Coupled Fixed Point Theorems Under Nonlinear Contractive Conditions in G-Metric spaces

Hans Raj

Department of Mathematics,
Deenbandhu Chhotu Ram University of Science & Technology,
Murthal, Sonepat, Haryana, India

Nawneet Hooda

Department of Mathematics,
Deenbandhu Chhotu Ram University of Science & Technology,

ABSTRACT

The aim of this paper is to prove a number of coupled fixed point theorems under φ -contractions for a mapping $F: X \times X \to X$ in G-metric spaces. The given result is conversion of the result of Erdal Karapinar et al. [3] into G-metric space with coupled fixed point theorem.

General Terms:

54A05

Keywords:

G-metric space, Coupled fixed point, Mixed monotone property

1. INTRODUCTION

The Banach contraction principle is the most powerful tool in the history of fixed point theory. Boyd and Wong [2] extended the Banach contraction principle to the nonlinear contraction mappings. The notion of coupled fixed point was intiated by Gnana Bhaskar and Lakshmikantham [1] in 2006. After this many authors worked on coupled fixed point theorems. The notion of G-metric space is given by Mustafa and Sims [6] as a generalization of metric spaces in 2006. Based on the concept of G-metric spaces, Mustafa et al. [7, 4, 5] proved several fixed point theorems for mappings satisfying different contractive conditions.

2. PRELIMINARIES

DEFINITION 2.1 SEE [6]. Let X be a nonempty set, and let $G: X \times X \times X \to \mathbb{R}^+$, be a function satisfying:

- (G1) G(x, y, z) = 0 if x = y = z
- (G2) 0 < G(x, x, y), for all $x, y \in X$; with $x \neq y$,
- (G3) $G(x,x,y) \leq G(x,y,z)$, for all $x,y,z \in X$ with $z \neq y$,
- (G4) $G(x, y, z) = G(x, z, y) = G(y, z, x) = \cdots$ (symmetry in all three variables), and
- (G5) $G(x, y, z) \leq G(x, a, a) + G(a, y, z)$, for all $x, y, z, a \in X$, (rectangle inequality),

then the function G is called a generalized metric, or, more specifically a G-metric on X, and the pair (X,G) is a G-metric space.

Definition 2.2 See [6]. A G-metric space (X,G) is symmetric if

(G6)
$$G(x, y, y) = G(x, x, y)$$
, for all $x, y \in X$.

DEFINITION 2.3 SEE [1]. An element $(x, y) \in X \times X$ is said to be a coupled fixed point of the mapping $F: X \times X \to X$ if

$$F(x,y) = x$$
 and $F(y,x) = y$.

DEFINITION 2.4 SEE [1]. Let (X, \leq) be a partially ordered set and $F: X \times X \to X$ be a mapping.

F is said to have the mixed monotone property if F(x,y) is monotone non-decreasing in x and is monotone non-increasing in y, that is, for any $x, y \in X$,

$$x_1 \le x_2 \quad \Rightarrow \quad F(x_1, y) \le F(x_2, y), \quad \text{for } x_1, x_2 \in X$$

and

$$y_1 \leq y_2 \quad \Rightarrow \quad F(x, y_2) \leq F(x, y_1), \quad \text{for } y_1, y_2 \in X.$$

By following Matkowski [7], we let Φ be the set of all nondecreasing functions $\varphi:[0,+\infty)\to[0,+\infty)$ such that $\lim_{n\to+\infty}\varphi n(t)=0$ for all t>0. Then, it is an easy matter to show that

- (1) $\phi(t) < 0$ for all t > 0,
- (2) $\phi(0) = 0$.

In this paper, some coupled fixed point theorems are proved for a mapping $F: X \times X \to X$ satisfying a contractive condition based on some $\varphi \in \Phi$.

3. MAIN RESULTS

THEOREM 3.1. Let (X, \leq) be a partially ordered set and (X, G) a complete G-metric space. Let $F: X \times X \to X$ be a continuous mapping such that F has the mixed monotone property.

Assume that there exists $\varphi \in \Phi$ such that

$$G(F(x,y), F(u,v), F(u,v))$$

$$\leq \varphi[\max(G(x,u,u), G(y,v,v))] \tag{1}$$

for all $x, y, u, v \in X$ with $x \ge u$ and $y \le v$.

If there exist $x_0, y_0 \in X$ such that $x_0 \leq F(x_0, y_0)$ and $y_0 \geq F(y_0, x_0)$, then F has a coupled fixed point.

PROOF. Suppose $x_0,y_0\in X$ are such that $x_0\leq F(x_0,y_0)$ and $y_0\geq F(y_0,x_0).$ Define

$$x_1 = F(x_0, y_0)$$
 and $y_1 = F(y_0, x_0)$. (2)

Then, $x_0 \leq x_1, y_0 \geq y_1$. Again, define $x_2 = F(x_1, y_1)$ and $y_2 = F(y_1, x_1)$. Since F has the mixed monotone property, we have $x_0 \leq x_1 \leq x_2$ and $y_2 \leq y_1 \leq y_0$.

Continuing like this, we can construct two sequences \boldsymbol{x}_n and \boldsymbol{y}_n in \boldsymbol{X} such that

if, for some integer n, we have

$$(x_{n+1}, y_{n+1}) = (x_n, y_n),$$

then

$$x_n = F(x_n, y_n)$$
 and $y_n = F(y_n, x_n)$

that is, (x_n, y_n) is a coupled fixed point of F. Thus, we suppose that $(x_{n+1}, y_{n+1}) \neq (x_n, y_n)$ for all $n \in N$; that is, we assume that either $x_{n+1} \neq x_n$ or $y_{n+1} \neq y_n$. For any $n \in N$, we have

$$G(x_{n+1}, x_n, x_n) = G(F(x_n, y_n), F(x_{n-1}, y_{n-1}), F(x_{n-1}, y_{n-1}))$$

$$\leq \varphi(\max(G(x_n, x_{n-1}, x_{n-1}), G(y_n, y_{n-1}, y_{n-1})))$$

$$G(y_n, y_{n+1}, y_{n+1}) = G(F(y_{n-1}, x_{n-1}), F(y_n, x_n), F(y_n, x_n))$$

$$\leq \varphi(\max(G(y_{n-1}, y_n, y_n), G(x_{n-1}, x_n, x_n))$$

$$(4)$$

From eq. (4) we get that

$$\max(G(x_{n+1}, x_n, x_n), G(y_n, y_{n+1}, y_{n+1}))$$

$$\leq \varphi(\max(G(x_n, x_{n-1}, x_{n-1}), G(y_{n-1}, y_n, y_n))$$
 (5)

By continuing the process of eq. (5) we get

$$\max(G(x_{n+1}, x_n, x_n), G(y_n, y_{n+1}, y_{n+1})) \le \varphi(\max(G(x_n, x_{n-1}, x_{n-1}), G(y_{n-1}, y_n, y_n)) \le \varphi^2(\max(G(x_{n-1}, x_{n-2}, x_{n-2}), G(y_{n-2}, y_{n-1}, y_{n-1}))$$

$$\vdots \\
\le \varphi^n(\max(G(x_1, x_0, x_0), G(y_0, y_1, y_1))$$
(6)

Now, we will show that x_n and y_n are Cauchy sequences in X. Let $\varepsilon>0$. Since

$$\lim_{n \to \infty} \varphi^n(\max(G(x_1, x_0, x_0), G(y_0, y_1, y_1))) = 0 \tag{7}$$

and $\varepsilon > \varphi(\varepsilon)$, there exist $n_0 \in N$ such that

$$\varphi^n(\max(G(x_1,x_0,x_0),G(y_0,y_1,y_1))<\varepsilon-\varphi(\varepsilon)$$
 for all $n=n_0$ (8)

This implies that

$$\max(G(x_{n+1},x_n,x_n),G(y_n,y_{n+1},y_{n+1}))<\varepsilon-\varphi(\varepsilon)$$
 for all $n=n_0$ (9)

For $m, n \in N$, we will prove by induction on m that

$$\max(G(x_n, x_m, x_m), G(y_n, y_m, y_m)) < \varepsilon$$
 for all $m \ge n \ge n_0$ (10)

Since $\varepsilon-\varphi(\varepsilon)<\varepsilon$, then by using (9) we get that (10) holds when m=n+1. Now suppose that (10) holds for m=k. For m=k+1, we have

$$G(x_{n}, x_{k+1}, x_{k+1})$$

$$\leq G(x_{n}, x_{n+1}, x_{n+1}) + G(x_{n+1}, x_{k+1}, x_{k+1})$$

$$\leq \varepsilon - \varphi(\varepsilon) + G(F(x_{n}, y_{n}), F(x_{k}, y_{k}), F(x_{k}, y_{k}))$$

$$\leq \varepsilon - \varphi(\varepsilon) + \varphi(\max(G(x_{n}, x_{k}, x_{k}), G(y_{n}, y_{k}, y_{k}))$$

$$< \varepsilon - \varphi(\varepsilon) + \varphi(\varepsilon). \tag{11}$$

Similarly, we show that

$$G(y_n, y_{k+1}, y_{k+1}) < \varepsilon. \tag{12}$$

Hence, we have

$$\max(G(x_n, x_{k+1}, x_{k+1}), G(y_n, y_{k+1}, y_{k+1})) < \varepsilon$$
 (13)

Thus, (10) holds for all $m \ge n \ge n_0$. Hence, x_n and y_n are Cauchy sequences in X.

Since X is a complete G-metric space, there exist x and $y \in X$ such that x_n and y_n converge to x and y respectively. Finally, we show that (x,y) is a coupled fixed point of F. Since F is continuous and $(x_n,y_n) \to (x,y)$, we have

$$x_{n+1} = F(x_n, y_n) \to F(x, y).$$

By the uniqueness of limit, we get that x = F(x, y). Similarly, we show that y = F(y, x).

So, (x, y) is a coupled fixed point of F. \square

By taking $\varphi(t)=kt$, where $k\in(0,1],$ in Theorem 3.1, we have the following.

COROLLARY 3.2. Let (X, \leq) be a partially ordered set and (X, G) a complete G-metric space. Let $F: X \times X \to X$ be a continuous mapping such that F has the mixed monotone property. Assume that there exists $k \in [0, 1)$ such that

$$(F(x,y), F(u,v), F(u,v))$$

$$\leq k(\max(G(x,u,u), G(y,v,v))$$
(14)

for all $x, y, u, v \in X$ with $x \ge u$ and $y \le v$. If there exist $x_0, y_0 \in X$ such that $x_0 \le F(x_0, y_0)$ and $y_0 = F(y_0, x_0)$, then F has a coupled fixed point.

As a consequence of Corollary 3.2, we have the following.

COROLLARY 3.3. Let (X, \leq) be a partially ordered set and (X, G) a complete G-metric space. Let $F: X \times X \to X$ be a continuous mapping such that F has the mixed monotone property. Assume that there exists $a_1, a_2 \in [0, 1)$ such that

$$(F(x,y), F(u,v), F(u,v))$$

 $\leq a_1(G(x,u,u) + a_2G(y,v,v))$ (15)

for all $x, y, u, v \in X$ with $x \ge u$ and $y \ge v$. If there exist $x_0, y_0 \in X$ such that $x_0 \le F(x_0, y_0)$ and $y_0 \ge F(y_0, x_0)$, then F has a coupled fixed point.

THEOREM 3.4. Let (X, \leq) be a partially ordered set and (X, G) a complete G-metric space. Let $F: X \times X \to X$ be a mapping having mixed monotone property. Assume that there exists $\varphi \in \Phi$ such that

$$G(F(x,y), F(u,v), F(u,v))$$

$$\leq \varphi[\max(G(x,u,u), G(y,v,v))] \tag{16}$$

for all $x, y, u, v \in X$ with $x \ge u$ and $y \le v$.

Assume also that X has the following properties:

- (i) if a nondecreasing sequence $x_n \to x$, then $x_n \le x$ for all $n \in N$,
- (ii) if a nonincreasing sequence $y_n \to y$, then $y_n \ge y$ for all $n \in \mathbb{N}$.

If there exist $x_0, y_0 \in X$ such that $x_0 \leq F(x_0, y_0)$ and $y_0 \geq F(y_0, x_0)$, then F has a coupled fixed point.

PROOF. By following the same process in Theorem 3.1, we construct two Cauchy sequences x_n and y_n in X with

$$x_1 \le x_2 \le \dots \le x_n \le \dots$$
 and $y_1 \ge y_2 \ge \dots \ge y_n \ge \dots$ (17)

such that $x_n \to x \in X$ and $y_n \to y \in X$. By the hypotheses on X, we have $x_n \le x$ and $y_n \ge y$ for all $n \in N$. From (16), we have

$$G(F(x,y), x_{n+1}, x_{n+1})$$

$$= G(F(x,y), F(x_n, y_n), F(x_n, y_n))$$

$$\leq \varphi(\max(G(x, x_n, x_n), G(y, y_n, y_n)))$$

$$G(y_{n+1}, F(y, x), F(y, x))$$

$$= G(F(y_n, x_n), F(y, x), F(y, x))$$

$$= \varphi(\max(G(y_n, y, y), G(x_n, x, x))$$
(18)

From (18) we get,

$$\max[G(F(x,y),x_{n+1},x_{n+1}),G(y_{n+1},F(y,x),F(y,x))] \leq \varphi(\max[G(x,x_n,x_n),G(y,y_n,y_n)), G(y_n,y,y),G(x_n,x,x))].$$
 (19)

Letting $n \to +\infty$ in (19), it follows that x = F(x,y) and y = F(y,x). Hence (x,y) is a coupled fixed point of F. \square

By taking $\varphi(t)=kt$, where $k\in(0,1]$, in Theorem 3.4, we have the following result.

COROLLARY 3.5. Let (X, \leq) be a partially ordered set and (X, G) a complete G-metric space. Let $F: X \times X \to X$ be a mapping having mixed monotone property. Assume that there exists $k \in [0,1)$ such that

$$G(F(x,y), F(u,v), F(u,v))$$

$$\leq k \max(G(x,u,u), G(y,v,v)) \tag{20}$$

for all $x, y, u, v \in X$ with $x \ge u$ and $y \le v$. Assume also that X has the following properties:

(i) if a nondecreasing sequence $x_n \to x$, then $x_n \le x$ for all $n \in \mathbb{N}$,

(ii) if a nonincreasing sequence $y_n \to y$, then $y_n \ge y$ for all $n \in \mathbb{N}$.

If there exist $x_0, y_0 \in X$ such that $x_0 \leq F(x_0, y_0)$ and $y_0 \geq F(y_0, x_0)$, then F has a coupled fixed point.

As a consequence of Corollary 3.5, we have the following.

COROLLARY 3.6. Let (X, \leq) be a partially ordered set and (X, G) a complete G-metric space. Let $F: X \times X \to X$ be a mapping having mixed monotone property. Assume that there exists $a_1, a_2 \in [0, 1)$ such that

$$G(F(x,y), F(u,v), F(u,v))$$

 $\leq a_1(G(x,u,u) + a_2G(y,v,v))$ (21)

for all $x, y, u, v \in X$ with $x \ge u$ and $y \le v$. Assume also that X has the following properties:

- (i) if a nondecreasing sequence $x_n \to x$, then $x_n \le x$ for all $n \in \mathbb{N}$.
- (ii) if a nonincreasing sequence $y_n \to y$, then $y_n \ge y$ for all $n \in \mathbb{N}$

If there exist $x_0, y_0 \in X$ such that $x_0 \leq F(x_0, y_0)$ and $y_0 \geq F(y_0, x_0)$, then F has a coupled fixed point.

4. REFERENCES

- [1] T.G. Bhaskar and V. Lakshmikantham. Fixed point theory in partially ordered metric spaces and applications. *Nonlinear Anal.*, 65.
- [2] D.W. Boyd and S.W. Wong. On nonlinear contractions. *Proc. Am. Math. Soc.*, 20.
- [3] W. Shatanawi Erdal Karapinar and Z. Mustafa. Quadruple fixed point theorems under nonlinear contractive conditions in partially ordered metric spaces. *Journal of Applied Mathematics*.
- [4] Z. Mustafa. A new structure for generalized metric spaces with applications to fixed point theory.
- [5] Z. Mustafa and B. Sims. Fixed point theorems for contractive mappings in complete G-metric spaces. *Fixed Point Theory Appl.*, 10.
- [6] Z. Mustafa and B. Sims. A new approach to generalized metric spaces. *J. Nonlinear Convex Anal.*, 7(2):289–297, 2006.
- [7] H. Obiedat Z. Mustafa and F. Awawdeh. Some fixed point theorem for mapping on complete metric spaces. *Fixed Point Theory Appl.*, 12.