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ABSTRACT
Many routine formatting tasks are subject to patterns. This is espe-
cially true of formatting actions performed by users in Excel. Excel
has built-in functionality to perform some of these tasks, however
their application requires the user to explicitly define logical rules.
We show that by using interactive machine learning techniques,
such patterns can be learned automatically by iteratively analyz-
ing actions as they are performed by the user. This decreases the
amount of work required of the user, and eliminates the necessity
of explicitly defining logical rules. Our results show that many use-
ful formatting patterns can be learned with only a few examples.

General Terms:
Human Computer Interaction, Algorithms

Keywords:
Formatting by Demonstration, Automatic Task Completion, Inter-
active Machine Learning, Excel

1. INTRODUCTION
Users of desktop applications, especially those who work with Ex-
cel to store, display and analyze data, often apply formatting to
improve the visualization of their results. Such formatting may be
as simple as highlighting every other row, known as banding, to im-
prove contrast, and as elaborate as highlighting specific aspects of
the data based on the content of certain cells (e.g., negative num-
bers, totals). To produce the expected effect, users must either man-
ually repeat the same action through the data sheet or automate the
process via Excel’s conditional formatting option. The former is
inefficient and wearisome, while the latter requires designing non-
trivial logical rules.
Consider the simple and rather common case of creating a banding
effect. For a large document, highlighting every other row would
be very time consuming and one would much rather have a way
to automate the process. However, doing so using Excel’s condi-
tional formatting requires defining two separate rules and using the
functions ODD, EVEN, or MOD, as shown in Figure 1.
Designing such logical rules requires a basic level of understand-
ing of logic and Excel, which limits the number of users who can
use the available functionality. Often it is those users who lack this
level of familiarity that would benefit most from having this func-
tionality automated. Interestingly, the default placement of condi-

tional formatting on the home ribbon of Excel as well as the number
of online articles about “how to use conditional formatting” (e.g.,
see [5, 1, 3]) are evidence that tools for efficient formatting are valu-
able and in demand. Yet, assuming that the user should speak in a
specific language understood by the computer but possibly foreign
to the user is undesirable, and in most situations unnecessary given
the clear patterns that underly most formatting activities.
Hence, rather than designing complex rules, the user should be able
to show a few simple examples of what is expected while the com-
puter learns patterns from the user’s actions, and generalizes the
patterns to the entire data sheet. In other words, the user instructs
the computer to “Watch what I do” and the computer generates the
appropriate result based on its observation of the user’s actions.
The approach is akin to the Programming by Demonstration (PbD)
paradigm, that argues that it should be unnecessary for a user to
learn a programming language to accomplish a repetitive task [2].
Here, we propose a novel interactive machine learning technique,
Formatting by Demonstration (FbD), that captures the functional-
ity of conditional formatting, but as the name implies, only requires
the user to provide examples of formatted cells rather than defin-
ing explicit rules. Like most PbD algorithms, FbD goes beyond
recording simple macros that can be applied repetitiously, and in-
stead attempts to induce patterns from the examples. By adjust-
ing the required user input from logical rules to concrete examples,
FbD helps to elicit, develop and debug rules more easily than when
defining logic [11]. Furthermore, FbD helps to reduce the learn-
ing curve for automatically formatting a document, and expands
the functionality to virtually all users independent of their current
level of expertise. While the concept of FbD is applicable to a va-
riety of software, we demonstrate its utility here within Excel. We
show how FbD can be implemented effectively as a simple Add-in
to Excel, and illustrate its use for a number of typical formatting
tasks. We then revisit the FbD concept and discuss its applicability
beyond Excel.

2. RELATED WORK
A number of applications of the PbD paradigm to document for-
matting have been proposed. Some of the earliest ones include
EBE, a system that synthesizes text transformation programs from
examples [12], Tourmaline, a system aimed at formatting text, es-
pecially headings, tables and references, based on examples and
heuristics [10], and TELS, a system that records user actions
and generalizes from them based on heuristics and user-defined,
domain-specific rules [15].
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Fig. 1. Rules and Functions Needed to Produce a Banding Effect Using Conditional Formatting in Excel.

Recently, more elaborate systems have been designed, including
LAPIS, a system for text editing based on constraint patterns gen-
erated by users [8], and SMARTedit, a system based on the Version
Space algorithm [9], that induces text-editing programs from exam-
ples [6, 7]. Most closely related to our FbD system, since it focuses
on spreadsheets rather than text documents and is also implemented
in the context of Excel, is an elaborate string manipulation program
synthesis system, based on a formal expression language [4].1 FbD,
on the other hand, focuses exclusively on using decision tree induc-
tion to learn cell formatting from examples in spreadsheets.

3. FORMATTING BY DEMONSTRATION
The concept of FbD for spreadsheets 1) recognizes that most for-
matting tasks have underlying patterns based on either the loca-
tion or the content of various data cells, and 2) proposes that such
patterns need not be explicitly applied or described by the user,
but can be learned, and consequently generalized to a whole docu-
ment, from observing a small number of relevant user actions. We
use interactive machine learning to implement FbD functionality in
Excel.
Our tool is implemented in C# using Visual Studio as a Excel COM
Add-in, and its corresponding button, labeled Auto-Format for the
users, is visible on the rightmost part of the home ribbon, as shown
in Figure 2. By default, auto-formatting is on and the button dis-
plays “No Patterns” as expected. The fact that the tool is on does
not force its usage but ensures that it is available any time the user
wishes to take advantage of it, rather than have to remember to
first activate the option and then perform formatting actions. When
auto-formatting is on, the system continually watches for format-
ting changes that the user may make.
When a group of cells are formatted, the algorithm compares the
cells’ previous states to their current states to determine which spe-
cific action has occurred, or in the case where multiple formatting
actions have occurred, it treats each action separately. For example,

1This system was actually included in the most recent release of Excel 2013
as the Flash Fill feature.

Fig. 2. Excel’s Ribbon with the Auto-Format Button Added.

assume that cells A1, B1 and C1 are highlighted, and in addition,
the font color of cells B1 and C1 changes. The algorithm would
record two separate actions in this case. The cells are then clus-
tered to form ranges. A range is a 1-dimensional vertical or hori-
zontal contiguous collection of cells, here A1-C1 and B1-C1. Each
range is then saved in a history of actions and grouped with sim-
ilar actions. When a 2-dimensional collection of cells is modified
simultaneously, the algorithm first determines which dimension is
larger and then divides the block into 1-dimensional pieces accord-
ing to that dimension.
The algorithm operates under the assumption that the user obeys
certain felicity conditions [14] that facilitate the system’s learning
process. In particular, the user is assumed to perform actions pur-
posefully and perfectly. Purposeful action means that each range
that was acted upon, and each range that was skipped, was treated
so intentionally. Perfect action means that we assume there exists
no range between the first range and the last range that was sup-
posed to be formatted but was not. Under these constraints, the
ranges are sorted and a training set is formed starting with the first
range’s first cell and including all of the cells to the last range’s last
cell. Each of the cells that did not previously belong to a range is
split into 1-dimensional contiguous strips, matching the direction
and size of the previous ranges.
Each range is then passed to a feature extraction stage. In order to
understand the user’s intentions, the algorithm needs to understand
what distinguishes the highlighted ranges from the non-highlighted
ranges. The set of all possible intentions is clearly infinite, making
it necessary to restrict the set of actions to a tractable subset, such
that actions in that subset are useful and can be understood. This
is a well-known issue in machine learning and PbD systems. For
example, SMARTedit requires the user to provide a well-crafted
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Table 1. Features Extracted from Individual Cells and Cell
Ranges.

Features Values
Range Features

Mod2 Column or row mod 2
Mod3 Column or row mod 3

Cell Features
Type Alpha, Alphanumeric, Numeric, Empty

PosOrNeg Negative, Positive, Zero, N/A
Value The actual value of the cell

Binary Features
Order Greater than, Less than, Equal, N/A

domain description to circumscribe the version space [7]. In our
context, Excel already defines part of this possible world by limit-
ing the actions that can be performed in its editor. We further limit
this definition in our choice of features. Three different types of
features are extracted from each range, as shown in Table 1.
Range features extract information about the entire range, such as
banding or other equally-spaced row/column highlighting. Cell fea-
tures extract information about the individual cells, such as the type
of value stored or the magnitude of the value stored. Finally, binary
features capture information about the relative values of cells, such
as whether one’s value is larger than another’s. The algorithm cur-
rently accounts for 2 range features, 3 cell features and one binary
feature. Hence, in a range covering 3 cells (e.g., A1-C1), extracting
features results in a training instance with 14 features: 3 cell fea-
ture for each of the individual cells in the range, 2 range features
for the range, and 3 binary features (comparing A1 and B1, A1 and
C1, and B1 and C1). In general, for a range consisting of N cells,
there will be 3N cell features, 2 range features, and N(N−1)

2
binary

features.
As a concrete example of what the training data would look like,
consider the case of banding, where the first user action is to high-
light cells A1 through C1, where A1 contains the value ”Total”,
B1 contains the value 10 and C1 contains the value -15. Since the
range is of size 3, there will be 14 input feature values to extract
to build a training example corresponding to this action. Following
the order of features in Table 1, the training example will be the
vector ( 1 mod 2, 1 mod 3, Alpha, N/A, “Total”, Numeric, Positive,
10, Numeric, Negative, -15, N/A. N/A, Greater Than, Highlight-
Color), where the last entry is the target action. Further highlighting
of similar ranges would result in corresponding training examples
that would be grouped together as a training set.
The test data is created similarly to the training data. It begins with
the range following the final range of the training set and extends
to the final range in the document that has the same dimensionality
as the training data, as illustrated in the simple example of Fig-
ure 3. Each range is also passed to feature extraction to create test
instances for the learning algorithms. As the test set is simply the
complement of the training data in the document, it evolves through
time as training data is added through the user’s actions.
When the size of a training set (i.e., action history) reaches a mini-
mum threshold (the default is 3), the learning algorithm attempts to
find a pattern to the user’s actions. The training data is presented to
an ID3 decision tree learning algorithm [13], which will produce a
formatting pattern only if the entropy of the induced decision tree
is zero. This is because of our constraint on the user operating per-
fectly, and the negative effect of auto-formatting incorrectly.
Before proceeding, recall that our selected features (see Table 1)
essentially define the space of patterns that our learning algorithm

Fig. 4. The Auto-Format Button Switches from “No Patterns” to “Search-
ing” as Learning Begins.

can induce. When no formatting actions have been performed by
the user (i.e., the training set is empty), all patterns in that space
are candidates in a vacuous sense, and any (or all) of them could be
returned by the learning algorithm. By extension, it is clear that any
time an action is performed, or equivalently any time an example is
added to the learner’s training set, the set of candidate patterns be-
comes smaller. These observations are summarized in the following
theorem.

THEOREM 1. Let T be a set of training examples. If no pattern
is found when training the learning algorithm on T , then no pattern
can ever be found by training the learning algorithm on a superset
of T .

Hence, if our system cannot find a pattern after some actions have
been performed, it will never be able to do so. Note that while this
may mean that there is indeed no pattern to the user’s actions, that
is not necessarily the case. It is possible that the user’s intended
pattern cannot be induced from our current set of features. In such
cases, appropriately extending the set of features, a topic of future
research, would solve the problem.
Returning to our FbD system, when the learning algorithm first be-
gins searching for a pattern, the Auto-Format button in the ribbon
changes from its default state of “No Patterns” to “Searching,” (see
Figure 4). The ID3 algorithm executes and one of two things hap-
pens. Either a pattern is found or it is not. If no pattern is found, then
by Theorem 1 no patterns will ever be found, and the Auto-Format
button returns to the “No Patterns” state.
On the other hand, if a pattern is found, the user is immediately no-
tified as the Auto-Format button changes to “Found 1 Pattern” (see
Figure 5). At this point, of course, there may still be several candi-
date formatting patterns, as several patterns may match the current
training examples. In order to make the experience as simple as
possible for the user, the algorithm chooses only one as its “found”
pattern, and now enters a truly interactive machine learning mode.
To confirm, or refute, the algorithm’s current finding, the user can
click on on the upper half of the Auto-Format button, which causes
ID3 to label all test examples and hence the pattern to be applied
to the rest of the document. If the user is satisfied with the result,
i.e., the induced pattern matches the intended pattern, no further
action is required. However, if the induced pattern does not match
the intended pattern, the user can easily undo the auto-formatting
by selecting the corresponding sub-option (see Figure 6).
The undo action returns the spreadsheet to its state prior to the
auto-formatting and leaves the original training set unchanged. The
Auto-Format button returns to “Searching” and the user may now
perform further relevant actions, that in turn extend the current
training set and thus reduce the number of candidate patterns the
learner may induce. The above interactive process is then repeated

43



International Journal of Computer Applications (0975 8887)
Volume 86 - No. 18, January 2014

Fig. 3. Visual Representation of the Training Set and Testing Set, Based on Actions Range.

Fig. 5. The Auto-Format Button Switches from “Searching” to “Found 1
Pattern” If Learning Is Successful.

Fig. 6. Interactive Learning Mode.

until either the predicted pattern matches the intended pattern or no
pattern can be found. We have found that the number of required
examples differs with the layout of the Excel sheet and the type of
pattern, but in most situations 3 or 4 examples are sufficient for the
patterns expressible by our selected set of features.

Before we show specific applications of FbD, a few remarks about
our implementation are in order.

—As an alternative to the try/undo cycle described above, our tool
allows a one-at-a-time kind of approach, similar to what is found
in most editors’ find-and-replace functionality. These tools gen-
erally allow the user to do all replacements automatically, or
to step through each occurrence and validate the replacement.
Both options are useful and applicable to different situations.
Automatic replacement is instantaneous, but does not provide
the confidence associated with manual user input, while itera-
tive replacement is slower, but increases confidence in the accu-
racy of each replacement. FbD implements a similar functional-
ity to provide the same benefits. Instead of simply clicking the
Auto-Format button, the user can select the “Interactive Mode”
sub-option (see Figure 6), which allows her to step through each
potential change and either accept or reject the proposed action.
Not only does this option give the user greater confidence in the
accuracy of the algorithm, it also allows the user to provide fewer
examples (creating a more general algorithm) and to deal manu-
ally with potential boundary cases.

—While multiple formatting patterns can always be found sequen-
tially, by performing relevant actions for each individually, the
tool also supports the discovery and application of multiple pat-
terns at once. In this case, the user would show 3 examples of
one pattern (e.g., horizontal banding), which would cause the
system to discover that pattern. However, instead of acting on
it right away, the user may continue its formatting work in the
document with a different pattern (e.g., vertical banding), until
the system picks up that second pattern. The Auto-Format but-
ton would then first reflect that 1 pattern was found and later that
2 patterns had been found (see the circled number on the Auto-
Format button). Upon clicking on the Auto-Format button, the
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user would cause both formatting patterns to be applied to the
rest of the document.

—While highlighting may be viewed as a single formatting action,
our tool treats highlighting as multiple formatting, based on the
color selected by the user. As a result it is possible to induce
automatically more elaborate highlighting schemes such as sit-
uation where rows containing a particular value are highlighted
in yellow while rows containing another value are highlighted in
green (see Results section for an example).

—To provide further confidence in the algorithm and increase flex-
ibility, the tool offers the option to export the current pattern into
logical statements understood by Excel, via the “View Rules”
sub-option (see Figure 6). This is possible because the models
induced by ID3, namely decision trees, are comprehensible and
can be post-processed easily to extract rules. Each branch in the
tree represents a comparison and translates into a logical test.
By properly nesting these logical statements, we can reverse en-
gineer the tree and provide code which can be used by Excel’s
conditional formatting to obtain the same results. This enables
the curious user to understand the algorithm’s reasoning behind
its formatting decisions, as well as to save the pattern and ap-
ply it to future sheets. For experienced users, this may also be
an alternative to both the try/undo cycle and the step-by-step re-
placement; one could simply look at the rule(s) and confirm their
validity.

4. RESULTS WITH FBD
To demonstrate the use and value of FbD, we show a few illustra-
tive examples of before-after scenarios, where the before state rep-
resents the set of actions performed by the user prior to the learning
algorithm suggesting that it has found a formatting pattern, and the
after state represents the spreadsheet following automatic applica-
tion of the discovered pattern.
Figure 7 illustrates the simple case of horizontal banding. Figure 8
extends banding to both horizontal and vertical directions and to
two different colors. Figure 9 illustrates the highlighting of rows
where the data shows that the goal has been missed (i.e., the value
in the “Actual” column is less than the value in the “Goal” column).
Figure 10 illustrates the highlighting of columns based on the con-
tent of one of the rows, here the value “John” in the row labeled
“4th”. Finally, Figure 11 illustrates the highlighting of rows on the
basis of the content of one of the columns, here the value “Coca-
Cola” in the “Category” column. Note that while the other patterns
could be induced from 3 examples only, this pattern actually re-
quired 5 examples to be induced by the system.
In comparing our tool’s capabilities, as illustrated above, with vari-
ous tutorials on conditional formatting, we found that FbD is indeed
effective on patterns where all necessary information to deduce the
pattern exists within the training data, as may be expected. The
tool does not have the direct ability to learn patterns where external
data influences the user’s decision, for example, as in highlighting
all rows where the value in column X is less than the value in ex-
ternal cell Y 10. It is possible to support this functionality indirectly
in FbD by having the user append a column with the desired value
to the end of the previous cells and include this last column in the
examples provided to the algorithm. FbD will then be able to com-
pare against this value and induce the intended pattern. Once the
pattern has been applied, the user can remove the extra column.

5. CONCLUSIONS AND FUTURE WORK
We have introduced the concept of Formatting by Demonstration
as an alternative to rule-based conditional formatting, and showed
how we have implemented it as an Add-in within Excel. Our results
suggest that even with a relatively small set of features, it is possible
for an interactive machine learning algorithm to induce a number
of interesting formatting patterns with very few examples required
from the user.
There are several ways our tool could be extended. As discussed
above, some patterns are not found by our system not because they
do not exist but because they cannot be expressed with the set of
features we have selected. It is, of course, possible to extend this
set. However, it would be most interesting to find ways to do so
semi-automatically when the system fails but the user has an in-
tended pattern in mind. As far as the current rule extraction is con-
cerned, the tool does not support nesting of condition within rules.
In terms of auto-formatting, the completion defaults to the comple-
ment of the training set. Rather than having to consider the whole
document, it would be interesting to allow the user to mark the area
of the spreadsheet over which she wishes the tool to operate and
auto-format. The current implementation assumes that the use acts
perfectly. A more realistic scenario would allow allow some error
to be made by the user. Given enough training data, the system
should be able to recognize what examples may be erroeneous and
generalize from the correct examples only. Finally, it may be useful
to consider running the tool in a kind of strict pattern mode, where
it only offers to auto-format the document when only 1 pattern is
found.
Most importantly, the concept of FbD is clearly not restricted to Ex-
cel. We used Excel here only as a vehicle to demonstrate FbD and
present a viable implementation thereof. It is possible to generalize
the methodology to any application where formatting is routinely
used. As stated earlier, the main assumption of FbD is that most for-
matting tasks have underlying patterns based on either the location
or the content of various pieces of data and these patterns can there-
fore be induced from specific actions performed by the user. Hence,
for an arbitrary application, the implementation of FbD consists of:

(1) Setting up a mechanism to observe and record user actions
(2) Defining a set of features that may be used to characterize a

relevant subset of user intentions
(3) Creating training examples from user actions
(4) Using interactive machine learning to induce patterns from

these examples

As formatting is common to all editors, it is clear that FbD has
broad applicability. For example, assume the application is an In-
tegrated Development Environment (IDE), where the user has her
own code formatting style. The IDE is likely to offer ways to cus-
tomize the format by altering default preferences. However, as in
the case of conditional formatting discussed in this paper, this is
a burden on the user, who would much rather go ahead and start
coding, and let the IDE learn her specific preferences. Starting with
features, such as tabbing and parenthesis style, one could design an
FbD that observes the user behavior, builds relevant training data
and interactively learns formatting preferences.
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(a) Before (b) After

Fig. 9. Missing Target Goal

(a) Before (b) After

Fig. 10. Highlighting Columns Based on Row Values

(a) Before (b) After

Fig. 11. Highlighting Rows Based on Column Values
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