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ABSTRACT 

Actual Quantifiability is a concept in MapReduce that is 

based on two assumptions: (1) every mapper is cautious, i.e., 

does not exclude any reducer’s key-value split pattern choice 

from consideration, and (2) every mapper respects the 

reducer’s key-value split pattern preferences, i.e., deems one 

reducer’s key-value split pattern choice to be infinitely more 

likely than another whenever it premises the reducer to prefer 

the one to the other. In this paper we provide a new approach 

for actual quantifiability, by assuming that mappers have 

asymmetric key-value split pattern about the reducer’s       

key-value utilities. We show that, if the uncertainty of each 

mapper about the reducer’s key-value utilities vanishes 

gradually in some regular manner, then the key-value split 

pattern choices it can quantifiably make under common 

conjecture in quantifiability are all actually quantifiable in the 

original MapReduce with no uncertainty about the reducer’s 

utilities.  
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1. INTRODUCTION 
MapReduce deals with the ways the mappers may reason 

about its reducers before making a decision. More precisely, 

in MapReduce mappers base its key-value split pattern 

choices on the conjectures about the reducers’ behavior, 

which in turn depend on its conjectures about the reducers’ 

conjectures about other reducers’ behavior, and so on [5]. A 

major goal of MapReduce in this work is to study such 

conjecture hierarchies, to impose reasonable conditions on 

these, and to investigate its split pattern behavioral 

implications.  

A central idea in MapReduce is common conjecture in 

quantifiability, stating that a mapper premises that its reducers 

choose quantifiably, and so on. In our view, one of its most 

natural refinements is the concept of actual quantifiability. 

Actual Quantifiability is based on the following two 

conditions: The first states that mappers are cautious [1] [8], 

meaning that they do not exclude any reducers’ key-value 

split pattern choice from consideration. The second condition 

states that whenever premise that a key-value split pattern 

choice a is better than another key-value split pattern choice b 

for a reducer, then the probability assign to b must be at    

most   times the probability assign to a. Under  -actual 

quantifiability there is common conjecture in the event that 

every mapper is cautious and satisfies the -actual trembling 

condition. A key-value split pattern choice is called actually 

quantifiable if it can be chosen under  -actual quantifiability 

for every   > 0 [4] [7]. 

 

Fig 1: Research Plan: Basic Means, Stages, Main 

Outcomes 
 

2. RESEARCH CLARIFICATION 
The usual interpretation of actual quantifiability assumes that 

reducer makes mistakes, but that deem more costly mistakes 

much less likely than less costly mistakes. In this paper we 

offer a rather different approach for actual quantifiability. 

Instead of assuming premise reducer to make mistakes, we 

rather suppose that have uncertainty about its utility function, 

while believing that it chooses quantifiably. We thus consider 

a MapReduce with asymmetric key-value split pattern. Our 

main result states that, if we let uncertainty about the 

reducer’s utility go to zero in some regular manner, then every 

key-value split pattern choice that can quantifiably be made 

under common conjecture in quantifiability in the MapReduce 

with asymmetric key-value split pattern, will be actually 

quantifiable in the original MapReduce, in which there is no 

uncertainty about the reducer’s utilities. 

In the MapReduce with asymmetric key-value split pattern, 

we impose some regularity conditions on the mappers’ 

conjectures about the reducer’s utility functions which can be 

summarized as follows: First, for every outcome in the 

MapReduce, the conjecture that mapper i has about mapper j’s 

utility from this outcome, is always normally distributed with 

its mean at the “original” utility in the original MapReduce. 

As a consequence, mapper i deems any utility function 

possible for mapper j, and hence every split pattern choice for 

mapper j can be optimal for some utility function deemed 

possible by i. Together with the condition that i premises in j’s 

quantifiability, this actually makes sure that mapper i deems 

every key-value split pattern choice possible for mapper j, 

thus mimicking the cautiousness condition described above. 

Secondly, i’s conjecture about j’s utility function should be 

independent from its conjecture about j’s conjecture 

hierarchy. This makes intuitive sense since j’s conjecture 

hierarchy is analytic property of this mapper, whereas its 
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utility function is not analytic property [6]. Therefore there is 

no obvious reason to expect any correlation between these 

two characteristics. Thirdly, i’s conjecture about j’s utilities 

from different outcomes in the MapReduce should be 

independent from each other. 

The paper is organized as follows: In Section 3 we introduce 

our MapReduce programming model [3] [2], for MapReduce        

with asymmetric key-value split pattern, we formalize the idea 

of common conjecture in quantifiability for these MapReduce, 

and show that common conjecture in quantifiability is always 

possible (Descriptive Study I). In Section 4 we introduce our 

MapReduce programming model for MapReduce with 

symmetric key-value split pattern, and present the concept of 

actual quantifiability for these MapReduce (Prescriptive 

Study). In Section 5 we state our main result, establishing the 

connection between common conjecture in quantifiability in 

the MapReduce with asymmetric key-value split pattern in the 

presence of small uncertainty about the reducer’s utility 

function, and actual quantifiability in the original MapReduce 

(Descriptive Study II). In Section 6 we provide some 

concluding remarks. 
 

3. DESCRIPTIVE STUDY I 

3.1 MapReduce Programming Model 
Throughout this paper we restrict attention to MapReduce 

operations with two sets of mapper. Let   = (Ci, wi)iϵI be a 

finite, static MapReduce where I = {1, 2}is the set of 

mappers, Ci is the finite set of key-value split pattern choices 

of mapper i, wi is mapper i’s utility function. The function wi 

assigns to every pair of key-value split pattern choice (c1, c2) ϵ 

C1× C2 a utility wi(c1, c2) ϵ F. 

In a MapReduce with asymmetric key-value split pattern, 

mappers do not only uncertainty about the reducer’s key-value 

split pattern choices; they also have uncertainty about the 

reducer’s utility function. Hence a conjecture hierarchy should 

not only specify what the mapper premises about the 

reducer’s key-value split pattern choice but also what it 

premises about the reducer’s utility function. Not only this, it 

should also specify what the mapper premises about the 

reducer’s conjecture about its own key-value split pattern 

choice and utility function, and so on. A possible way of 

modeling such conjecture hierarchies is by means of the 

following necessary and sufficient condition. 

Necessary and sufficient condition 3.1 (MapReduce 

programming model). A finite MapReduce programming 

model for   with asymmetric key-value split pattern is a tuple 

M = (Si, vi, Ki)iϵI where (1) Si is the set of key-value types for 

mapper i. (2) vi : Si    Cj×Sj) is the conjecture assignment 

taking only finitely many different probability distributions on 

 (Cj×Sj) and (3) ki is the utility assignment that assigns to 

every si ϵ Si a utility function ki(si) : C1× C2   F. 

By  (P) we denote the set of probability distributions on P. 

Therefore, in a MapReduce programming model, each        

key-value type si has a conjecture about mapper j’s split 

pattern choice-key-value type combinations. And hence, in 

particular, it has a conjecture about j’s split pattern choice. 

But, as mapper j’s key-value type also specifies its utility 

function and its conjecture about i’s split pattern choice, 

mapper i also has some conjecture about mapper j’s utility 

function, and about mapper j’s conjecture about its own split 

pattern choice, and so on. In this way one can derive a 

complete conjecture hierarchy for every given key-value type. 

Note that each key-value type si can be identified with a pair 

(ki(si), vi(si)), where ki(si) is its utility function and vi(si) is its 

conjecture hierarchy. Since we required the conjecture 

assignment to take only finitely many different probability 

distributions, the MapReduce programming model contains 

only finitely many different conjecture hierarchies. 

3.2 Limitations on the MapReduce 

Programming Model 
Our goal will be to model the situation where the mappers 

have uncertainty about the reducer’s utility function, but 

where this uncertainty “vanishes in the limit”. In order to 

formalize this we need to impose additional limitations on the 

MapReduce programming model. 

Recall that every key-value type si can be identified with a 

pair (ki(si), vi(si)),where ki(si) is si’s utility function and vi(si) is 

its conjecture hierarchy. Denote by Ki the set of all possible 

utility functions, and by Vi the set of all conjecture hierarchies 

in the MapReduce programming model M = (Si, ki, vi)iϵI. The 

first condition we impose is that Si = Ki×Vi, that is, for every 

possible utility function we can think of, and every conjecture 

hierarchy in the model, there exists a key-value type in the 

model with exactly this combination of utility function and 

conjecture hierarchy. Therefore in a sense we assume that the 

key-value type is rich enough. 

Secondly, we assume that si’s conjecture about j’s utility from 

(c1, c2) is statistically independent from its conjecture j’s 

utility from ( 1, 2) whenever (c1, c2) ≠ ( 1, 2) and that this 

conjecture is also statistically independent from its conjecture 

about j’s conjecture hierarchy.  

Finally we assume that si’s conjectures about j’s utilities from 

the various outcomes in the MapReduce are all induced by a 

unique normal distribution. More formally, si’s conjecture 

about j’s utility from (c1, c2) is given by a normal distribution 

with its mean at wj(c1, c2) – the “true” utility of mapper j in 

the original MapReduce. Therefore, all these conjectures are 

distributed identically around the mean. By collecting all 

these conditions we arrive at the following necessary and 

sufficient condition. 

Necessary and sufficient condition 3.2 ( –regular 

MapReduce programming model). Let D be the normal 

distribution on F with mean 0 and variance  2 > 0. Then a 

MapReduce programming model M = (Si, vi, ki)iϵI is  –regular 

if for both mappers i, (1) Si = Ki× Vi, (2) for every key-value 

type si ϵ Si, its conjecture about j’s utility from (c1, c2) is 

statistically independent from its conjecture about j’s utility 

from ( 1, 2) whenever (c1, c2) ≠ ( 1, 2) and its conjecture about 

j’s utilities is statistically independent from its conjecture 

about j’s conjecture hierarchy, and (3) for every key-value 

type si ϵ Si, and every split pattern choice-pair (c1, c2), the 

conjecture of si  about j’s utility from (c1, c2) is given by D, 

upto a shift of the mean to wj(c1, c2). 

3.3  -Quantifiability 
In this subsection we will define common conjecture in 

quantifiability inside a MapReduce programming model with 

asymmetric key-value split pattern. In addition, if we require 

the MapReduce-programming model to be  -regular for a 

given normal distribution with mean 0 and variance  2, then 

we obtain the concept of  -quantifiability. We first need some 

more notations. For given key-value type si and key-value 

split pattern choice ci, let ki(si)(ci) be the expected utility for 

key-value type si from choosing ci, given its conjecture vi(si) 
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about the reducer’s key-value split pattern choice, and given 

its utility function ki(si). 

Necessary and sufficient condition 3.3 (Quantifiable        

key-value split choice). A key-value split pattern choice ci is 

quantifiable for si if ki(si)(ci) ≥ ki(si)( i) for all  i ϵ Ci. 

We will now define common conjecture in quantifiability. In 

words it says that a mapper premises that its reducer makes 

quantifiable key-value split pattern choices, and premises that 

its reducer premises that it makes quantifiable key-value split 

pattern choices, and so on. 

Formally, for every  i⊆Si, let 

(Ci× i)
quant = { (ci, si) ϵ Ci× i: ci is quantifiable for si}. 

Necessary and sufficient condition 3.4 (Common conjecture 

in quantifiability). For mappers i we define subsets of         

key-value types Si
1, Si

2,…in a recursive way as follows: 

Si
1: = {siϵ Si: vi(si) [(Cj×Sj)

quant] = 1}, 

Si
2: = {siϵ Si: vi(si) [(Cj× Sj

1)quant] = 1}, 

. 

. 

. 

Si
l: = {siϵ Si: vi(si) [(Cj× Sj

l-1)quant] = 1}, 

. 

. 

. 

Key-value type si expresses common conjecture in 

quantifiability if siϵ lϵN Si
l. A key-value type  –quantifiable if 

it expresses common conjecture in quantifiability with a       

 –regular MapReduce programming model. 

Necessary and sufficient condition 3.5 ( –quantifiable     

key-value type). Let M = (Si, vi, ki)iϵI be a  –regular 

MapReduce programming model. Every key-value type si ϵ Si 

that expresses common conjecture in quantifiability is called      

 –quantifiable. 

Now we show that  –quantifiable key-value types always 

exist. 

Proposition 3.1 ( –quantifiable key-value types always 

exist). Consider a finite static MapReduce  = (Ci, wi)iϵI, and 

some   > 0. Then there is a  –regular MapReduce 

programming model M = (Si, vi, ki)iϵI for   where all key-value 

types are  –quantifiable.  

3.4 Limit Quantifiability 
In this subsection we focus on those key-value split pattern 

choices, which can quantifiably be made under common 

conjecture in quantifiability when the uncertainty about the 

reducer’s utility vanishes. This will lead to the concept of 

limit quantifiability. We first need an additional necessary and 

sufficient condition. 

Necessary and sufficient condition 3.6 (Constant key-value 

type and utility assignments). A key-value sequence of 

MapReduce programming models ((Si
n, vi

n, ki
n)iϵI)nϵN has 

constant key-value type  and utility assignments if Si
n = Si

m 

and ki
n = ki

m for all n and m, and for mappers i. 

We are now ready to say the concept of limit quantifiable   

key-value split pattern choice. 

Necessary and sufficient condition 3.7 (Limit quantifiable 

split pattern choice). Consider a finite static MapReduce          

  = (Ci, wi)iϵI with mappers. A key-value split pattern choice ci 

is limit quantifiable if there is a key-value sequence 

(  )nϵN 0,and a key-value sequence (Mn)nϵN of   –regular 

MapReduce programming models with constant key-value 

type  and utility assignments, such that in every Mn there is a        

  -quantifiable key-value type si
n with utility function wi, for 

which key-value split pattern choice ci is optimal. 
 

4. PRESCRIPTIVE STUDY 

4.1 MapReduce Programming Model 
Let   = (Ci, wi)iϵI be a finite, static MapReduce with mappers. 

In a MapReduce with symmetric key-value split pattern 

mappers do not have uncertainty about the reducer’s utility 

function. Therefore a conjecture hierarchy only needs to 

specify what a mapper premises about the reducer’s key-value 

split pattern choice, what it premises about the reducer’s 

conjecture about its own key-value split pattern choice, and so 

on. Therefore the MapReduce programming model will be 

simpler compared to the case of asymmetric key-value split 

pattern. 

Necessary and sufficient condition 4.1 (MapReduce 

programming model). A MapReduce programming model 

for withsymmetric key-value split pattern is a tuple              

M = ( i,  i)iϵI where (1)  i is the finite set of key-value types 

for mapper i, and (2)  i   i   (Cj ×  j) is the conjecture 

assignment.  

Therefore, in a MapReduce programming model, each        

key-value type  i has a conjecture about mapper j’s key-value 

split pattern choice-key-value type combinations. And hence, 

in particular, it has a conjecture about j’s key-value split 

pattern choice. But, as mapper j’s key-value type also 

specifies its conjecture about mapper i’s key-value split 

pattern choice, mapper i also has some conjecture about 

mapper j’s conjecture about its own key-value split pattern 

choice, and so on. In this way one can derive a complete 

conjecture hierarchy for every given key-value type. 

For given key-value type  i and key-value split pattern choice 

ci we define wi(ci,  i) as the expected utility for key-value type 

 i from choosing ci given its conjecture ρi( i  about its 

reducer’s key-value split pattern choice (and given its “fixed” 

utility function wi). Key-value type   i is said to prefer          

key-value split pattern choice ci to key-value split pattern 

choice  i when wi(ci,  i     i  i i). We say that a key-value 

type  i considers possible some reducer’s key-value type 

 i    i( i)(cj,  j) > 0 for some cj ϵ Cj. Now we introduce the 

key condition in actual quantifiability, which is the  –actual 

trembling condition. Intuitively it says that (1) a mapper 

should deem possible all reducer’s key-value split pattern 

choices, and (2) if a mapper premises key-value split pattern 

choice a is better than key-value split pattern choice b for     

the other mapper, then it should deem key-value split pattern 

choice a much more likely than key-value split pattern     

choice b.  

Necessary and sufficient condition 4.2 ( -actual trembling 

condition). Let   > 0. A key-value type  i satisfies the           

 -actual trembling condition if (1) for each  j that  i deems 

possible,  i( i)(cj,  j) > 0 for all cj ϵ Cj, and (2) for every  j that 

 i deems possible, whenever  j prefers cj to  j, then  i( i)( j, 

 j) ≤  ∙  i( i)(cj,  j). 

Therefore, the first condition says that whenever  i deems 

some key-value type  j possible,  i also assumes every        
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key-value split pattern choice is possible for  j. Actual 

Quantifiability is based on the event that the key-value types 

should not only satisfy the  -actual trembling condition 

themselves, but also express common conjecture in the event 

that key-value types satisfy the  -actual trembling condition. 

Necessary and sufficient condition 4.3 ( -actually 

quantifiable key-value type). A key-value type  i is  -actually 

quantifiable if:  i satisfies the  -actual trembling condition,  i 

only deems possible reducer’s key-value types  j which 

satisfy the  -actual trembling condition,  i only deems 

possible reducer’s key-value types  j which only deem 

possible mapper i’s key-value types  ’i which satisfy the       

 -actual trembling condition, and so on. 

Actually quantifiable key-value split pattern choices are those 

key-value split pattern choices, which can quantifiably be 

made by  -actually quantifiable key-value types for all  . 

Necessary and sufficient condition 4.4 (Actually 

quantifiable split pattern choice). A key-value split pattern 

choice ci is  -actually quantifiable if there is a MapReduce 

programming model and a  -actually quantifiable key-value 

type  i within it for which ci is optimal. A key-value split 

pattern choice ci is actually quantifiable if it is  -actually 

quantifiable for all   > 0. 

5. DESCRIPTIVE STUDY II 

5.1 Statement of the Main Result 
For a static MapReduce we analyzed two contexts, one with 

asymmetric key-value split pattern and another with                                  

symmetric key-value split pattern. In the context with 

asymmetric key-value split pattern, where mappers have 

uncertainty about the reducer’s utility, we introduced the 

concept of a limit quantifiable key-value split pattern choice. 

In the context with symmetric key-value split pattern, where 

mappers have no uncertainty about the reducer’s utility, we 

discussed the concept of an actually quantifiable key-value 

split pattern choice. In our main result we connect these two 

concepts. 

Proposition 5.1 (Limit Quantifiability implies actual 

quantifiability). Consider a finite static MapReduce with 

mappers. Every limit quantifiable key-value split pattern 

choice for the context with asymmetric key-value split pattern 

is a actually quantifiable key-value split pattern choice for the 

context with symmetric key-value split pattern.  

5.2 Illustration of the Main Result 
By means of an example we provide some intuition for our 

main result. More precisely we show how a quantifiable      

key-value type in the context of asymmetric key-value split 

pattern can be transformed into a actually quantifiable        

key-value type in the context of symmetric key-value split 

pattern. Also we show that when   goes to zero then   goes to 

zero as well.Let us start with the context of asymmetric      

key-value split pattern. Let D be the normal distribution with 

mean 0 and variance  2. From the Proposition 3.1 we know 

that there exists a regular MapReduce programming model      

M = (Si, vi, ki)iϵI where every key-value type is quantifiable 

and all the key-value types have the same conjecture 

hierarchy. Therefore, key-value types only differ by their 

utility function. For each of the key-value types s1 of mapper 

1 we denote by  1 the conjecture about mapper 2’s key-value 

split pattern choice, and for each key-value type s2 let  2 be 

the conjecture about mapper 1’s key-value split pattern 

choice. As we assume that all the key-value types have the 

same conjecture hierarchy,  1 and  2 are unique. 

For both mappers i let Oi be the probability distribution on 

mapper i’s utility functions generated by D. Since the 

MapReduce-programming model is  -regular every key-value 

type sj has the conjecture Oi about i’s utility function. Let 

Ki(ci,  i) be the set of utility functions for mapper i such that 

the key-value split pattern choice ci is optimal under the 

conjecture  i about the reducer’s key-value split pattern 

choice. Since every key-value type si expresses common 

conjecture in quantifiability, the probability it assigns to a 

reducer’s key-value split pattern choice cj is exactly the 

probability it assigns to the event that j’s utility function is in 

Kj(cj,  j) which is Oj(Kj(cj,  j). 

Since D has full support, it follows that all these probabilities 

are positive. Now we turn to the context of symmetric       

key-value split pattern. We construct a MapReduce 

programming model with a single key-value type  1 for 

mapper 1 and a single key-value type  2 for mapper 2. Let the 

conjecture of  1 about the mapper 2’s key-value split pattern 

choice be given by the  1 constructed above, and similarly for 

the conjecture of  2. Therefore, the conjecture about the 

reducer’s key-value split pattern choice has not changed by 

moving from the context with asymmetric key-value split 

pattern to the context with symmetric key-value split pattern. 

6. CONCLUDING REMARKS 
We premise that actual quantifiability is a very natural 

concept in MapReduce, but it has not yet received the 

attention it deserves. In this paper we have established a new 

approach for actual quantifiability from the viewpoint of 

MapReduce with asymmetric key-value split pattern. In 

MapReduce with asymmetric key-value split pattern we 

define a key-value split pattern choice as limit quantifiable if 

it can quantifiably be made under common conjecture of 

quantifiability when the uncertainty vanishes gradually in 

some regular way. We show the existence of such key-value 

split pattern choices. We then establish that each limit 

quantifiable key-value split pattern choice in the MapReduce 

with asymmetric key-value split pattern is actually 

quantifiable for the context with symmetric key-value split 

pattern. 
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