
International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 11, January 2014

16 IJCATM : www.ijcaonline.org

Verification of Asynchronous FIFO using System Verilog

Amit Kumar
School of Engineering and

Technology,
ITM University, Gurgaon, India

Shankar
School of Engineering and

Technology,
ITM University, Gurgaon, India

Neeraj Sharma

School of Engineering and
Technology,

ITM University, Gurgaon, India

ABSTRACT

As the designs gets complex, the probability of occurrence of

bugs increases. This necessitated the introduction of the

verification phase for verifying the functionality of the IC and

to detect the bugs at an early stage. In this paper, the

Asynchronous FIFO design is verified using SystemVerilog.

The design uses a grey code counter to address the memory

and for the pointer.

Keywords
Asynchronous FIFO, Setup time, Hold time, Metastability,

Verification

1. INTRODUCTION
FIFO (First In First Out) is a buffer that stores data in a way

that data stored first comes out of the buffer first.

Asynchronous FIFO are most widely used in the System on

chip (SOC) designs for data buffering and flow control [7]. As

the System on chip involves multiple IPs operating at

different speeds. Generally, Asynchronous FIFO is used when

the write operation is faster than the read operation.

Therefore, they need to be synchronized. Otherwise, it may

lead to the lead to the metastability conditions. This will affect

the operation of the chip. To overcome this problem

Asynchronous FIFOs are used.

The Asynchronous FIFO is a First-In-First-Out memory

queue with control logic that performs management of the

read and write pointers, generation of status flags, and

optional handshake signals for interfacing. .

FIFO architectures inherently have a challenge of

synchronizing itself with the pointer logic of other clock

domain and control the read and write operation of FIFO

memory locations safely with the user logic. Data is written

into the FIFO by write clock domain and data is read from the

FIFO by read clock domain where the two clock domains are

asynchronous to each other[5].

2. PROBLEM IN MULTICLOCK

DOMAIN
It is problematic to synchronize multiple changing signals

from one clock domain into a new clock domain and insuring

that all the signals are synchronized to the same clock cycle in

the new clock domain[3]. Multiple clock domain design are

difficult to implement as compared to single clock designs.

This is because there is single clock, in the single clock design

that goes through the entire design. The problem faced in the

multiple clock domain designs are Metastability, Setup &

Hold time violations.

Figure 1: Single Clock Domain [1]

Figure 2: Multiple Clock Domain [1]

Setup time is the minimum amount of time required for which

the data input should remain stable prior to the arrival of clock

pulse so that the data are reliably sampled by the clock. Hold

time is the minimum amount of time for which the data input

should remain stable after the arrival of clock pulse so that the

data is reliably sampled[1].

Metastability occurs in the multi clock domain when the

output from one clock domain changes at the rising edge of

the second clock domain which may lead to wrong results.

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 11, January 2014

17 IJCATM : www.ijcaonline.org

Figure 3: Setup and Hold Time Violations [1]

Figure 4: Setup and Hold Time Violations [1]

3. DESIGN
The asynchronous module consists of the following modules:

3.1 Fifo1
The module instantiates all the other modules used in the

complete asynchronous fifo design. Therefore, it acts as a

wrapper module to include all instances of the other module

and the interface port of each module[2].

3.2 Fifomem
This module is instantiated synchronous dual port RAM that

is accessed by both the write and read clock domains[2].

Figure 5: Fifo1 Top level design

3.3 Sync_r2w
This module consists of only flip flops to synchronize the

read pointer into the write clock domain. This synchronized

read pointer is used by the wptr_full module to generate the

full condition when the fifomem is full and to overcome the

metastability problem[3].

Figure 6: Fifomem

3.4 Sync_w2r
The sync_w2r module consists of two flip flops to overcome

the metastabilty condition and to synchronize write pointer

into the read clock domain which is used by the rptr module to

generate the empty condition when there is no data in the

fifomem block[2].

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 11, January 2014

18 IJCATM : www.ijcaonline.org

Figure 7: Asynchronous FIFO block diagram [2]

3.5 Rptr_empty
This module contains read pointer and empty flag. It is

synchronized to the read clock domain. The module uses grey

code counter to generate pointer and raddr[2].

Figure 8: Sync_r2w

Figure 9: Rptr_empty

3.6 Wptr_full
This module contains the write pointer and full flag and it is

synchronized to the write clock domain. The module uses

grey code counter to generate the pointer and waddr[2].

Figure 10: Wptr_full

Write and Read clock domain have different reset signals.

These reset signals are intended to be asynchronously set and

synchronously removed using the techniques described in

Mills and Cummings[4].

4. VERIFICATION
The verification of the Asynchronous FIFO design is carried

out to check that if the design is working as per the

specification. The following modules are generated to check

the functionality of the asynchronous fifo design.

4.1 Interface
The interface consists of bundle of wires i.e. multiple signals

used to connect the Testbench to the DUT. The modports used

in the interface block are used to group the signals for an

individual block and to specify the directions of the signals.

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 11, January 2014

19 IJCATM : www.ijcaonline.org

The interface block used in the verification of asynchronous

FIFO consists of two interfaces one synchronized to the write

clock domain and other synchronized to the read clock

domain.

4.2 Testcase
The testcase module will instantiate the environment module

and calls the methods in the environment.

Figure 11: Testbench [6]

4.3 Transaction
This block randomizes the data values “wdata” to be given to

the DUT and also assigns values to all the control bits that

controls the read and write operation.

4.4 Generator
The generator block creates a mailbox mbx. The mbx mailbox

is used to send the generated transaction to the driver block.

The generator put the transaction tr into the mailbox mbx

which is later retrieved by the driver block.

4.5 Driver
The driver block receives the transactions from the mailbox

mbx and assigns the values in the transaction to the individual

signals of the DUT through virtual interfaces. The driver also

sends the transaction to scoreboard using drv2sb mailbox.

4.6 Monitor
This is the receiver section that receives the data from the

receiver side of the Asynchronous FIFO. The transaction is

also sent to the scoreboard using mon2sb mailbox.

4.7 Scoreboard
The scoreboard receives the transactions from the driver

through mailbox “drv2sb” and another transaction from the

mailbox “mon2sb”. The two transactions are compared with

each other. Since in case of Asynchronous FIFO the data sent

by the write clock domain system to the DUT should be same

as that of the data received by the read clock domain system

of the DUT. Therefore, if the two transactions received by the

scoreboard are the same, then the DUT is working correctly.

4.8 Environment
The environment block instantiates all the modules and

mailboxes. It consists of the following modules:

Build: It instantiates the mailboxes and other testbench

modules i.e. driver, monitor, scoreboard.

Reset: It is used to initialize all the signals at the time of

initialization and set them to their initial values.

Start: This method is used to run all the task and functions in

all the modules.

Wait for end: This method is used to wait for the completion

of the last transaction.

Run: This task run all the methods in the environment module

in the specified order.

Report: Its main function is to detect the errors in the design

and report the errors.

 5. SIMULTION RESULTS

Figure 12: Data sent to the write clock domain

Each time the data “wdata” is sent to the asynchronous fifo

the address “waddr” gets updated. At the same time the write

pointer “wptr” and the read pointer synchronized to the write

clock domain gets updated.

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 11, January 2014

20 IJCATM : www.ijcaonline.org

Figure 13: Data received at the read clock domain

Each time the data “rdata” is read from the asynchronous fifo

the address “raddr” gets updated. At the same time the read

pointer “rptr” and the write pointer synchronized to the read

clock domain gets updated.

6. CONCLUSION
Since the data sent by the write clock domain to the

asynchronous fifo is same as the data received at the read

clock domain from the asynchronous fifo. Therefore, the

asynchronous fifo is functionally correct. As shown in Figure.

12, during “Transaction 1” when the wdata is sent by the write

clock domain, the 8-bit wdata is stored at the memory location

pointed to by the waddr. The wptr and rq2_wptr gets

incremented to point to the next empty memory location in the

fifo..

During next transaction “Transaction 2”, the next word wdata

is stored at the next memory location pointed to by the waddr.

and the pointers wptr and rq2_wptr gets incremented.

So, in this way data from the write clock domain are stored at

the consecutive memory location present in the asynchronous

fifo until the memory becomes full. In case the memory is full

the full flag is generated to prevent the overflow condition.

As shown in Figure 13, the data stored at the memory location

in asynchronous fifo is read by the read clock domain

through 8-bit rdata bus. Since the design has the fifo

implementation. Therefore, the data is read in the same way as

it is written. Hence, the rdata at the first memory location

pointed by the raddr is read first provided the memory is not

empty. Otherwise, empty flag will be high. When the first

data word is read by the read clock domain, the pointers rptr

and wq2_rptr gets incremented to point to the next memory in

the asynchronous fifo to be read. So, on completing the read

operation of “Transaction 1”, the “Transaction 2” is read by

the read clock domain in the same way.

Therefore, the read operation is performed on the consecutive

memory locations of the asynchronous fifo by the read clock

domain until the asynchronous fifo becomes empty.

This asynchronous fifo design can be used in the future to

overcome the timing issues which occurs in the multiclock

domain systems.

7. REFERENCES
[1] Mohit Arora, “The Art of Hardware Architecture: Design

Methods and Techniques for Digital Circuits,” Springer,

2011, ch 3, sec 3.3, pp 54-55

[2] Clifford E. Cummings, “Simulation and Synthesis

Techniques for Asynchronous FIFO Design,” SNUG

2000 Users Group Conference, San Jose, CA, 2002)

User Papers, March 2002.

[3] Clifford E. Cummings, “Synthesis and Scripting

Techniques for Designing Multi-Asynchronous Clock

Designs,” SNUG 2001 (Synopsys Users Group

Conference, San Jose, CA, 2001) User Papers, March

2001

[4] Clifford E. Cummings and Don Mills, “Synchronous

Resets? Asynchronous Resets? I am So Confused! How

Will I Ever Know Which to Use?” SNUG 2002

(Synopsys Users Group Conference, San Jose, CA, 2002)

User Papers, March 2002.

[5] Dadhania Prashant C. “Designing Asynchronous FIFO,”

Journal Of Information, Knowledge and Reseaarch In

Electronics and communication Engineering, Vol.2,

Issue.2, November 2013

[6]Chris Spears, “System Verilog for Design, “A Guide to

Using System Verilog for Hardware Design and

Modeling,” Springer Second edition.

[7] Mu-Tien Chang, Po-Tsang Huang, and Wei Hwang,”A

Robust Ultra-Low Power Asynchronous FIFO Memory

with Self-Adaptive Power Control,” SOC Conference,

2008 IEEE International, pp.175-178, Sept., 2008

IJCATM : www.ijcaonline.org

