
International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 15, January 2014

1

New and Efficient Recursive-based String Matching

Algorithm (RSMA-FLFC)

Jehad Q. Odeh
Sabbatical Leave from Al al-Bayt University

Computer Science Department
Faculty of Information Technology,

Al al-Bayt University, Jordan

ABSTRACT
The need for simple and efficient string matching

algorithms is essential for many applications, and

especially for database query. In this paper, two major

algorithms are proposed, namely first least frequency

character algorithm (FLFC) and recursive-based string

matching algorithm (RSMA). FLFC is considered as an

enhanced version of scan for lowest frequency character

SLFC proposed by Horspool [12]. FLFC algorithm extracts

first least frequency character in the pattern and identifies

the occurrences of such character in the whole text in a

preprocessing phase, while the recursive algorithm

(RSMA) recursively partitioning the pattern and the

targeted substring in the text and compares them at mid-

point (q) each time. The FLFC search accelerates the

searching process, while RSMA enhances the speed of

performance of the matching phase. The extensive testing

and comparisons with Naïve (Brute force), Boyer-Moore

(BM), and the FLFC without deploying recursive matching

show that the proposed algorithms enhance the speed of

performance dramatically.

General Terms
Exact String Matching

Keywords
Recursive string matching, brute force, Boyer-Moore, least

frequency characters

1. INTRODUCTION
String matching is crucial to many applications including

database query, DNA and protein sequence analysis. The

efficiency of string matching has a great impact on the

performance of these applications [1]. String matching

algorithms are classified into either exact string matching

or in-exact (approximate) string matching. In [2, 3], they

define exact string matching problem as identifying one or

more of the occurrences of a pattern P of length m in a text

T of length n. Tremendous number of techniques and

algorithms has been proposed to tackle this problem. These

algorithms have extensive use in information retrieval,

bibliographic search, and molecular biology. Among the

most cited papers on approximate string matching are the

articles [4, 5] by Esko Ukkonen as mentioned in [6], they

define approximate string matching problem as if we have a

pattern P[1...m] of m characters drawn from an alphabet Σ

of size σ, a text T[1...n] of n characters over the same

alphabet, and an integer k. We need to find all such

positions i of the text that the distance between the pattern

and a substring of the text ending at that position is at most

k. In the k-difference problem the distance between two

strings is the standard edit distance where substitutions,

deletions, and insertions are allowed.

It is essential in any information retrieval and text-editing

applications to be able to locate efficiently the recurrences

of a user-specified pattern of words and phrases in a text

[7]. Efficiency is crucial to any string matching technique,

since the problem of searching a huge block of text to

allocate the first occurrence of the pattern or even all

occurrences can be overwhelming. Naïve string matching

techniques requires a worst running of O(mn), where m is

the length of pattern and n is length of text.

This paper is organized as follows: section 2 presents the

literature review, section 3 introduces the proposed

algorithm, section 4 shows experimental results, and

section 4 draws the conclusion.

2. LITERATURE REVIEW
There are many algorithms classified as exact string

matching algorithms. Naïve (brute force) algorithm, Boyer

and Moore (1977), Morris and Pratt (Watson, 2002) and

Knuth-Morris-Pratt (1977), have been presented as exact

string matching algorithms to solve the problem of

searching for a single pattern in a text. The brute force

algorithm checks all positions in the text between 0 and n –

m without any consideration to pattern’s occurrence

position. Then, after each attempt, it shifts the pattern by

exactly one position to the right. The brute force algorithm

requires no preprocessing phase, and a constant extra space

in addition to the pattern and the text. The time complexity

of the searching phase is O(mn), where m is the length of

the pattern and n is the length of the text [8]. Beginning

with the rightmost character of the pattern Boyer-Moore

algorithm scans the characters of the pattern from right to

left [9]. If a complete match of the whole pattern is

occurred or a mismatch it uses two pre-computed functions

to shift the window to the right. These two shift functions

are called the good-suffix shift and bad-character shift.

Assume that a mismatch occurs between the character x[i]

= a of the pattern and the character y[i+j] = b for the text

during an attempt at position j. Then, x[i + 1 .. m – 1] = y[i

+ j + 1 .. j + m – 1] = u and x[i] ≠ y[i + j]. The good-suffix

shift consists in aligning the segment y[i + j + 1 .. j + m –

1] = x[i + 1 .. m – 1] with its rightmost occurrence in x that

is preceded by a character different from x[i]. If there exists

no such segment, the shift consists in aligning the longest

suffix v of y[i + j + 1 .. j + m – 1] with a matching prefix of

x. The bad-character shift aligning the text character y[i + j]

with its rightmost occurrence in x[0 .. m – 2]. Knuth-

Morris-Pratt algorithm has better worst-case running time

than the Boyer-Moore algorithm in spite of that the latter is

known to be extremely efficient in practice [1, 14]. As

mentioned in [10, 11], the extensive pattern-matching

literature has had two main categories: decreases the

number of character comparisons required and reducing the

time requirement in the worst and average cases. In [12],

Horspool presented SFC (Scan for First Character) and

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 15, January 2014

2

SLFC (Scan for Lowest Frequency Character) approach in

which searching is based on the occurrences of the first

character of the pattern in the text. He shows that a

reasonable reduction in number of characters that are

skipped before finding the lowest frequency characters in

the pattern is achieved. In this research paper a new and

efficient exact string matching algorithms are proposed.

The efficiency came through modifying the original SLFC

algorithm presented by [12] to utilize the extracted

information in the scanning phase as an input to the newly

proposed recursive string matching algorithm RSMA. The

major problem of the original SLFC algorithm presented by

Horspool is that the matching process is naïve and time

consuming process, especially for long patterns with

similar characters (i.e. DNA strings).

The proposed algorithms were implemented, analyzed, and

tested. RSMA-FLFC is compared with Brute force

algorithm, Boyer-Moore and the FLFC without deploying

recursive matching. The results of extensive testing showed

significant enhancement in performance. Moreover, the

new approach can be adopted by any well known algorithm

in string matching.

3. RSMA-FLFC ALGORITHMS
Since most of string matching algorithms search for the

pattern in the whole text, and match most of the text's

characters with the pattern's characters, it is reasonable to

assume that it will be more efficient to match the pattern

with the sub-strings of the text in a specific locations in the

text, these locations identified in a precise way to be the

only candidate locations in which matching may occur,

while ignoring the rest of the characters in the text. To

accelerate the searching and matching process it is

beneficial to make use of the well-known frequency of

characters in English, utilizing least frequency character

(LFC) efficiently reduces candidate targeted substrings in

the text as proven by [12].

The proposed algorithms handle the problem of exact string

matching in two phases. Pre-processing phase in which the

identification of all positions of the first least frequency

character in the pattern is achieved and saved for later use

in the processing phase. In [13], they did a comprehensive

analysis to the letters occurring in the words listed in the

main entries of the Concise Oxford Dictionary (11th edition

revised, 2004). The results of letters analysis is shown in

table 1. In this research the same table has been sorted for

the purpose of string comparison to identify the LFC in the

pattern.

Table 1. English character frequency

Fig 1: Sorted English character frequency

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

Q J Z X V K W Y F B G H M P D U C L S N T O I R A E

E A R I O T

11.16% 8.49

%

7.58

%

7.54

%

7.16

%

6.95%

N S L C U D

6.65% 5.73% 5.48

%

4.53

%

3.63

%

3.38%

P M H G B F

3.16% 3.01% 3.00

%

2.47

%

2.07

%

1.81%

Y W K V X Z

1.77% 1.28% 1.10

%

1.00

%

0.29

%

0.27%

J Q

0.1965

%

0.1962

%

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 15, January 2014

3

In this research, sorted version of table 1 shown in figure 1 is

utilized to identify the first least frequency character in the

pattern and scan the text to specify the candidate positions for

later use in the processing phase. The proposed processing

phase algorithm (RSMA) relies on the output of the pre-

processing, then it applies a simple shifting technique to

specify the position of the first character in the text’s substring

opposite to the first character in the pattern. After that, it

identifies the position of the mid-point (q) and compares the

substring with the pattern at that specific position.

If the two characters are similar then the algorithm continues

recursively till comparing all characters in the pattern with the

candidate substring and in case of similarity or dissimilarity it

proceeds to the second candidate position and so on.

3.1 Preprocessing phase
The pre-processing phase is used to identify all recurrences of

the first LFC of the pattern in the whole text T[n]. Figure 2,

presents the proposed FLFC algorithm.

Assume: T [1…n]: text of size n, P [1…m]: pattern of size m.

FLFC-Algorithm

1. if m > n then return 0

2. else
3. Find LFC (least frequency character) in the pattern

and identify its index j.

4. i = j – 1

5. Do:

 Search T [i + 1 ... n - m +1] to identify

indices of LFC in Text.

 If LFC was not found then return 0.

 Else create an array

},...,,{][21 kvvvkR  , where

kivi ,..,2,1,  , represents the

occurrences of the first LFC in T[n].

6. Repeat while true.

7. return R[k]

Fig 2: FLFC algorithm

3.2 Processing phase
The following figure 3 shows the proposed (RSMA)

algorithm.

Assume: T [1…n]: text of size n, P [1…m]: pattern of size m.

1. For each Vv , identify the)(thk position in T[n].

o Align P[m] with T[n] substring based on first

LFC.

o Identify)(thj position in P[m] opposite to

)(thk position in T[n].

o Identify)(thi position in T[n] by shifting to the

left of)(thk by)(thj -1.

 If)(thi  1 then go to step 2.

 else next for.

2. RSMA(T[n],P[m], i)

a) If 2n then compare the two substrings directly

 else

 Let z,

 Let















 

2

1 m
P

= β

b) If ][qT then

 RSMA




























 















 
i

m
P

mi
iT ,

2

1
...1,

2

12
...

 // left

recursion

 RSMA




















 















 
















 

2

12
,...

2

1
,1...

2

12 mi
m

m
Pmi

mi
T

 //

right recursion

 PRINT ("The pattern is found at)(thi position ")

 else

 return to 1.

Fig 3: RSMA algorithm

Figure 4, shows how to specify)(thk position based on the

recurrences of character shown in Table 1. Specifying the

)(thk position is done by FLFC-Algorithm.

Fig 4: Specifying the first LFC

Figure 5, visualize the way in which RSMA partitioning the

pattern by identifying the q value.

Fig 5: Partitioning the pattern by identifying mid-point (q)

3.3 Analysis of proposed algorithms
FLFC: this algorithm concerns about determining and saving

the occurrences of the LFC in T(n). Step (3) in the proposed

algorithm is done through comparing the sorted version of

Table 1 with the pattern not the opposite since this will reduce

the running time dramatically. The characters in Table 1 are

sorted in ascending order and saved as an off-line process for

later use, so the character (Q) is the first character to be

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 15, January 2014

4

compared with the pattern. In this case, the worst running time

O(26m) is occurred when all characters in the pattern are

(E’s), where m is the length of the pattern. Accordingly,

running time complexity O(1) is registered when the first

character in the pattern is (Q.

In step (5), the algorithm searches the text to identify the

candidate positions. The worst case when (i) is close to (0)

which means there is no satisfying reduction or exclusion of

characters in the text. In such situation, the time complexity

will be O(n-m), where n is the length of the text. While the

best case when (i) is close to (n-m) in which the reduction in

the text’s searching characters is maximized, so the best case

running time complexity is O(1). As a result, the overall worst

case running time complexity of FLFC is O(n-m) and the best

case running time complexity is O(1).

RSMA: this algorithm depends completely on the number of

elements in (V) which is passed by FLFC algorithm. The loop

in step (1) executes V times, where V is the set of all indices

represent the occurrences of the first LFC in T(n). Moreover,

step (2) executes V times, so the worst running scenario is

when ][qT is true for all elements in the candidate

substrings of the text except the first or the last element. In

such case, the worst running time complexity is O(V(m-1)).

While the best case running time complexity O(V) is occurred

when each time ][qT . Since V represents the occurrences

of the pattern’s first LFC in T(n) it is obvious that V will be

dramatically less than n, so the efficiency of the proposed

algorithm is better than most string matching algorithms close

to O(nm) worst case complexity.

4. EXPERIMENTAL RESULTS AND

DISCUSSION
In order to evaluate the efficiency of the proposed string

matching algorithms (RSMA-FLFC) two major experiments

have been conducted with different algorithms.

4.1 First Experiment
The tested algorithms are brute force (BF), Boyer-Moore

(BM), and RSMA-FLFC (RSMA). The different algorithms

have been coded in C in a consistent way and compiled with

gcc with full optimization option. The machine used for

testing purpose has an Intel(R) Core(TM) i5 processor at 3.00

GHZ running window7.

Data set 1: The first set of test data is a natural language file

(world192.txt) of the Large Canterbury Corpus, available at:

http://corpus.canterbury.ac.nz/descriptions/large/world.html.

Its size is 2,473,400 bytes.

Data set 2: The second set of test data is the King James of

the English Bible (bible.txt), the file was downloaded from

Large Canterbury Corpus, available at:

http://corpus.canterbury.ac.nz/descriptions/large/world.html.

Its size is 4,047,392 bytes. In this experiment, selected short

length patterns (5, 10, 15, 20, and 25) and long patterns (32,

64, 128, 256, and 512) have been considered. For each length

200 patterns selected randomly from the text and the results

are averaged. The time is shown in milliseconds (ms).

4.1.1 Test results for data set 1
Table 2 shows the average execution time in milliseconds for

each pattern sample utilizing RSMA, BM, and BF.

Table 2: Results of tested algorithms using data set 1

Pattern

Length
RSMA BM BF

5 680 1120 10100

10 505 590 10250

15 356 475 10300

20 253 388 10325

25 243 320 10540

32 220 260 10500

64 213 253 11040

128 225 236 10567

256 220 257 10790

512 200 225 10990

4.1.2 Test results for data set 2
Table 3 shows the average execution time in milliseconds for

each pattern sample utilizing RSMA, BM, and BF.

Table 3: Results of tested algorithms using data set 2

Figure 6 compares between execution times of RSMA, and

Boyer-Moore (BM) using data set 1 and data set 2. RSMA(1)

denote to RSMA using data set 1, and RSMA(2) denote to

RSMA using data set 2 and BM(1) denote to BM using data

set 1, while BM(2) denote to BM using data set 2.

Fig 6: RSMA vs. BM using data set 1 and data 2

Pattern

Length
RSMA BM BF

5 978 1792 12200

10 645 826 12355

15 577 712 12340

20 458 620 12365

25 405 415 13640

32 390 425 17500

64 411 413 18040

128 349 436 19567

256 325 389 18790

512 298 370 16990

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 15, January 2014

5

It is apparent that the RSMA algorithm performs well on the

two set of data as compared to Boyer-Moore algorithm. Both

algorithms show faster execution time with the long patterns

as compared to the short patterns.

The size of the data set 2 is almost double the size of data set

1, which obviously affects the speed of performance of both

algorithms as compared to data set 1. As shown in Figure 7,

RSMA outperforms brute force dramatically on the different

data sets. The size of data set 2 affects the speed of

performance for both algorithms. Brute force with long

patterns starting from 25, it shows slower execution time,

especially with regards to data set 2.

Figure 7 compares between execution times of RSMA, and

brute force (BM) algorithm using data set 1 and data set 2.

Fig 7: RSMA vs. BF using data set 1 and data set 2

4.2 Second Experiment
In this experiment the effect of the recursive part of the

proposed algorithm was tested. Applying the LFC with and

without the recursive part gives us a clear understanding of

the importance of the proposed recursive technique. Figure 8,

shows a modified version of RSMA called SMAwithout , its

matching the string based on least frequency character LFC by

comparing the whole pattern with the substring of the text

excluding the recursive nature of RSMA.

Assume: T [1…n]: text of size n, P [1…m]: pattern of size m.

1. For each Vv , identify the)(thk position in T[n].

o Align P[m] with T[n] substring based on first LFC.

o Identify)(thj position in P[m] opposite to)(thk
position in T[n].

o Identify)(thi position in T[n] by shifting to the left of

)(thk by)(thj -1.

If)(thi  1 then go to step 2.

else next for.

2. SMAwithout (T[n],P[m], i)

Compare the two substrings directly if they are similar

PRINT (“The pattern is found at)(thi position “)

return to 1

else

 return to 1

Fig 8: SMAwithout algorithm

Data set 3: The data set is the genome (E.coli), the file was

downloaded from Large Canterbury Corpus, available at

http://corpus.canterbury.ac.nz/descriptions/large/world.html.

Its size is 4,638,690 base pairs of Escherichia coli. In this

experiment, selected short length patterns (5, 10, 15, 20, and

25) and long patterns (32, 64, 128, 256, and 512) have been

considered. For each length 300 patterns selected randomly

chosen from the text and the results are averaged. The time is

shown in milliseconds (ms).

Table 4 shows the average execution time in milliseconds for

each pattern sample utilizing RSMA, and SMAwithout

algorithms. RSMA with genome behaves differently as

compared to the first experiment, that due to the nature of data

set 3, since genome consist of only four different characters

(ACGT) and the size of data set is huge and close to the size

of data set 2. So, the speed of performance of RSMA slightly

decreases as the pattern length increases. Since, we have only

limited number of different characters in the text the character

repetition is potentially high. Consequently, many substrings

of the text and the pattern will be dissimilar in just a limited

number of positions that will increases the number of

comparisons.

It is apparent that there is a dramatic enhancement - almost

50% - when recursive string matching is deployed as

compared to the naïve way of matching even if the LFC

technique is utilized.

Table 4: Results of tested algorithms using data set 3

Pattern

Length
RSMA SMAwithout

5 989 1800

10 1010 1820

15 1105 1905

20 1223 2100

25 1250 2106

32 1305 2210

 64 1340 2320

128 1360 2370

256 1367 2413

512 1405 2470

5. CONCLUSION
This paper presented new simple and efficient single exact

pattern matching algorithms. Namely, FLFC and RSMA. The

proposed algorithms were implemented, analyzed, tested and

compared with the naïve (brute force) algorithm and Boyer-

Moore using different well-known data sets with different

sizes. The different algorithms were tested using the same

machine and hundreds of samples representing short and long

patterns chosen randomly. The results were averaged,

analyzed, and compared. The RSMA-FLFC algorithm

enhances the execution time as compared to brute force and

Boyer-Moore. Moreover, testing to measure the effectiveness

of the proposed recursive string matching as compared to the

5 10 15 20 25 32 64 128 256 512

RSMA(1) 680 505 356 253 243 220 213 225 220 200

BF(1) 1010 1025 1030 1032 1054 1050 1104 1056 1079 1099

RSMA(2) 978 645 577 458 405 390 411 349 325 298

BF(2) 1220 1235 1234 1236 1364 1750 1804 1956 1879 1699

0

5000

10000

15000

20000

25000

ti
m

e
 (
m
s)

RSMA vs. BF(data set 1, 2)

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 15, January 2014

6

FLFC without deploying the recursive technique proves that

applying FLFC is more beneficial if it merges with the

recursive matching technique and the percentage of

enhancement is close to 50%. The results were promising and

the recursive matching approach can be utilized further in the

future.

6. REFERENCES
[1] Crochemore, M., A. Czumaj, L. Gasieniec, S. Jarominek,

T. Lecroq, W. Plandowski and Rytter W. 1994. Speeding

Up Two String Matching Algorithms. Algorithmica,

12(4-5): 247-267.

[2] Lecroq, T. 2007. Fast exact string matching algorithms.

Journal of Information Processing Letter, 102: 229-235.

[3] Wu, Y.-C., J.-C. Yang and Y.-S Lee. 2007. A Weighted

String Pattern Matching-Based Passage Ranking

Algorithm for Video Question Answering. Journal of

Expert Systems with Applications, 34: 2588-2600.

[4] Ukkonen, E. 1985. Algorithms for approximate string

matching. Information and Control, 64(1-3) 100–118

[5] Ukkonen, E. 1985. Finding approximate patterns in

strings. Journal of Algorithms 6(1), 132–137

[6] Salmela , L and Tarhio , J. 2010. Approximate string

matching with reduced alphabet. In T Elomaa , H

Mannila & P Orponen (eds) , Algorithms and

applications, Lecture Notes in Computer Science 6060 ,

Heidelberg, Berlin, Springer Verlag.

[7] Alqadi, Z., M. Aqel and I. El Emary, 2007. Multiple-Skip

Multiple-Pattern Matching Algorithm (MSMPMA).

IAENG International Journal of Computer Science,

34(2): 14-20.

[8] Charras, C.; Lecroq, T. 2004. Handbook of Exact String-

Matching Algorithms, King's College Publications.

Available from: http://www-igm.univ-

mlv.fr/~lecroq/string/string.ps.

[9] Boyer, R.; Moore, J. 1977. A fast string searching

algorithm. Communications of the ACM, 20(10), 62-72.

[10] Danvy, O. and H. Rohde, 2006. On Obtaining the Boyer–

Moore String-Matching Algorithm by Partial Evaluation.

Journal of Information Processing Letter, 99: 158-162.

[11] Franek, F., C. Jennings and W.F. Smyth, 2006. A

simple fast hybrid pattern-matching algorithm. Journal of

Discrete Algorithms, 5: 682-695.

[12] R. Nigel Horspool, 1980. Practical Fast Searching in

Strings. Journal of Software Practice and Experience,

vol. 10, pp: 501-506.

[13] Oxford Dictionary. Oxford University Press, What is the

frequency of the letters of the alphabet in English?".

http://www.oxforddictionaries.com/words/what-is-the-

frequency-of-the-letters-of-the-alphabet-in-english, Last

visited: 5th of December, 2013.

[14] Watson, B. and R. Watson. 2003. A Boyer–Moore-Style

Algorithm for Regular Expression Pattern Matching.

Journal of Science of Computer Programming, 48: 99-

117.

IJCATM : www.ijcaonline.org

