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ABSTRACT 

In Data clustering (a sub field of Data mining), k-means and 

hierarchical based clustering algorithms are popular due to its 

excellent performance in clustering of large data sets. This 

paper presents two different comparative studies which 

includes various Data Clustering algorithms for analyzing best 

one with minimum clustering error. The foremost objective of 

this paper is to divide the data objects into k number of 

different clusters with homogeneity and the each cluster 

should be heterogeneous to each other.  However, these both 

algorithms (K-Mean and Hierarchical) are not free with the 

errors. In this paper, firstly various distance has been 

considered for these two algorithms for comparing and 

analyzing the best distance methods to solve the existing 

problems.. 
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1. INTRODUCTION 
Data clustering is a data exploration method that allows objects 

with same characteristics to be grouped together in order to 

facilitate their further processing. Data clustering has various 

engineering application such as the recognition of part families 

for cellular producer. The k-means clustering algorithm is one 

of the most accepted data clustering algorithms. It requires the 

number of cluster in the data to be pre-specified. Searching 

suitable number of clusters for a given data set is normally a 

trial-and-error process made more difficult by the subjective 

nature of deciding what constitutes correct clustering [1]. 

2. CLUSTERING ALGORITHM  

2.1 K-Means algorithm 
K-means is probably the most widely used clustering 

technique [5]. It belongs to the class of iterative centroid-

based divisive clustering algorithm. It is different from 

hierarchical clustering in that it requires the number of 

clusters, k, be determined in advance. 

Algorithm Description 

K-Means is an algorithm for partition (or cluster) N data points 

into K disjoint subsets  containing  data points so as to 

minimize the sum-of-squares criterion: 

j =  

 

Where   is a vector representing the nth data point and  is 

the geometric centroid of the data points in . 

The procedure of K-Means is: 

 Arbitrarily make any partition and clustering the data 
points into K clusters. 

 Compute  the centroid of each cluster based on all the 
data points within that cluster. 

 If a data point is not in the cluster with the closest 
centroid, switch that data point to that cluster. 

 Repeat step 2 and 3 until convergence is achieved. By 
then each cluster is stable and no switch of data point 
arises 

2.1.1 Distance Functions In K-Means      

ALGORITHM 

2.1.1.1 Euclidean distance function  
In mathematics, the Euclidean distance or Euclidean metric is 

the "general" distance between two points that one would 

measure with a dimension, and is given by the Pythagoras 

formula. By using this formula as distance, Euclidean space 

becomes a metric space [2].  

 Euclidean distance is 

D ( i , j ) =  

 

Where i = ( ) and j = ) two 

n dimension object. 

 

Fig 1:  Cluster Diagram of Euclidean Distance Function 

In this fig 1 shows cluster generation on by Euclidean function  

three different type of cluster which is specify by three 
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different colors red, green, and blue. Cross represent selected 

parameter and squares represent unselected parameter.   

2.1.1.2 Manhattan  distance function 

The function of the Manhattan distance enumerate the distance 

that can be traveled to get from one data point to another if a 

network path as follows. The Manhattan distance between two 

elements is the sum of the differences of the corresponding 

components[2]. 

D ( i, j) = . 

Where i = ( ) and j = )  two 

n dimension object. 

  

 

Fig 2: Cluster Diagram by Manhattan Distance Function 

In this fig 2 shows cluster generated by specific algorithm three 

different type of cluster which is specify by three different 

colors red, green, and blue. Cross represent selected parameter 

and squares unselected parameter.   

2.1.1.3  Density based function 

Density-based  methods suppose that the points that belong to 

each cluster are drained from a specific probability distribution. 

The overall distribution of the data is assumed to be a mixture 

of multiple distributions. The goal of these methods is to 

identify the groups and their distribution parameters. These 

methods are designed for discovering clusters of arbitrary 

shape which are not necessarily convex, namely: 

 

This does not necessarily imply that: 

 

The idea is to continue growing the given cluster as long as the 

density (number of objects or data points) in the 

neighbourhood exceeds some threshold. Namely, the 

neighbourhood of a given radius has to contain at least a 

minimum  number of objects. When each cluster is 

characterized by local mode or maxima of the density function, 

these methods are called mode-seeking. Much work in this 

field has been based on the underlying assumption that the 

component densities are multivariate Gaussian (in case of 

numeric data) or multinomial (in case of nominal data) [3]. 

 

Fig 3: Cluster Diagram of  Density Based Algorithm 

In this fig 3 shows cluster generated by Density based 

algorithm three different type of cluster which is specify by 

three different colors red, green, and blue. Cross represent 

selected parameter and squares unselected parameter.   

2.1.1.4  Filter cluster Function 

In this segment, the filtering algorithm is illustrated. The 

algorithm is based on the storing of multidimensional data 

points a kd tree. A kd-tree is a binary tree, which represents 

hierarchical subdivision of the point set's bounding box using 

axis aligned splitting hyper planes. Each node of the kd-tree is 

linked with a closed box, called a cell. The root's cell is the 

bounding box of  the point set. If the cell contains in general a 

point (or more generally, less than a small constant), then it 

was confirmed that a leaf. If not, it is split into two hyper 

rectangles by an axis-orthogonal hyper plane. We start by 

computing a kd-tree in favour of the known data points. For 

each interior node p in the tree, we compute the number of 

concerned data point’s p: count and weighted centroid p: 

wgtCent, which is defined to be the vector sum of all the 

involved points. The real centroid is just p: wgt Cent=p: count. 

It is easy to convert the kd-tree construction to compute this 

additional information in the same space and  time bounds 

specified above. The initial centers can be chosen by any 

technique desired. Remember that, for every one stage of 

Lloyd's algorithm, for each of the k centers, we need to 

compute the centroid of the set of data points for which this 

center is closest. We then move this centre to the computed 

centroid and proceed to the next stage [4]. 

The Filtering algorithm 

Filtering(kdNode p,CandidateSet Q) 

{ 

 C  p.cell; 

 If ( p is a leaf ) 

 { 

  Q*  the closet point in Q to p.point; 

  Q*  wgtCent  Q*.wgtCent +p.point; 

 Q*  .count  Q*.count+1; 

} 

Else { 

 Q*  the closest point in Qto C`s midpoint; 

 for each (Q  Q \ { Q*}) 

if (Q.is Father (Q,* ,C)) Q  Q \ {Q}; 

 if ( |Q|= i) 

 { 
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  Q* . wgtCent  Q*.wgtCent +p.wgtCent; 

 Q*  .count  Q*.count+p.count; 

 } 

Else { 

   Filter (p.left,Q); 

   Filter(p.right,Q); 

   } 

 }  

}  

                      

It remains to describe how to determine whether there is any 

part of cell C that is closer to candidate Q than to Q*. Let H be 

the hyper plane bisecting the line segment QQ. H defines two 

halfspaces; one that is closer to z and the other to Q*. If C lies 

entirely to one side of H, then it must lie on the side that is 

closer to Q_ (since C's midpoint is closer to Q_) and so Q may 

be pruned. To determine which is the case, consider the vector 

~p . Q ÿ Q_, directed from Q*to Q. 

 

Fig 4: Cluster Diagram Generated by  Filtered Algorithm 

Figure 4 shows cluster generation on by Filtered algorithm, 

three different types of clusters which is specify by three 

different colors red, green, and blue. Cross represent selected 

parameter and squares unselected parameter. 

2.2 Hierarchical clustering 
These methods build clusters by recursively partitioning the 

cases, either in a top-down or bottom-up. These methods can 

be divided as follows. [6]. 

 Agglomerative hierarchical clustering— Each object 

initially represents a cluster of its own. Then 

clusters are successively merged until the desired 

cluster structure is obtained. 

 Divisive hierarchical clustering — All objects 

initially belong to one cluster. Then the group is 

divided into subgroups, divided successively into 

their own subgroups. This process continues until 

the desired cluster structure is obtained. 

2.2.1  Manhattan distance function 

Compute the distance that probable travelled to get from  one 

data point to the further  if a grid-like path is followedThe 

Manhattan distance between two elements is the sum of the 

differences of the corresponding components. The formula for 

this distance between a point X= ( , etc.) and a point Y= 

(  etc.) is: 

d =  

Where n is the number of variables, and Xi and Yi are the 

values of the   variable, a points X and Y respectively. 

 

Fig 5: Cluster Diagram Generated by Manhattan Distance 

Function 

Figure 5 shows cluster generated by Manhattan distance 

function three different type of cluster which is specify by 

three different types colors red, green, and blue. Cross 

represent selected parameter and squares unselected parameter.   

2.2.2  Euclidean distance function: 

This is the most commonly selected kind of distance. It simply 

is the geometric distance in the multidimensional space [9, 10]. 

The formula for this distance between a point X ( , etc.) 

and a point Y ( , etc.) is: 

d =  

 

Fig .6: Cluster Diagram Generated by Euclidean Distance 

Figure 6: shows cluster generation on by Euclidean distance 

function three different type of cluster which is specify by 

three different colors red, green, and blue. Cross represent 

selected parameter and squares unselected parameter.   

Derived from the Euclidean distance between two points of 

data involves calculating the square root of the sum of the 

squared differences between the values.. The following figure 
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illustrates the difference between Manhattan distance and 

Euclidean distance 

2.2.3  Chebyshev Distance Function 
In mathematics, Maximum Chebyshev distance metric is a 
metric defined in a vector space where the distance between 
two vectors is the largest differences along any coordinate 
dimension [8]. It is named after Pafnuty Chebyshev.  

It is also recognized as chessboard distance, since in the game 
of chess the minimum number of moves needed by a king to 
go from one square on a chessboard to another equals the 
Chebyshev distance between the centers of the squares, if the 
squares have side length one, as represented in 2-D spatial 
coordinates with axes aligned to the edges of the board [7]. 

The Chebyshev distance between two vectors or 
points p and q, with standard coordinates  and , 

respectively, is 

 

                   
Mathematically, the Chebyshev distance is a metric induced by 
the supremum norm or standard uniform. It is an example of 
an injective metric. In two dimensions, i.e. plane geometry, if 
the point’s p and q have Cartesian 

coordinates  and , their Chebyshev distance is: 

 

 

Fig.7: Cluster Diagram Generated by Chebyshev Distance 

Algorithm 

Figure 7: shows cluster generated by Chebyshev Distance 

algorithm three different type of cluster which is specifying by 

three different colors red, green, and blue. Cross represent 

selected parameter and squares unselected parameter.   

 

3. EXPERIMENTS RESULTS 
This paper, represent a comparative study of various clustering 

algorithm to find out a method for robust clustering generation. 

Table 1: Result table of k-means clustering algorithm 

 

Fig 8: Simulation Chart Result of k means Algorithm 

This simulation result chart show as two dimension xy plane in 

this figure 8: x- axis as a k-means clustering algorithm and y-

axis show as a clustering error (in %) , the bold line show as a 

iris data set in this graph the bold line show error between 

clustering algorithm and clustering error (in %), we are 

representing k-mean "KM", Euclidean Distance is represented 

"ED" , Manhattan Distance "MD" and Distance Based. From 

figure 8 it is clear that the best k-means clustering algorithms is 

a Density based clustering algorithm. 

Table 2 : Result Table of Hierarchical clustering 

algorithm 

Hierarchical clustering algorithm Clustering error   (in 

%) 
Chebyshev distance clustering algorithm 34 

Euclidean distance clustering algorithm 34 

Manhattan distance clustering algorithm 32 

 

Figure 9: shows that simulation result on by hierarchical 

clustering algorithms, x-axis as a hierarchical clustering 

algorithm and y-axis show as a clustering  Error (in %)  and 

vertical bold line show as a Iris data set, we are representing 

Hierarchical Clustering "HC", Chebyshev Distance algorithm 

"CD", Euclidean Distance "ED" and Manhattan Distance 

"MD".  We have achieved minimum error to generate cluster 

by Manhattan Distance clustering algorithm, this algorithm 

best hierarchical clustering algorithm.  

 

Fig 9: Simulation chart Result of Hierarchical Algorithms 

K-means Clustering algorithms Cluster error (in %) 

Euclidean distance clustering algorithm 11.3330 

Manhattan distance clustering algorithm 10.6777 

Density based clustering algorithm 10.0000 

Filtered cluster algorithm 11.3330 

http://en.wikipedia.org/wiki/Injective_metric_space
http://en.wikipedia.org/wiki/Plane_geometry
http://en.wikipedia.org/wiki/Cartesian_coordinates
http://en.wikipedia.org/wiki/Cartesian_coordinates
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4. CONCLUSION 
In this paper, the problem was to predict best clustering 

algorithms by comparing various clustering techniques. 

Performances of these clustering methods are measured by the 

percentage of the incorrectly classified data instances. If the 

percentage of the incorrectly classified instances will be low 

then the performance of the clustering is to be considered well. 

Our paper has presented comparative studies which divided in 

to two parts where first we study k-means clustering 

algorithms second in we study hierarchical clustering. In k-

means clustering algorithm, minimum clustering error has 

given by Density based algorithm (10.0000 %). Thereafter, in 

case of hierarchical clustering algorithms the minimum 

clustering error has given by Manhattan Distance clustering 

algorithm is (32%). 
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