
International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 10, January 2014

30

Asymmetric Key-Value Split Pattern Assumption over

MapReduce Behavioral Model

Ravi Prakash G.
Department of CS/IT
Alliance University
Bangalore, India

Kiran M.
Member, Technical Staff

Data Analytics Research Lab
Bangalore, India

Saikat Mukherjee
Senior Software Engineer

HP India
Bangalore, India

ABSTRACT

Actual Quantifiability is a concept in MapReduce that is

based on two assumptions: (1) every mapper is cautious, i.e.,

does not exclude any reducer’s key-value split pattern choice

from consideration, and (2) every mapper respects the

reducer’s key-value split pattern preferences, i.e., deems one

reducer’s key-value split pattern choice to be infinitely more

likely than another whenever it premises the reducer to prefer

the one to the other. In this paper we provide a new approach

for actual quantifiability, by assuming that mappers have

asymmetric key-value split pattern about the reducer’s

key-value utilities. We show that, if the uncertainty of each

mapper about the reducer’s key-value utilities vanishes

gradually in some regular manner, then the key-value split

pattern choices it can quantifiably make under common

conjecture in quantifiability are all actually quantifiable in the

original MapReduce with no uncertainty about the reducer’s

utilities.

Keywords

Mapper, reducer, key-value, asymmetric, split pattern,

utilities, MapReduce, behavioral, actual quantifiability

1. INTRODUCTION
MapReduce deals with the ways the mappers may reason

about its reducers before making a decision. More precisely,

in MapReduce mappers base its key-value split pattern

choices on the conjectures about the reducers’ behavior,

which in turn depend on its conjectures about the reducers’

conjectures about other reducers’ behavior, and so on [5]. A

major goal of MapReduce in this work is to study such

conjecture hierarchies, to impose reasonable conditions on

these, and to investigate its split pattern behavioral

implications.

A central idea in MapReduce is common conjecture in

quantifiability, stating that a mapper premises that its reducers

choose quantifiably, and so on. In our view, one of its most

natural refinements is the concept of actual quantifiability.

Actual Quantifiability is based on the following two

conditions: The first states that mappers are cautious [1] [8],

meaning that they do not exclude any reducers’ key-value

split pattern choice from consideration. The second condition

states that whenever premise that a key-value split pattern

choice a is better than another key-value split pattern choice b

for a reducer, then the probability assign to b must be at

most times the probability assign to a. Under -actual

quantifiability there is common conjecture in the event that

every mapper is cautious and satisfies the -actual trembling

condition. A key-value split pattern choice is called actually

quantifiable if it can be chosen under -actual quantifiability

for every > 0 [4] [7].

Fig 1: Research Plan: Basic Means, Stages, Main

Outcomes

2. RESEARCH CLARIFICATION
The usual interpretation of actual quantifiability assumes that

reducer makes mistakes, but that deem more costly mistakes

much less likely than less costly mistakes. In this paper we

offer a rather different approach for actual quantifiability.

Instead of assuming premise reducer to make mistakes, we

rather suppose that have uncertainty about its utility function,

while believing that it chooses quantifiably. We thus consider

a MapReduce with asymmetric key-value split pattern. Our

main result states that, if we let uncertainty about the

reducer’s utility go to zero in some regular manner, then every

key-value split pattern choice that can quantifiably be made

under common conjecture in quantifiability in the MapReduce

with asymmetric key-value split pattern, will be actually

quantifiable in the original MapReduce, in which there is no

uncertainty about the reducer’s utilities.

In the MapReduce with asymmetric key-value split pattern,

we impose some regularity conditions on the mappers’

conjectures about the reducer’s utility functions which can be

summarized as follows: First, for every outcome in the

MapReduce, the conjecture that mapper i has about mapper j’s

utility from this outcome, is always normally distributed with

its mean at the “original” utility in the original MapReduce.

As a consequence, mapper i deems any utility function

possible for mapper j, and hence every split pattern choice for

mapper j can be optimal for some utility function deemed

possible by i. Together with the condition that i premises in j’s

quantifiability, this actually makes sure that mapper i deems

every key-value split pattern choice possible for mapper j,

thus mimicking the cautiousness condition described above.

Secondly, i’s conjecture about j’s utility function should be

independent from its conjecture about j’s conjecture

hierarchy. This makes intuitive sense since j’s conjecture

hierarchy is analytic property of this mapper, whereas its

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 10, January 2014

31

utility function is not analytic property [6]. Therefore there is

no obvious reason to expect any correlation between these

two characteristics. Thirdly, i’s conjecture about j’s utilities

from different outcomes in the MapReduce should be

independent from each other.

The paper is organized as follows: In Section 3 we introduce

our MapReduce programming model [3] [2], for MapReduce

with asymmetric key-value split pattern, we formalize the idea

of common conjecture in quantifiability for these MapReduce,

and show that common conjecture in quantifiability is always

possible (Descriptive Study I). In Section 4 we introduce our

MapReduce programming model for MapReduce with

symmetric key-value split pattern, and present the concept of

actual quantifiability for these MapReduce (Prescriptive

Study). In Section 5 we state our main result, establishing the

connection between common conjecture in quantifiability in

the MapReduce with asymmetric key-value split pattern in the

presence of small uncertainty about the reducer’s utility

function, and actual quantifiability in the original MapReduce

(Descriptive Study II). In Section 6 we provide some

concluding remarks.

3. DESCRIPTIVE STUDY I

3.1 MapReduce Programming Model
Throughout this paper we restrict attention to MapReduce

operations with two sets of mapper. Let = (Ci, wi)iϵI be a

finite, static MapReduce where I = {1, 2}is the set of

mappers, Ci is the finite set of key-value split pattern choices

of mapper i, wi is mapper i’s utility function. The function wi

assigns to every pair of key-value split pattern choice (c1, c2) ϵ

C1× C2 a utility wi(c1, c2) ϵ F.

In a MapReduce with asymmetric key-value split pattern,

mappers do not only uncertainty about the reducer’s key-value

split pattern choices; they also have uncertainty about the

reducer’s utility function. Hence a conjecture hierarchy should

not only specify what the mapper premises about the

reducer’s key-value split pattern choice but also what it

premises about the reducer’s utility function. Not only this, it

should also specify what the mapper premises about the

reducer’s conjecture about its own key-value split pattern

choice and utility function, and so on. A possible way of

modeling such conjecture hierarchies is by means of the

following necessary and sufficient condition.

Necessary and sufficient condition 3.1 (MapReduce

programming model). A finite MapReduce programming

model for with asymmetric key-value split pattern is a tuple

M = (Si, vi, Ki)iϵI where (1) Si is the set of key-value types for

mapper i. (2) vi : Si Cj×Sj) is the conjecture assignment

taking only finitely many different probability distributions on

 (Cj×Sj) and (3) ki is the utility assignment that assigns to

every si ϵ Si a utility function ki(si) : C1× C2 F.

By (P) we denote the set of probability distributions on P.

Therefore, in a MapReduce programming model, each

key-value type si has a conjecture about mapper j’s split

pattern choice-key-value type combinations. And hence, in

particular, it has a conjecture about j’s split pattern choice.

But, as mapper j’s key-value type also specifies its utility

function and its conjecture about i’s split pattern choice,

mapper i also has some conjecture about mapper j’s utility

function, and about mapper j’s conjecture about its own split

pattern choice, and so on. In this way one can derive a

complete conjecture hierarchy for every given key-value type.

Note that each key-value type si can be identified with a pair

(ki(si), vi(si)), where ki(si) is its utility function and vi(si) is its

conjecture hierarchy. Since we required the conjecture

assignment to take only finitely many different probability

distributions, the MapReduce programming model contains

only finitely many different conjecture hierarchies.

3.2 Limitations on the MapReduce

Programming Model
Our goal will be to model the situation where the mappers

have uncertainty about the reducer’s utility function, but

where this uncertainty “vanishes in the limit”. In order to

formalize this we need to impose additional limitations on the

MapReduce programming model.

Recall that every key-value type si can be identified with a

pair (ki(si), vi(si)),where ki(si) is si’s utility function and vi(si) is

its conjecture hierarchy. Denote by Ki the set of all possible

utility functions, and by Vi the set of all conjecture hierarchies

in the MapReduce programming model M = (Si, ki, vi)iϵI. The

first condition we impose is that Si = Ki×Vi, that is, for every

possible utility function we can think of, and every conjecture

hierarchy in the model, there exists a key-value type in the

model with exactly this combination of utility function and

conjecture hierarchy. Therefore in a sense we assume that the

key-value type is rich enough.

Secondly, we assume that si’s conjecture about j’s utility from

(c1, c2) is statistically independent from its conjecture j’s

utility from (1, 2) whenever (c1, c2) ≠ (1, 2) and that this

conjecture is also statistically independent from its conjecture

about j’s conjecture hierarchy.

Finally we assume that si’s conjectures about j’s utilities from

the various outcomes in the MapReduce are all induced by a

unique normal distribution. More formally, si’s conjecture

about j’s utility from (c1, c2) is given by a normal distribution

with its mean at wj(c1, c2) – the “true” utility of mapper j in

the original MapReduce. Therefore, all these conjectures are

distributed identically around the mean. By collecting all

these conditions we arrive at the following necessary and

sufficient condition.

Necessary and sufficient condition 3.2 (–regular

MapReduce programming model). Let D be the normal

distribution on F with mean 0 and variance 2 > 0. Then a

MapReduce programming model M = (Si, vi, ki)iϵI is –regular

if for both mappers i, (1) Si = Ki× Vi, (2) for every key-value

type si ϵ Si, its conjecture about j’s utility from (c1, c2) is

statistically independent from its conjecture about j’s utility

from (1, 2) whenever (c1, c2) ≠ (1, 2) and its conjecture about

j’s utilities is statistically independent from its conjecture

about j’s conjecture hierarchy, and (3) for every key-value

type si ϵ Si, and every split pattern choice-pair (c1, c2), the

conjecture of si about j’s utility from (c1, c2) is given by D,

upto a shift of the mean to wj(c1, c2).

3.3 -Quantifiability
In this subsection we will define common conjecture in

quantifiability inside a MapReduce programming model with

asymmetric key-value split pattern. In addition, if we require

the MapReduce-programming model to be -regular for a

given normal distribution with mean 0 and variance 2, then

we obtain the concept of -quantifiability. We first need some

more notations. For given key-value type si and key-value

split pattern choice ci, let ki(si)(ci) be the expected utility for

key-value type si from choosing ci, given its conjecture vi(si)

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 10, January 2014

32

about the reducer’s key-value split pattern choice, and given

its utility function ki(si).

Necessary and sufficient condition 3.3 (Quantifiable

key-value split choice). A key-value split pattern choice ci is

quantifiable for si if ki(si)(ci) ≥ ki(si)(i) for all i ϵ Ci.

We will now define common conjecture in quantifiability. In

words it says that a mapper premises that its reducer makes

quantifiable key-value split pattern choices, and premises that

its reducer premises that it makes quantifiable key-value split

pattern choices, and so on.

Formally, for every i⊆Si, let

(Ci× i)
quant = { (ci, si) ϵ Ci× i: ci is quantifiable for si}.

Necessary and sufficient condition 3.4 (Common conjecture

in quantifiability). For mappers i we define subsets of

key-value types Si
1, Si

2,…in a recursive way as follows:

Si
1: = {siϵ Si: vi(si) [(Cj×Sj)

quant] = 1},

Si
2: = {siϵ Si: vi(si) [(Cj× Sj

1)quant] = 1},

.

.

.

Si
l: = {siϵ Si: vi(si) [(Cj× Sj

l-1)quant] = 1},

.

.

.

Key-value type si expresses common conjecture in

quantifiability if siϵ lϵN Si
l. A key-value type –quantifiable if

it expresses common conjecture in quantifiability with a

 –regular MapReduce programming model.

Necessary and sufficient condition 3.5 (–quantifiable

key-value type). Let M = (Si, vi, ki)iϵI be a –regular

MapReduce programming model. Every key-value type si ϵ Si

that expresses common conjecture in quantifiability is called

 –quantifiable.

Now we show that –quantifiable key-value types always

exist.

Proposition 3.1 (–quantifiable key-value types always

exist). Consider a finite static MapReduce = (Ci, wi)iϵI, and

some > 0. Then there is a –regular MapReduce

programming model M = (Si, vi, ki)iϵI for where all key-value

types are –quantifiable.

3.4 Limit Quantifiability
In this subsection we focus on those key-value split pattern

choices, which can quantifiably be made under common

conjecture in quantifiability when the uncertainty about the

reducer’s utility vanishes. This will lead to the concept of

limit quantifiability. We first need an additional necessary and

sufficient condition.

Necessary and sufficient condition 3.6 (Constant key-value

type and utility assignments). A key-value sequence of

MapReduce programming models ((Si
n, vi

n, ki
n)iϵI)nϵN has

constant key-value type and utility assignments if Si
n = Si

m

and ki
n = ki

m for all n and m, and for mappers i.

We are now ready to say the concept of limit quantifiable

key-value split pattern choice.

Necessary and sufficient condition 3.7 (Limit quantifiable

split pattern choice). Consider a finite static MapReduce

 = (Ci, wi)iϵI with mappers. A key-value split pattern choice ci

is limit quantifiable if there is a key-value sequence

()nϵN 0,and a key-value sequence (Mn)nϵN of –regular

MapReduce programming models with constant key-value

type and utility assignments, such that in every Mn there is a

 -quantifiable key-value type si
n with utility function wi, for

which key-value split pattern choice ci is optimal.

4. PRESCRIPTIVE STUDY

4.1 MapReduce Programming Model
Let = (Ci, wi)iϵI be a finite, static MapReduce with mappers.

In a MapReduce with symmetric key-value split pattern

mappers do not have uncertainty about the reducer’s utility

function. Therefore a conjecture hierarchy only needs to

specify what a mapper premises about the reducer’s key-value

split pattern choice, what it premises about the reducer’s

conjecture about its own key-value split pattern choice, and so

on. Therefore the MapReduce programming model will be

simpler compared to the case of asymmetric key-value split

pattern.

Necessary and sufficient condition 4.1 (MapReduce

programming model). A MapReduce programming model

for withsymmetric key-value split pattern is a tuple

M = (i, i)iϵI where (1) i is the finite set of key-value types

for mapper i, and (2) i i (Cj × j) is the conjecture

assignment.

Therefore, in a MapReduce programming model, each

key-value type i has a conjecture about mapper j’s key-value

split pattern choice-key-value type combinations. And hence,

in particular, it has a conjecture about j’s key-value split

pattern choice. But, as mapper j’s key-value type also

specifies its conjecture about mapper i’s key-value split

pattern choice, mapper i also has some conjecture about

mapper j’s conjecture about its own key-value split pattern

choice, and so on. In this way one can derive a complete

conjecture hierarchy for every given key-value type.

For given key-value type i and key-value split pattern choice

ci we define wi(ci, i) as the expected utility for key-value type

 i from choosing ci given its conjecture ρi(i about its

reducer’s key-value split pattern choice (and given its “fixed”

utility function wi). Key-value type i is said to prefer

key-value split pattern choice ci to key-value split pattern

choice i when wi(ci, i i i i). We say that a key-value

type i considers possible some reducer’s key-value type

 i i(i)(cj, j) > 0 for some cj ϵ Cj. Now we introduce the

key condition in actual quantifiability, which is the –actual

trembling condition. Intuitively it says that (1) a mapper

should deem possible all reducer’s key-value split pattern

choices, and (2) if a mapper premises key-value split pattern

choice a is better than key-value split pattern choice b for

the other mapper, then it should deem key-value split pattern

choice a much more likely than key-value split pattern

choice b.

Necessary and sufficient condition 4.2 (-actual trembling

condition). Let > 0. A key-value type i satisfies the

 -actual trembling condition if (1) for each j that i deems

possible, i(i)(cj, j) > 0 for all cj ϵ Cj, and (2) for every j that

 i deems possible, whenever j prefers cj to j, then i(i)(j,

 j) ≤ ∙ i(i)(cj, j).

Therefore, the first condition says that whenever i deems

some key-value type j possible, i also assumes every

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 10, January 2014

33

key-value split pattern choice is possible for j. Actual

Quantifiability is based on the event that the key-value types

should not only satisfy the -actual trembling condition

themselves, but also express common conjecture in the event

that key-value types satisfy the -actual trembling condition.

Necessary and sufficient condition 4.3 (-actually

quantifiable key-value type). A key-value type i is -actually

quantifiable if: i satisfies the -actual trembling condition, i

only deems possible reducer’s key-value types j which

satisfy the -actual trembling condition, i only deems

possible reducer’s key-value types j which only deem

possible mapper i’s key-value types ’i which satisfy the

 -actual trembling condition, and so on.

Actually quantifiable key-value split pattern choices are those

key-value split pattern choices, which can quantifiably be

made by -actually quantifiable key-value types for all .

Necessary and sufficient condition 4.4 (Actually

quantifiable split pattern choice). A key-value split pattern

choice ci is -actually quantifiable if there is a MapReduce

programming model and a -actually quantifiable key-value

type i within it for which ci is optimal. A key-value split

pattern choice ci is actually quantifiable if it is -actually

quantifiable for all > 0.

5. DESCRIPTIVE STUDY II

5.1 Statement of the Main Result
For a static MapReduce we analyzed two contexts, one with

asymmetric key-value split pattern and another with

symmetric key-value split pattern. In the context with

asymmetric key-value split pattern, where mappers have

uncertainty about the reducer’s utility, we introduced the

concept of a limit quantifiable key-value split pattern choice.

In the context with symmetric key-value split pattern, where

mappers have no uncertainty about the reducer’s utility, we

discussed the concept of an actually quantifiable key-value

split pattern choice. In our main result we connect these two

concepts.

Proposition 5.1 (Limit Quantifiability implies actual

quantifiability). Consider a finite static MapReduce with

mappers. Every limit quantifiable key-value split pattern

choice for the context with asymmetric key-value split pattern

is a actually quantifiable key-value split pattern choice for the

context with symmetric key-value split pattern.

5.2 Illustration of the Main Result
By means of an example we provide some intuition for our

main result. More precisely we show how a quantifiable

key-value type in the context of asymmetric key-value split

pattern can be transformed into a actually quantifiable

key-value type in the context of symmetric key-value split

pattern. Also we show that when goes to zero then goes to

zero as well.Let us start with the context of asymmetric

key-value split pattern. Let D be the normal distribution with

mean 0 and variance 2. From the Proposition 3.1 we know

that there exists a regular MapReduce programming model

M = (Si, vi, ki)iϵI where every key-value type is quantifiable

and all the key-value types have the same conjecture

hierarchy. Therefore, key-value types only differ by their

utility function. For each of the key-value types s1 of mapper

1 we denote by 1 the conjecture about mapper 2’s key-value

split pattern choice, and for each key-value type s2 let 2 be

the conjecture about mapper 1’s key-value split pattern

choice. As we assume that all the key-value types have the

same conjecture hierarchy, 1 and 2 are unique.

For both mappers i let Oi be the probability distribution on

mapper i’s utility functions generated by D. Since the

MapReduce-programming model is -regular every key-value

type sj has the conjecture Oi about i’s utility function. Let

Ki(ci, i) be the set of utility functions for mapper i such that

the key-value split pattern choice ci is optimal under the

conjecture i about the reducer’s key-value split pattern

choice. Since every key-value type si expresses common

conjecture in quantifiability, the probability it assigns to a

reducer’s key-value split pattern choice cj is exactly the

probability it assigns to the event that j’s utility function is in

Kj(cj, j) which is Oj(Kj(cj, j).

Since D has full support, it follows that all these probabilities

are positive. Now we turn to the context of symmetric

key-value split pattern. We construct a MapReduce

programming model with a single key-value type 1 for

mapper 1 and a single key-value type 2 for mapper 2. Let the

conjecture of 1 about the mapper 2’s key-value split pattern

choice be given by the 1 constructed above, and similarly for

the conjecture of 2. Therefore, the conjecture about the

reducer’s key-value split pattern choice has not changed by

moving from the context with asymmetric key-value split

pattern to the context with symmetric key-value split pattern.

6. CONCLUDING REMARKS
We premise that actual quantifiability is a very natural

concept in MapReduce, but it has not yet received the

attention it deserves. In this paper we have established a new

approach for actual quantifiability from the viewpoint of

MapReduce with asymmetric key-value split pattern. In

MapReduce with asymmetric key-value split pattern we

define a key-value split pattern choice as limit quantifiable if

it can quantifiably be made under common conjecture of

quantifiability when the uncertainty vanishes gradually in

some regular way. We show the existence of such key-value

split pattern choices. We then establish that each limit

quantifiable key-value split pattern choice in the MapReduce

with asymmetric key-value split pattern is actually

quantifiable for the context with symmetric key-value split

pattern.

7. ACKNOWLEDGMENTS
This research has benefited from the financial support of

Vision Group on Science and Technology, Department of

Information Technology, Biotechnology and Science &

Technology, Bangalore-560 001. This research has also been

enriched by many intangible contributions from my fellow

students and friends. Finally, thanks to the referees for their

careful reading and constructive criticism.

8. REFERENCES
[1] Kiran M., Saikat Mukherjee and Ravi Prakash G.,

Characterization of Randomized Shuffle and Sort

Quantifiability in MapReduce Model, International

Journal of Computer Applications, 51-58, Volume 79,

No. 5, October 2013.

[2] Amresh Kumar, Kiran M., Saikat Mukherjee and Ravi

Prakash G., Verification and Validation of MapReduce

Program model for Parallel K-Means algorithm on

Hadoop Cluster, International Journal of Computer

Applications, 48-55, Volume 72, No. 8, June 2013.

[3] Kiran M., Amresh Kumar, Saikat Mukherjee and Ravi

Prakash G., Verification and Validation of MapReduce

Program Model for Parallel Support Vector Machine

Algorithm on Hadoop Cluster, International Journal of

International Journal of Computer Applications (0975 – 8887)

Volume 86 – No 10, January 2014

34

Computer Science Issues, 317-325, Vol. 10, Issue 3, No.

1, May 2013.

[4] Aniruddha Basak, Irina Brinster and Ole J. Mengshoel.

MapReduce for Bayesian Network Parameter Learning

using the EM Algorithm, Proc. of Big Learning:

Algorithms, Systems and Tools, 1-6, December 2012.

[5] Berli’nska, J., Drozdowski, M.: Scheduling divisible

MapReduce computations. J. Parallel Distrib. Comput

71(3), 450-459 (2011).

[6] Emanuel Vianna, Giovanni Comarela, Tatiana Pontes,

Jussara Almeida, Virgilio Almeida, Kevin Wilkinson,

Harumi Kuno, Umeshwar Dayal. Analytical Performance

Models for MapReduce Workloads, Int J Parallel Prog

41:495-525 (2013).

[7] Erik B. Reed and Ole J. Mengshoel. Scaling Bayesian

Network Parameter Learning with Expectation

Maximization using MapReduce, Proc. of Big Learning:

Algorithms, Systems and Tools, 1-5, December 2012.

[8] Ravi Prakash G, Kiran M and Saikat Mukherjee, On

Randomized Preference Limitation Protocol for

Quantifiable Shuffle and Sort Behavioral Implications in

MapReduce Programming Model, Parallel & Cloud

Computing, Vol. 3, Issue 1, Pages 1-14, January 2014.

IJCATM : www.ijcaonline.org

