1) *  parent_occurence _list _size] 

comparison operations at each node. 
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j=1

l-(d+1)

4nt  *       E(d+j, d) P(d+j, d)  nt4(d+1) + Σ
j=1

l-(d+1)

4nt  *       E(d+j, d) P(d+j, d)  Σ
j=1

l-(d+1)

4nt  *       E(d+j, d) P(d+j, d)  

 
Σ
j=1

l-(d+!)

nt *           P(d+j, d)  +    nt*E(l,d)P(l,d)Σ
j=1

l-(d+!)

nt *           P(d+j, d)  Σ
j=1

l-(d+!)

nt *           P(d+j, d)  +    nt*E(l,d)P(l,d)



International Journal of Computer Applications (0975 – 8887)  

Volume 86 – No 3, January 2014 

18 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 2: R-BF2 main idea 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 3: Enhanced Recursive Brute Force (R-BF2) steps 

 
Memorizing a hamming distance archive for each prefix node 

will speed up the algorithm in practical experiments. 

However, R-BF time complexity is the same as that of R-BF. 

On the other hand, it doubles the required memory space. 

Because each prefix occurrence list array will be replaced by a 

two dimensional array with the same length. We study this 

time-memory tradeoff practically in section 4. 

3.1 Parallel R-BF2 
We parallelize R-BF2 such as parallel R-BF. Prefix array 

elements are distributed on the worker threads or processes. 

We implement two versions of parallel R-BF2 to compare 

them with their R-BF correspondence. First, we use OpenMP 

to implement OMP-RBF2. We expect  that the heap 

contention problem will be worsen in OMP-RBF2 because 

OMP-RBF2 allocates and frees larger blocks of memory than 

OMP-RBF. In fact, heap contention problem is not affected 

by the size of allocated memory blocks. In stead, it is excited 

by the number of calling (allocate/free) functions and hence 

the number of allocated/freed objects. Fortunately, OMP-

RBF2 allocates and frees the same number of occurrence lists 

with the same number of calling (allocate/free) functions such 
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as OMP-RBF. We conclude that OMP-RBF2 will outperform 

OMP-RBF in practical experiments.  

Second, we implement MPI-RBF2 using MPICH2[21] library. 

While MPI paradigm is a distributed memory programming 

model,  researchers tend to compare between MPI and 

OpenMP on a shared memory architecture[22,23]. We  expect 

that memory-intensive characteristic of MPI-RBF2 will not 

affect its scalability on multicore systems. This because MPI-

RBF2 has no communication among its processes.  

4.  EXPERIMENTAL EVALUATION 
In this section, we evaluate our advanced algorithm R-BF2 for 

motif finding problem and compare it with its base algorithm 

R-BF. We indicate the time-memory tradeoff practically. We 

implement and compile both algorithms using MS 

VC++2008. Our evaluation experiments are done on synthetic 

data. Problem instances are generated according to the planted 

(l, d)-motif model.  Problem instances are generated according 

to the planted (l, d)-motif model.  We followed up the (Fixed 

number of Mutations or FM) model described by [2]. In this 

approach, a randomly mutated pattern with exactly d 

substitutions is implanted in each sequence. Datasets are 

produced using rMotifGen tool [24] which provides an 

efficient and convenient method for creating random DNA or 

amino acid sequences with a variable number of motifs. For 

each set of parameters l and d, we generate 10 test cases to get 

the average of the results.  

4.1 R-BF2 Versus R-BF 
These experiments are done on Intel Core2Duo, 2GHz, 2GB 

RAM machine. Table 2 shows the running time of the two 

algorithms. R-BF2 achieves 2.6 to 3.1   speedup. The speedup 

increases with the difficulty of the problem, because R-BF2 

saves more comparison operations such as seen in table 3. R-

BF2 performs only 0.125 comparison operations for small 

motif length with mutations d=3 and less than 0.1 comparison 

operations for long motifs with d=4.        

 

Table 2. Comparison between R-BF and R-BF2 in terms 

of time needed to perform comparison operations in 

CPUsec 

M(l,d) R-BF 

Tcomp (sec) 

R-BF2 

Tcomp (sec) 
Speedup 

l d 

11 3 86.6 33.7 2.6 

12 3 87.9 33.8 2.6 

13 4 1025.3 361.6 2.8 

14 4 1085.8 366.1 3 

15 4 1136.2 368.9 3.1 

 

Table 3. Comparison between R-BF and R-BF2 in terms 

of performed comparison operations. 

M(l,d) R-BF 

Comp. 

Operations 

R-BF2  

Comp. 

Operations 

Ratio of comp. 

operations 
performed by R-

BF2 % 
l d 

11 3 2.044E+09 2.56E+08 0.125006 

12 3 2.050E+09 2.57E+08 0.125223 

13 4 2.533E+10 2.54E+09 0.100327 

14 4 2.535E+10 2.55E+09 0.100724 

15 4 2.537E+10 2.53E+09 0.099822 

 
The memory space required by the two algorithms is reported 

in table 4. RB-F2 requires 32.5% more memory to solve 

(11,3). The ratio is increased with the difficulty of the 

problem to reach 43.7% to solve (15,4) problem. However, R-

BF2 needs only 3.5MB to solve (15,4) problem in 6.1min 

instead of 19min by R-BF. In fact, R-BF2 behaves well and it 

is considered a step forward to enhance motif finding problem 

solutions.    

Table 4. Comparison between R-BF and R-BF2 in terms 

of required memory space 

M(l,d) R-BF 

Memory KB 

R-BF2  

Memory KB 

Ratio of Memory 
Required by R-

BF2 % l d 

11 3 2004 2656 1.325349 

12 3 2272 3075 1.353433 

13 4 2480 3400 1.370968 

14 4 2388 3320 1.390285 

15 4 2452 3524 1.437194 

 

4.2 Parallel R-BF2 
We implement two parallel versions of R-BF2 that called 

OMP-RBF2 and MPI-RBF2.To evaluate our parallel 

algorithms, we use a Dual, Quad -Core Intel(R) Xeon(R) CPU 

E5520 @ 2.27GHz 2.26 GHz (8-cores) machine, with 

hyperthreading enabled (enabling each core to run up to 2 

threads for a total of 16threads). The system has 24GB of 

main memory and runs 64-bit Windows Server 2008 

operating system.  

4.2.1 OMP-RBF2 versus OMP-RBF2 
In this experiment, we implement OMP-RBF2 using the 

standard malloc() function. We use the data set of (15,4) 

problem. Figure 4 shows a comparison between OMP-RBF2 

and OMP-RBF in terms of execution time. Speedup and 

efficiency are illustrated in figure 5. 

OMP-RBF2 is outstanding in terms of execution time. We can 

observe that OMP-RBF2 behaves with a similar curves like 

OMP-RBF in the relative speedup and efficiency, but OMP-

RBF2 curves are slightly below OMP-RBF ones. The 

similarity between curves is a result of the similarity between 

the two algorithms in the allocate/free functions calling 

number. The small lake in the OMP-RBF2 curves is due to the 

large memory space that allocate/free functions deal with. 

4.2.2 MPI-RBF2 Versus MPI-RBF2 
We implement an MPI version of the enhanced algorithm 

RBF2. Then, we run MPI-RBF2 on the same machine with 

the same dataset. We report the execution time of MPI-RBF2 

and compare its performance with MPI-RBF in fig. 6 and 

figure7.  

We can see the execution time enhancement achieved by 

MPI-RBF2. In addition, It competes with MPI-RBF 

successfully in terms of speedup and efficiency. MPI-RBF2 

scales well with the number of processes because each 

process has its own memory and its own memory manager. 
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Fig 4: The execution time of OMP-RBF2 versus OMP-RBF 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 5: The speedup and efficiency of  OMP-RBF2 & OMP-RBF algorithms 

 

4.2.3 MPI Versus OMP 
We combine between figure 4 and figure 6 to compare 

between MPI implementations and OMP ones. Figure 8 shows 

the success of MPI over OpenMP in both algorithms R-BF 

and R-BF2. Even the single thread OpenMP timing is slower 

than the single process MPI timing. This shows the overhead 

of creating threads in OpenMP.  The efficient handling of the 

data locality boost the scalability of the MPI implementations. 

It is clear that MPI-RBF2 is the best algorithm.  

5. CONCLUSION 
Motif finding problem plays an important rule in 

bioinformatics. Although approximate algorithms are 

acceptable in some cases in practice, exact algorithms are 

preferable since they are guaranteed to find optimal solution. 

We focus in this paper on an efficient exact algorithm that 

called R-BF2. R-BF2 is an advanced version of R-BF. It 

enhances running time by memorizing more information 

about a prefix node. R-BF2 saves the matching positions plus 

the corresponding hamming distances in the occurrence list of 

a good prefix. R-BF2 performs less than 0.1 of the operations 

performed by R-BF, but it needs about 40% more memory. 

Parallel computing is a promising solution for such 

computationally intensive problems. Two parallel versions of 

R-BF2 are implemented. OMP-RBF2 uses OpenMP directives 

and MPI-RBF2 bases on MPICH2 library. We compare both 

algorithms with their R-BF correspondences. OMP-RBF2 

outperforms OMP-RBF in running time. The speedup and 

efficiency of OMP-RBF2 are slightly below OMP-RBF 

curves. However, we emphasize on the fact that the excessive 

memory required by OMP-RBF2 does not worsen the heap 

contention negative effects. On the other hand, MPI-RBF 

behaves just like MPI-RBF in terms of speedup and 

efficiency. However, it is outstanding in terms of execution 

time.  

We strongly believe that our algorithm R-BF2 is a step 

forward to enhance exact motif search methods. Parallel 

implementations are also promised. Modern high performance 

computing architectures like computer clusters and Grids 

could be more efficiently utilized to achieve more 

advantageous operation in this crucial domain. 
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Fig 6: The execution time of MPI-RBF2 versus MPI-RB 

 

 

 

 

 

 

 

 

 

 

 

Fig 7: The speedup and efficiency of  MPI-RBF2 & MPI-RBF algorithms 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 8: Compare MPI and OpenMP implementations of both algorithms R-BF and R-BF2 
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