
International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 11, January 2014

34

Objects and Method Calling in Java Virtual Machine

Sumit Gupta
 Department of CSE

MANIT BHOPAL
MP, India

Nargish Gupta
Department of CSE

ASET, Amity University
Sector-125, Noida, UP, India

Rishabh Gupta
Department of CSE

ASET, Amity University
Sector-125, Noida, UP, India

ABSTRACT
Java virtual machine is interpreters for byte code in this paper

we have discuss the internal architecture of JVM which shows

that how objects go into the java heap and how method calling

goes into the java stack. In this paper we also discuss the java

security and process of how java programs run step by step

inside JVM.

Keywords

JVM, Java, Java Heap, Java Stack, Java Virtual Machine.

1. INTRODUCTION
JVM stands for java virtual machine, JVMs available for many

hardware and software platforms (i.e. JVM is platform

dependent). JVM is nothing it is only on paper written

instruction. Java is very secure because of its sandbox security

model. The local code is directly interacting to JVM but remote

code first interacts to the sandbox security. Sandbox security

check whether the code is trusted or not, if code is trusted then

sandbox security allows interacting with JVM, otherwise

restricted the code [6].

The JVM perform four main tasks:

 Loading of codes

 Verification of codes

 Execution of codes

 Provides runtime environment.

1.1 Hierarchy of Java Program

2. PROCESS
In the java programming language, all source code is first

written in plain text files ending with .java extension. Those

source files are then compiled in to .class files by the javac

compiler. A .class file does not contain code that is native to

your processor; it instead contains byte code the machine

language of java virtual machine because of the java virtual

machine available on many different operating systems. The

same .class file is capable of running on Microsoft windows, the

Solaris operating system, Linux, or Mac operating system. After

the successful compilation of java program the byte code is

generated, and it is platform independent. The byte code is

executed through interpreter line by line which is very slow.

To overcome this problem sun micro system introduces a new

compiler which is known as JIT (just in time) compiler which

executes whole instruction in one goes [1]. Java Virtual Machine

contains a byte code verifier to check the code for type errors

before it is run, after successful verification of byte code by byte

code verifier [2], JVM run program through java runtime

environment (JRE) and JRE is the implementation of JVM [8].

2.1 Process Diagram of JDK and JRE

BYTE CODE

JAVA SOURCE CODE

JDK (JAVAC)

BYTE CODE

VERIFICATION

OUTPUT

CONSOLE

JVM JIT

JAVA SOURCE

CODE

JAVA

DEVELOPMENT

KIT (JDK)

JAVA RUNTIME

ENVIROMENT

(JRE)

BYTE CODE

HARDWARE

JIT JVM
M

Fig 2: Process diagram of JDK and JRE

Fig 1: Hierarchy of java program

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 11, January 2014

35

2.2 Inside JVM Process

Fig 3: Inside JVM Process

2.2.1 Class loader
Class loader is subsystem of JVM that is used to load class files.

There are basically three types of class loaders,[7]

 Bootstrap Class Loader

Bootstrap class loader loads java’s core classes like

java.lang, java.util etc.

 Extensions Class Loader

Extensions class loader loads classes from this ext

folder.

 System Class Loader

Java classes that are available in the java class path are

loaded using System class loader.

2.2.2 Method Area
Method area contains all the java expressions.

2.2.3 Java heap
All objects which are created through new keyword go into java

heap [4].

2.2.4 Java stack
The calling of method goes into java stack [3].

2.2.5 Pc register
Pc register hold what is the next instruction to be executed.

2.2.6 Java native stack
In java native stack, those codes which are not written inside the

java are executed.

2.2.7 Execution Engine
Execution Engine Processor contains a virtual processor.

3. EXPERMENT

3.1 Understanding the Exception in thread
Main

class HeapFull{
 public static void main(String args[])

 {

 int[] a=new int[300000000];

 }

}

If the heap size is less as compared to given array i.e. 300000000

than the Exception in main “Out-Of-Memory-error” occurred

which shows the java heap space is full.

Heap size should be half of the RAM.

3.2 Understanding stack-over-flow Exception
class Stackoverflow

{

 public void fun()

 {

 System.out.println("i am from fun===>>>");

 fun1();

 }

 public void fun1()

 {

 System.out.println("i am from fun1==>>>");

 fun();

 }

 public static void main(String args[])

 {

 Stackoverflow o=new Stackoverflow();

 o.fun();

 }

}

In the output of the program java.lang.stackoverflow Exception

is occurred which shows the method calling goes into the java

stack.

JAVA SOURCE

CODE

CLASS LOADER

RUN TIME DATA

ENVIROMENT

EXECUTION

ENGINE

Method Java Java PC Java

 Area Heap Stack Register Native
 Stack

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 11, January 2014

36

4. RESULTS

4.1 Heap Size is full

Fig 4: Heap size is Full

4.2 Stack overflow

Fig 5: Stack overflow

5. CONCLUSION
With the help of this paper we understand the step by step

process for execution of the program inside the java virtual

machine. In this paper we also understand the java security

through sandbox security model. With the help of both the

experiments, we also understand the internal architecture of java

virtual machine which shows that all objects goes into the java

heap and calling of methods goes into the java stack. When the

size of memory is less than the given value into the array then

OutOfMemory Exception occurs which shows that heap size is

full and if the java stack is full then exception stack-over-flow

occur which shows that the calling of methods goes into the java

stack.

6. REFERENCES
[1] N. Shaylor. A “Just-in-Time Compiler for Memory-

Constrained Low-Power Devices”, In Proceedings of the

2nd Java Virtual Machine Research and Technology

Symposium, Aug. 2002.

[2] STEPHEN N. FREUND and JOHN C. MITCHELL “A

Type System for the Java Byte code Language AND

VERIFIER” JOURNAL OF AUTOMATED REASONING 30: 271–

321, 2003.

[3] Zi-Gang Lin ; Han-Wen Kuo ; Zi-Jing Guo ; “Stack

memory design for a low-cost instruction

folding Java processor”

Circuits and Systems (ISCAS), 2012 IEEE International

Symposium.

[4] Gibbs,C. ; Coady,Y.”Aspects of Memory Management”

System Sciences, 2005. HICSS '05. Proceedings of the 38th

Annual Hawaii International Conference.

[5] Guangyu.Chen ; Kandemir.M,”Improving Java virtual mac

hine reliability for memory-constrained embedded

systems”

Design Automation Conference, 2005.

[6] Besson, F. ; Blanc, T. ; Fournet, C. ; Gordon,” From stack

inspection to access control: a security analysis for

libraries” A.D.

Computer Security Foundations Workshop, 2004.

[7] Drossopoulou, S.: “An abstract model of Java dynamic

linking, loading and verification”, in R. Harper (ed.),

Workshop on Types in Compilation, Lecture Notes in

Comput. Sci. 2071, 2001,pp. 53–84.

[8] Hevarbert Schildt “the complete Reference”, java 2 Fifth

edition.

IJCATM : www.ijcaonline.org

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Zi-Gang%20Lin.QT.&searchWithin=p_Author_Ids:38468764100&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Han-Wen%20Kuo.QT.&searchWithin=p_Author_Ids:38469010800&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Zi-Jing%20Guo.QT.&searchWithin=p_Author_Ids:38468912000&newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6272011&sortType%3Ddesc_p_Publication_Year%26queryText%3DJava+Virtual+Machine+.LB.JVM.RB.
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6272011&sortType%3Ddesc_p_Publication_Year%26queryText%3DJava+Virtual+Machine+.LB.JVM.RB.
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6272011&sortType%3Ddesc_p_Publication_Year%26queryText%3DJava+Virtual+Machine+.LB.JVM.RB.
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6257548
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6257548
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6257548
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Gibbs,%20C..QT.&searchWithin=p_Author_Ids:37302952500&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Coady,%20Y..QT.&searchWithin=p_Author_Ids:37320902100&newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=1385803&sortType%3Ddesc_p_Publication_Year%26pageNumber%3D5%26queryText%3DJava+Virtual+Machine+.LB.JVM.RB.
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9518
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9518
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9518
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Guangyu%20Chen.QT.&searchWithin=p_Author_Ids:37277943700&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Kandemir,%20M..QT.&searchWithin=p_Author_Ids:37275431900&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Kandemir,%20M..QT.&searchWithin=p_Author_Ids:37275431900&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Kandemir,%20M..QT.&searchWithin=p_Author_Ids:37275431900&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Kandemir,%20M..QT.&searchWithin=p_Author_Ids:37275431900&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10020
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10020
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Besson,%20F..QT.&searchWithin=p_Author_Ids:37282405500&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Blanc,%20T..QT.&searchWithin=p_Author_Ids:37282404900&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Fournet,%20C..QT.&searchWithin=p_Author_Ids:37272355400&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Gordon,%20A.D..QT.&searchWithin=p_Author_Ids:37277878300&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Gordon,%20A.D..QT.&searchWithin=p_Author_Ids:37277878300&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Gordon,%20A.D..QT.&searchWithin=p_Author_Ids:37277878300&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Gordon,%20A.D..QT.&searchWithin=p_Author_Ids:37277878300&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9168
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9168

