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ABSTRACT 
Java virtual machine is interpreters for byte code in this paper 

we have discuss the internal architecture of JVM which shows 

that how objects go into the java heap and how method calling 

goes into the java stack. In this paper we also discuss the java 

security and process of how java programs run step by step 

inside JVM. 
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1. INTRODUCTION 
JVM stands for java virtual machine, JVMs available for many 

hardware and software platforms (i.e. JVM is platform 

dependent). JVM is nothing it is only on paper written 

instruction. Java is very secure because of its sandbox security 

model. The local code is directly interacting to JVM but remote 

code first interacts to the sandbox security. Sandbox security 

check whether the code is trusted or not, if code is trusted then 

sandbox security allows interacting with JVM, otherwise 

restricted the code [6]. 

The JVM perform four main tasks: 

 Loading of codes  

 Verification of codes 

 Execution of codes 

 Provides runtime environment. 

 

1.1 Hierarchy of Java Program 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. PROCESS 
In the java programming language, all source code is first 

written in plain text files ending with .java extension. Those 

source files are then compiled in to .class files by the javac 

compiler. A .class file does not contain code that is native to 

your processor; it instead contains byte code the machine 

language of java virtual machine because of the java virtual 

machine available on many different operating systems. The 

same .class file is capable of running on Microsoft windows, the 

Solaris operating system, Linux, or Mac operating system. After 

the successful compilation of java program the byte code is 

generated, and it is platform independent. The byte code is 

executed through interpreter line by line which is very slow. 

To overcome this problem sun micro system introduces a new 

compiler which is known as JIT (just in time) compiler which 

executes whole instruction in one goes [1]. Java Virtual Machine 

contains a byte code verifier to check the code for type errors 

before it is run, after successful verification of byte code by byte 

code verifier [2], JVM run program through java runtime 

environment (JRE) and JRE is the implementation of JVM [8]. 

2.1 Process Diagram of JDK and JRE 
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Fig 2: Process diagram of JDK and JRE 

 

Fig 1: Hierarchy of java program 
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2.2 Inside JVM Process 
 

 

 
 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 3: Inside JVM Process 

2.2.1 Class loader 
Class loader is subsystem of JVM that is used to load class files. 

There are basically three types of class loaders,[7] 

 Bootstrap Class Loader 

Bootstrap class loader loads java’s core classes like 

java.lang, java.util etc. 

 Extensions Class Loader 

Extensions class loader loads classes from this ext 

folder. 

  System Class Loader 

Java classes that are available in the java class path are 

loaded using System class loader. 

2.2.2 Method Area  
Method area contains all the java expressions. 

2.2.3 Java heap 
All objects which are created through new keyword go into java 

heap [4]. 

2.2.4 Java stack 
The calling of method goes into java stack [3]. 

2.2.5 Pc register 
Pc register hold what is the next instruction to be executed. 

2.2.6 Java native stack  
In java native stack, those codes which are not written inside the 

java are executed. 

  

2.2.7 Execution Engine 
Execution Engine Processor contains a virtual processor.  

3. EXPERMENT  

3.1 Understanding the Exception in thread 
Main 

 
class  HeapFull{ 
 public static void main(String args[])  

 { 

   

        int[] a=new int[300000000]; 

   

 } 

} 

 

If the heap size is less as compared to given array i.e. 300000000 

than the Exception in main “Out-Of-Memory-error” occurred 

which shows the java heap space is full. 

Heap size should be half of the RAM. 

 

3.2 Understanding stack-over-flow Exception 
class  Stackoverflow 

{ 

 public void fun() 

    { 

 System.out.println("i am from fun===>>>"); 

    fun1(); 

  

 }  

 public void fun1() 

    { 

 System.out.println("i am from fun1==>>>" ); 

  

 fun(); 

  

 } 

 

 public static void main(String args[])  

 { 

  Stackoverflow o=new Stackoverflow(); 

   

  o.fun(); 

     } 

} 

 

In the output of the program java.lang.stackoverflow Exception 

is occurred which shows the method calling goes into the java 

stack. 
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4. RESULTS 

4.1 Heap Size is full 

 
Fig 4: Heap size is Full 

 

4.2 Stack overflow 
 

 
Fig 5: Stack overflow 

5.   CONCLUSION 
With the help of this paper we understand the step by step 

process for execution of the program inside the java virtual 

machine. In this paper we also understand the java security 

through sandbox security model. With the help of both the 

experiments, we also understand the internal architecture of java 

virtual machine which shows that all objects goes into the java 

heap and calling of methods goes into the java stack. When the 

size of memory is less than the given value into the array then 

OutOfMemory Exception occurs which shows that heap size is 

full and if the java stack is full then exception stack-over-flow 

occur which shows that the calling of methods goes into the java 

stack.   
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