
International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 2, January 2014

4

Improving Data Transfer Rate and Throughput of HDFS

using Efficient Replica Placement

Neha M Patel Narendra M Patel Mosin I Hasan Mayur M Patel
PG Student, BVMCE Associate Prof. BVMCE Asst. Prof. BVMCE Asst. Prof. CSPIT

V.V Nagar-India- 388120 Dept. of Computer Engg. Dept. of Computer Engg. Dept. of Computer Engg.

ABSTRACT

In last half decade, there is tremendous growth in the network

applications; we are experiencing an information explosion

era. Due to which large amount of distributed data being

managed and stored. To handle these types of data,

application uses distributed file system. Advantages of DFS

are increased availability and efficiency. Generally some

parameters like scalability, reliability, transparency, fault

tolerance and security are considered while making DFS.

Some open challenges are still there in DFS like fault

tolerance in various conditions, optimized architecture of

DFS, Synchronization, consistency and replications. Goal of

this paper is study evolution of DFS from the history; current

state of the art design & implementation of the DFS and

propose new approach for efficient replica placement in

Hadoop DFS which can improve throughput and data transfer

rate.

General Terms
Distributed File System

Keywords

NFS, AFS, GFS, XtreemFS, HDFS.

1. INTRODUCTION
A distributed file system is a client/server-

based application that allows clients to access and process

data stored on the server. In other words, we can say

Distributed file system consists of software residing on

network servers and clients that transparently links shared

folders located on different file servers into a single

namespace for improved load sharing and data availability.

When a client device retrieves a file from the server, a file

appears as a normal file on the client machine, and the user is

able to work with the file in the same ways as if it were stored

locally on the workstation. When the user finishes working

with the file, it is returned to the server, which stores the now-

altered file for retrieval at a later time. The flow of this

research papers is: section two gives overview of different

Distributed File System and related work, section three

elaborates designing issues of distributed file system and

comparison between different file system on the basis of

various factors, and section 4 describes Hadoop DFS read

write operation., and at the end we propose a proof of concept

for writing replicas on Hadoop DFS using parallel approach.

Finally, conclusion of this paper is outlined.

2. RELATED WORKS
Russell Sandberg‘s team at Sun Microsystems laboratory has

developed Network File System, it is most widely used

distributed file systems in the UNIX world. Upon releasing

the first versions of NFS in 1985, SUN made public the NFS

protocol specification [10] which allowed the implementation

of NFS servers and clients by other vendors. After that AFS

[15][16] developed for distributed workstation environment

that has been under development at Carnegie Mellon

University since 1983. At Google Inc’s Research Laboratory,

Google File System is developed by Sanjay Ghemawat,

Howard Gobi off and Shun- Tak Leung. GFS [13] shares

many of the same goals as previous distributed file systems

such as performance, scalability, reliability, and availability.

The file system consists of hundreds or even thousands of

storage machines built from inexpensive commodity parts and

are accessed by a comparable number of client machines. GFS

[13] cluster consists of a single master and multiple chunk

servers and is accessed by multiple clients.

As object oriented picks the world, a new file system evolved,

named as XtreemFS [18]. It has been specifically designed for

Grid environments as a part of the XtreemOS [18] operating

system. As an object based design, it is composed of clients,

OSDs and metadata servers that are also responsible for

keeping replica locations. As a result of reverse engineering of

GFS, Hadoop Distributed File System [1] evolved. It has

many similarities with existing distributed file systems.

However, the differences from other distributed file systems

are significant. HDFS [20] provides high throughput access to

application data and is suitable for applications that have large

data sets. An HDFS [1][20] cluster consists of a single Name

Node, a master server that manages the file system namespace

and regulates access to files by clients. In addition, there are a

number of Data Nodes, usually one per node in the cluster,

which manage storage attached to the nodes that they run on.

Internally, a file is split into one or more blocks and these

blocks are stored in a set of Data Nodes. The Name Node

executes file system namespace operations like opening,

closing, and renaming files and directories. It also determines

the mapping of blocks to Data Nodes. The Data Nodes are

responsible for serving read and write requests from the file

system’s clients. The Data Nodes also perform block creation,

deletion, and replication upon instruction from the Name

Node. In Table 1, we have compared different DFS based on

different designing issues.

Table 1: Comparison of Distributed File System

File

System

Design

Issues

NFS AFS GFS XFS HDFS

Scalability Limited √ √ √ √

Reliability X √ √ √ √

Flexibility X Limited √ √ √

Transparenc

y
X Limited √ √ √

Fault

Tolerance
Limited Limited √ √ √

Security √ √ √ Limited Limited

http://searchnetworking.techtarget.com/definition/client-server
http://searchsoftwarequality.techtarget.com/definition/application
http://whatis.techtarget.com/definition/server

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 2, January 2014

5

Architecture Centralize
Decentra

lize

Decentr

alize

Decentra

lize

Decentral

ize

Process Stateless Stateless
State-

full
State-full State-full

Naming CFS CMS CMS CMS CMS

Synchroniza

tion
X WORM WORM WORM WORM

3. DESIGNING ISSUES IN DFS
Design issues in DFS are scalability[2][4], reliability[2][4],

flexibility[2][4], transparency[2][4], fault tolerance[2][4],

security[2][4], architecture[2][4], process type[2][4],

naming[2][4], synchronization[2][4], In this section we will

discuss about all these issues.

3.1 Scalability
Now a day, more and more users or client are getting

connected with system. Hence, we require an efficient system

to handle those users or client. For that at any point of time we

may require to scale up our system. If we follow the centralize

architecture at the time of designing of DFS then it would

require more administration to scale up the DFS but if we use

decentralize architecture then it can be easily managed by

administrator. In Hadoop DFS design, we found that we can

increase number of data nodes but we can’t increase number

of name node which leads single point of failure.

3.2 Reliability
Reliability means that data should be available when and

where it required on time without alteration or modification

and without any errors. If we use replication to provide

reliability, all the replicas must be consistent with its content.

Hadoop DFS creates multiple replicas for a single block. By

default a file’s replication factor is 3 but we can change it.

3.3 Flexibility
To achieve flexibility in the DFS, we must decide that

whether we want to manage activities like memory

management, process management and resource management

or not. If we want to manage all these things as it requires

then we can use micro kernel approach. Otherwise, we can

use monolithic kernel approach in which kernel does all

things by its own. Hadoop DFS provides this flexibility.

3.4 Transparency
While designing a DFS, some degree of transparency should

be achieved. Like file name does not reveal the file’s physical

storage location, client should see uniform namespace.

Hadoop DFS design provides transparency like location,

access, replication, and concurrency.

3.5 Fault Tolerance
Because of hardware or software failure in distributed-file

systems, these systems have to provide a fault-tolerant

capability so as to tolerate faults and to try to recover from

these faults. There are techniques like Replication and

Redundant Arrays of Inexpensive Disk (RAID) available to

provide redundancy for fault tolerance. Traditionally,

distributed-file systems have relied on redundancy or high

availability. In general, file systems replicate at the server-

level, directory-level, or file-level to deal with processor, disk,

or network failures. Redundancy allows these systems to

operate easily and continuously despite partial failure at the

cost of maintaining replicas in the file system. By providing

decentralized system, we can avoid one point of failure of the

DFS .Hadoop DFS do not use data protection mechanism such

as RAID to make data durable instead the file contents are

replicated on many DataNodes which provides high fault

tolerance. DataNodes send heartbeats to the NameNode to

confirm that DataNode is alive and blocks replicas it hosts are

available.

3.6 Security
To achieve a security in any system, we should focus on

mainly three aspects i.e. Confidentiality, Integrity and

Availability. Confidentiality can protect our system from

unauthorized access, Integrity can identify and protect our

data against corruption, and Availability avoids situations like

failure of system. To achieve Confidentiality we can use

authentication techniques, using message digest we can

achieve integrity. Hadoop DFS doesn’t provide any dedicated

security mechanism but as it open source we can put security

mechanism as per our requirement.

3.7 Architecture
There are mainly four types of architecture (i.e. Client -

Server, Parallel, Centralize and Decentralize) used to design a

DFS, which are mainly describes goal of file system. Hadoop

DFS has Master /Slave with single NameNode and many

DataNodes decentralize-parallel architecture.

3.8 Process
In distributed file service, file servers processes can be

stateless or stateful. Stateless file servers do not store any

session state and every client request is treated independently.

While state-full servers, do store session state and keep track

of which clients have opened which files, current read and

write pointers for files, which files have been locked by which

clients, etc. Hadoop DFS is a stateful file server.

3.9 Naming
While designing a DFS, we should consider whether all

machines and processes should have the exact same view of

the directory hierarchy or not. DFS should provide Location

transparency with location independence and access

transparency. Location transparency means path name of a

file gives no hint to where the file is located. Hence, files can

be moved without their names changing. In access

transparency, applications and users can access remote files

just as they access local files. To facilitate this, the remote file

system name space should be syntactically consistent with the

local name space. In Hadoop DFS entire namespace and file’s

metadata are handled by NameNode it uses CMS approach for

naming.

3.10 Synchronization
More than two users share same file at that time it is necessary

to maintain semantics of reading and writing of file to avoid

consistency problems. There are various ways to provide

synchronization of files. One can use file locking system, but

administration of the locking system can be handled by either

client or server. We can use hybrid approach also. Another

alternative is to use atomic transactions. To access a file or a

group of files, a process first executes a begin transaction

primitive to signal that all future operations will be executed

indivisibly. When the work is completed, an end transaction

primitive is executed. If two or more transactions start at the

same time, the system ensures that the end result is as if they

were run in some sequential order. All changes have an all or

nothing property [10].Hadoop DFS use write once read many

approach.

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 2, January 2014

6

3.11 Consistency & Replication
In DFS, to maintain a consistency caching is used either on

server side or client side. Caching is performed to improve

system performance. There are four places in a distributed

system where our data can be held: On the server's disk,

Cache in the server's memory, in the client's memory, on the

client's disk. For high availability of data, replication is the

primary mechanism. Hadoop DFS replicate each file block on

different DataNode, default replication factor is three in

HDFS.

4 HADOOP DFS ARCHITECTURE
The proposed architecture of a distributed file system is

designed to run on commodity hardware. It has many

similarities with existing distributed file systems and HDFS

[1][20]. However, the differences from other distributed file

systems are significant. Proposed DFS is designed to achieve

high throughput and data transfer rate. It has master/slave

architecture. A Proposed DFS cluster consists of a single

NameNode, a master server that manages the file system

namespace and regulates access to files by clients. In addition,

there are a number of DataNodes, usually one per node in the

cluster, which manage storage attached to the nodes.

Internally, a file is split into one or more blocks and these

blocks are stored in a set of Data Nodes.

The NameNode executes file system namespace operations

like opening, closing, and renaming files and directories. It

also determines the mapping of blocks to Data Nodes. The

NameNode and DataNodes are responsible for serving read

and write requests from the file system’s clients. The Data

Nodes also perform block creation, deletion, and replication

upon instruction from the NameNode. The NameNode and

DataNodes are pieces of software designed to run on

machines. Hadoop run on commodity hardware and supports

many platforms like GNU/Linux, Windows, Mac operating

system (OS). Proposed DFS will be built using the Java

language; any machine that supports Java can run the Name

Node and DataNode software. Usage of the highly portable

Java language means that Proposed DFS can be deployed on a

wide range of machines. The NameNode is the arbitrator and

repository for all DFS metadata and DataNodes are

responsible for reading and writing HDFS blocks to actual

files on the local filesystem and communicate with other

DataNode for replication. Our system is designed in such

way, when client writes a file, data blocks replication are

written on DataNodes in parallel manner instead of pipeline.

Fig 1: Hadoop DFS Architecture

4.1 Hadoop DFS file read and write

operation
Client writes data on Hadoop DFS by creating a file and

writing data on that file. Client first requests a NameNode to

write data on a file. NameNode checks the permissions and

assigned unique block ID and list of DataNodes to host

replicas. Now, client directly communicates with DataNodes.

A single block is replicate on many other DataNodes through

pipeline. After a data block is written on all replication

DataNode through pipeline client can request for next block to

write. Fig. 2 shows HDFS file write operation.

Client request a NameNode to read a file. NameNode sends

list of blocks and locations of each block replica. When

reading a content of a block, the client tries the closet replica

first. If the read attempt fails, the client tries the next replica

in sequence

4.2 Hadoop DFS file write operation using

our Parallel approach
Creation and writing of a file is faster than the Hadoop DFS

file. NameNode (NN) never writes any data directly on

DataNodes (DN). Only manages the namespace and inode .In

our approach single block is written on three different

DataNodes, Assume its DN1, DN2 and DN3.

1. Client request NameNode to write a file.

2. Client first receives list of DataNodes to write and to host

replicas of a single block.

3. Client first writes a block to DN1.

4. Once a block is filled on DN1, DN1 creates thread and

request to DN2 and DN3 for creating replicas of a

desired block in parallel.

5. Once block is written on DN2 and DN3, they send

acknowledgement to DN1.

6. After getting acknowledgement from both DN2 and

DN3, DN1 sends acknowledgement to client. If DN1

fails to receive acknowledgement from any of DN2 or

DN3, it resend same block.

7. Finally client sends acknowledgement to NameNode that

block is successfully written on three different nodes

Fig.3 shows writing a file using parallel approach.

Fig.2 Writing a File on Hadoop DFS using pipeline

approach

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 2, January 2014

7

Fig.3 Writing a File on Hadoop DFS using our parallel

approach

4.3 Advantages of Proposed DFS
The proposed design of DFS has many advantages such as it

improve data transfer rate and throughput, because replicas

are written in parallel fashion instead of pipeline. Here

replicas on other two DataNodes are created in same time, so

large volume of data are transfer, which increase data transfer

rate and number of bytes written per second are more than

pipeline approach, which increase throughput.

4.4 Limitation of Proposed DFS
Compare to HDFS our proposed DFS may have increased

overhead on first DataNode when two other DataNodes read

data in parallel from its buffer. It may increase

communication cost on first DataNode.

5 CONCLUSION AND FUTURE WORK
Data replication is a technique commonly used to improve

data availability. In HDFS each block is replicated on

different nodes. In our approach replica factor is three. In this

paper we present new approach for efficient replica placement

on HDFS that can increase throughput by replicating data

blocks in parallel and also large volume of data are transfer

which can increase data transfer rate.

In the future, we plan to implement this proposed approach

and compare the results with existing approach. We also plan

to integrate other Hadoop component and evaluate results and

identify architectural bottlenecks of higher level HDFS

designs.

6 REFERENCES
[1] Lin Weiwei, Liang Chen and Liu Bo. A Hadoop-based

Efficient Economic Cloud Storage System. PACCS at

Wuhan, China - July 2011. IEEE Conference

Publication.

[2] Mahesh Maurya, Chitvan Oza and Prof. Ketan Shah. A

Review of Distributed File System. ICAET at

Nagapattinam, India – May 2011. CiiT International

Journals Conference Publication.

[3] MARTIN PLACEK and RAJKUMAR BUYYA.

Taxonomy of Distributed Storage Systems. The Cloud

Computing and Distributed Systems (CLOUDS)

Laboratory, University of Melbourne- July 2006.

[4] Tran Doan Thanh, Subaji Mohan, Eunmi Choi, SangBum

Kim, Pilsung Kim. A Taxonomy and Survey on

Distributed File Systems. NCM at Geongju, Korea -

September 2008. IEEE Conference Publication.

[5] Song Guang hua, Chuai Jun na, Yang Bo Wei, Zheng

Yao. QDFS – A Quality Aware Distributed File Storage

Service Based on HDFS. IEEE-CSAE at Shanghai,

China - June 2011. IEEE Conference Publication.

[6] Debessay Fesehaye, Rahul Malik, Klara Nahrstedt.

EDFS - A Semi- Centralized Efficient Distributed File

System. Proceedings of the 10th ACM/IFIP/USENIX

International Conference on Middleware Article No. 28

Springer – Verlag, New York, USA – 2009.

[7] Fabio Kon. Distribute File Systems Past, Present and

Future A Distributed File System for 2006. March 1996.

[8] M Satyanarayanan. A Survey of Distributed File

Systems. February 1989. Tech. Rep. CMU-CS-89-116,

Pittsburgh, Pennsylvania.

[9] John H. Howard, Michael L. Kazar, Sherri G. Menees,

David A. Nichols, M. Satyanarayanan, Robert N.

Sidebotham, and Michael J. West. Scale and

performance in adistributed file system. ACM

Transactions on Computer Systems, 6:51–81, 1988.

[10] Design and Implementation or the Sun Network

Filesystem by Russel Sandberg , David Goldberg , Steve

Kleiman , Dan Walsh , Bob Lyon.

[11] Debessay Fesehaye, Rahul Malik, Klara Nahrstedt. A

Scalable Distributed File System for Cloud Computing.

[12] K. Shvachko, Hairong Kuang, S. Radia, and R. Chansler,

"The Hadoop Distributed File System," , Incline Village,

NV, 2010, pp. 1-10.

[13] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak

Leung, "The Google file system," in SOSP '03

Proceedings of the nineteenth ACM symposium on

Operating systems principles, New York, NY, USA,

2003, pp. 29-43.

[14] Philippas Tsigas, "AFS Report," Department of

Computing Science, Chalmers University of Technology,

Göteborg, Sweden, Lecture 2010.

[15] John H. Howard, "An Overview of the Andrew File

System," in Proceedings of the USENIX Winter

Technical Conference, Dallas TX, 1988.

[16] http://www.openafs.org/

[17] http://research.google.com/gfs.html

[18] http://www.xtreemfs.org/

[19] http://hadoop.apache.org/

IJCATM : www.ijcaonline.org

http://www.openafs.org/
http://research.google.com/
http://www.xtreemfs.org/
http://hadoop.apache.org/

