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ABSTRACT 

The authors of the above article proposed the improved 

( / )G G - expansion method and found  some  traveling 

wave solutions for each of two nonlinear evolution equations  

in mathematical physics,  namely  the Regularized Long Wave 

(RLW) equation and the Symmetric Regularized Long Wave 

(SRLW) equation. In the present article, we have noted that if 

we use a suitable transformation, the improved (G’/G)-

expansion  method can be reduced into the well -known 

generalized  Riccati equation mapping method which provides 

us with  much more traveling wave solutions, namely  twenty 

seven solutions for each  of  these two nonlinear evaluation 

equations. Comparison between the results of  these two 

methods is presented.   
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1. INTRODUCTION 
Traveling wave solutions for nonlinear evolution equations 

play an important role in many phenomena in physics such as 

fluid mechanics, hydrodynamics, optics, condensed matter 

physics, plasma physics and so on. In recent decades, many 

effective methods  [1-25]  have been established to obtain the 

exact traveling wave solutions of these equations.  In Ref. [19] 

the authors proposed the improved 
( / )G G

- expansion 

method and found some  solutions for each of  two nonlinear 

evolution equations, namely  the nonlinear RLW equation and  

the nonlinear SRLW equation.  This method can be 

summarized as follows: Suppose that a nonlinear evaluation 

equation has the following from: 

( , , , , ,...) 0,x t xx ttF u u u u u                    (1.1) 

where F is a polynomial in 
( , )u u x t

 and its partial 

derivatives in which the highest order derivatives and 

nonlinear terms are involved. The wave transformation   

( , ) ( )u x t u  , ,x t                                  (1.2) 

where   is a nonzero constant, reduces  Eq. (1.1) to  the 

following  nonlinear ordinary differential equation (ODE)  for 

( )u  : 

( , , ,...) 0 ,H u u u                                             (1.3) 

where H  is apolynomial in ( )u   and its total  derivatives 

with respect to  . 

The authors [19] assumed that  Eq.(1.3) has the formal 

solution: 

0

( )
( ) ,

( )

i

i

i

G
u

G


 



 
  

 
                                     (1.4) 

where i are all real constants to be determined such that 

0 
, while 

( )G 
 is the solution of the following 

nonlinear auxiliary ODE:  

2 2GG AG BGG CG     ,                             (1.5) 

where  A, B and C are real parameters such that 1,C   , 

while the positive integer  in Eq. (1.4) is determined by 

balancing the nonlinear terms  and the highest order 

derivatives. The authors [19] have obtained the following 

formulas: 

Case 1. When
20, 4 (1 ) 0B B A C      , then 

1 2

1 2

( )

( ) 2(1 )

exp exp
2 2

2(1 )
exp exp

2 2

G B

G C

c c
B

C
c c





 

 


 



     
     

     
      
     
     

. 

(1.6) 

Case 2. When
20, 4 (1 ) 0B B A C      , then 
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1 2

1 2

( )

( ) 2(1 )

cos sin
2 2

2(1 )
sin cos

2 2

G B

G C

ic c
B

C
ic c





 

 






     
    

     
      
    
     

(1.7) 

Case 3. When 0, ( 1) 0B A C     , then 

   
   

1 2

1 2

cos sin( )

( ) (1 ) sin cos

c cG

G C c c

 

  

      
    
 

.   

(1.8) 

Case 4. When 0, (1 ) 0B A C     , then 

   
   

1 2

1 2

cosh sinh( )

( ) (1 ) sinh cosh

ic cG

G C ic c

 

  

    
 

    
 

,                                              

(1.9) 

where c1 and c2 are arbitrary constants, and 1i    while 

1C  .   After a careful revision of the cases (1.6) - (1.9),  

we have found that the constant" B" in the second terms of 

(1.6) and (1.7) should be omitted in order that both (1.6) and 

(1.7) satisfy the auxiliary  ODE  (1.5). 

With reference to Sec. 3 of  Ref. [19], the authors applied the 

improved 
( / )G G

- expansion method (1.4) and (1.5) and 

found the solutions(3.5)-(3.11)  of  [19] for the RLW  equation 

(3.1) as well as  the solutions (3.17)-(3.21) of  [19] for the 

SLRW equation (3.12) which contain some minor errors due 

to the error in (1.6) and (1.7). 

Let us now rewrite down the solutions (3.5)-(3.11) of  Ref. 

[19] in the following corrected forms:   

If we choose 0B   and 

2

1 4 4 0B A AC    
, 

then we have the solutions : 

       

   

1 1

1 1

1

2

2 2
1 1 2

2 2
1 2

( , )
2

3
.

2

x t x t

x t x t

b
u x t

a

b c e c e

a
c e c e

 

 

 


 

  

 
  




 
  

  
  

 

(1.10)  

we choose 0B   and 
2

1 4 4 0B A AC      , 

we have the solutions: 

1

2

1 1

1 2
1

1 1

1 2

( , )
2

cos ( ) sin ( )
3 2 2 .

2
sin ( ) cos ( )

2 2

b
u x t

a

ic x t c x t
b

a
ic x t c x t

 

 


 




  
   

 
  

   
 

    

(1.11) 

If we choose 0B  and 2 ( 1) 0A C    , we have 

the   solutions 

   
   

2

2

1 2 2 2
2

1 2 2 2

2
( , )

cos ( ) sin ( )6
.

sin ( ) cos ( )

b
u x t

a

c x t c x tb

a c x t c x t

 

 

 

 


       
     
 

    (1.12) 

If we choose 0B   and 2 ( 1) 0A C    , we have 

the solutions 

   
   

2

2

1 2 2 2
2

21 2 2

2
( , )

cosh ( ) sinh ( )6

sinh ( ) cosh ( )

b
u x t

a

ic x t c x tb

a ic x t c x t

 

 

 

 


       
     
 

(1.13) 

where A, B ,C, 1c , 2c  are real parameters  and  a, b are 

positive constants while    equals to 1 or  3, so  is  .  If   

equals to 1, we should choose  
1

1( 1) ,b     while if

  equals to 3, then 
1

1(1 )b    .  Similarly, if   is 

equal to 1 or 3,   is 
1

2(1 4 )b    or 
1

2(1 4 )b    

respectively. 

If we choose  1 2c c  , then  the solution (1.10) becomes in 

the form: 

2 11 13
( , ) tanh ( ),

2 2 2

b b
u x t x t

a a

  


 
  

(1.14) 

while  if  we set 1 2c c , we have  the  solution: 

2 11 13
( , ) coth ( ) ,

2 2 2

b b
u x t x t

a a

  


  
    

 
                                                   (1.15) 

Also, we rewrite down the solutions (3.17)- (3.21) of  the 

SLRW equation (3.12) of   Ref. [19]  in the corrected forms as 

follows: 

If we choose 0B   and
2

1 4 4 0B A AC     , 

then  
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1 1

1 1

2 2

2

2 2
1 2

2 2
1 2

1 2
( , )

3 .

x t x t

x t x t

u x t

c e c e

c e c e

 

 

 





 
  

 
  

  


 
 

   
  

                                  

(1.16) 

If we choose 0B   and 
2

1 4 4 0B A AC     ,  

then 

 
2 2

2

1 1

1 2

1 1

1 2

1 2
( , )

cos ( ) sin ( )
2 23 .

sin ( ) cos ( )
2 2

u x t

ic x t c x t

ic x t c x t

 



 


 

  


  
   

  
  

   
 

       (1.17) 

If we choose 0B  and ( 1) 0A C    , then  

2 2

2

1 2

1 2

1 8
( , )

cos ( ) sin ( )
12 .

sin ( ) cos ( )

u x t

c x t c x t

c x t c x t

 



 


 

  


     
   

     

                

(1.18) 

If we choose 0B  and ( 1) 0A C    , then  

   
   

2 2

2

1 2

1 2

1 8
( , )

cosh ( ) sinh ( )
12 .

sinh ( ) cosh ( )

u x t

ic x t c x t

ic x t c x t

 



 


 

  


     
  
     
 

 

(1.19) 

If we set 1 2c c   into (1.16), we get the solution  

2 2
21 2

( , ) 3 tanh ( )
2

u x t x t
 

 


   
    .                                                      

(1.20) 

We have noted  that the auxiliary nonlinear ODE (1.5) used in  

Ref. [19] can be rewritten in the form of the following 

generalized Riccati equation for ( / )G G  as : 

2

( 1)
G G G

A B C
G G G

       
        

     
.           (1.21) 

 If we use the simple transformation  ( )
G

G
 


 , then Eqs. 

(1.4) and (1.21) can be rewritten in the form: 

0

( ) ( )i

i

i

u    


 ,                                                  

(1.22) 

where ( )   satisfies the generalized Riccati equation 

2( ) ( ) ( 1) ( )A B C          .                  (1.23)  

 

It is well -known [20-25] that the models (1.22) and (1.23) 

form the generalized Riccati equation mapping  method where 

Eq. (1.23) has the following  well- known  twenty seven exact 

solutions: 

Type 1: When 
2 4 ( 1) 0B A C      and 

( 1) 0B C    or ( 1) 0A C   we have 

1

2

1
( ) [ tanh( )],

2(1 ) 2

1
( ) [ coth( )],

2(1 ) 2

B
C

B
C

 

 


   




   



 

3

4

1
( ) [ (tanh( ) sech( ))],

2(1 )

1
( ) [ (coth( ) csch( ))],

2(1 )

B i
C

B
C

  

  

      


      


 

5

1
( ) [2 (tanh( ) coth( ))],

4(1 ) 4 4
B

C
  

 
    



 

2 2

1 1 1

6

1 1

2 2

1 1 1

7

1 1

( ) cosh( )1
( ) [ ],

2(1 ) sinh( )

( ) cosh( )1
( ) [ ],

2(1 ) sinh( )

A B A
B

C A B

B A A
B

C A B











    
    

  

    
    

  

where 1A  and 1B  are two non-zero real constants satisfying 

2 2

1 1 0B A  , 

8

2 cosh( )
2( ) ,

sinh( ) cos ( )
2 2

A

B h




 



 
 

 

 

9

2 sinh( )
2( ) ,

sinh( ) cosh( )
2 2

A

B
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10

2 cosh( )
2( ) , 1

sinh( ) cosh( )

A

i
B i




 



   
     

11

2 sinh( )
2( ) ,

sinh( ) cosh( )

A

B




 



 
      

12

2

4 sinh( )cosh( )
4 4( ) ,

2 sinh( )cosh( ) 2 cosh ( )
4 4 2

A

B

 


  

 

 
  

    

Type 2: When 
2 4 (1 ) 0B A C      and 

(1 ) 0B C    or (1 ) 0A C    we have 

13

1
( ) [ tan( )],

2(1 ) 2
B

C
 


     


 

14

1
( ) [ cot( )],

2(1 ) 2
B

C
 


    


 

15

1
( ) [

2(1 )

(tan( ) sec( ))],

B
C



 

   


    

 

16

1
( ) [

2(1 )

(cot( ) csc( ))],

B
C



 

 


    

 

17

18

2 2

1 1 1

1 1

19

2 2

1 1 1

1 1

1
( ) [ 2 (tan( )

4(1 ) 4

cot( ))],
4

1
( ) [

2(1 )

( ) cos( )
],

sin( )

1
( ) [

2(1 )

( ) sin( )
],

sin( )

B
C

B
C

A B A

A B

B
C

A B A

A B

 
















     






   


     


 

   


     


 

 

where 1A  and 1B  are two non-zero real constants satisfying 

2 2

1 1 0A B  , 

20

21

22

23

2 cos( )
2( ) ,

sin( ) cos( )
2 2

2 sin( )
2( ) ,

sin( ) cos( )
2 2

2 cos( )
2( ) ,

sin( ) cos( )

2 sin( )
2( ) ,

sin( ) cos( )

A

B

A

B

A

B

A

B




 




 




 




 



  
 

 



 
 

  



  
     



 
      

 

24

2

4 sin( )cos( )
4 4( )

2 sin( )cos( ) 2 cos ( )
4 4 2

A

B

 


  

 

 
  

    

 

Type 3: When 0 (1 ) 0A and B C    we have 

25

26

( ) ,
(1 )[ cosh( ) sinh( )]

[cosh( ) sinh( )]
( ) ,

(1 )[ cosh( ) sinh( )]

Bd

C d B B

B B B

C d B B


 

 


 

 
  


 

  

 

where d is an arbitrary constant. 

Type 4: When 0 (1 ) 0A B and C     we have 

27

1

1
( )

(1 )C c



 

 
   , 

where c1 is an arbitrary constant. 

The objective of this article is to apply the generalized Riccati 

equation mapping method (1.22) and (1.23) instead of  the 

improved ( / )G G - expansion method (1.4) and (1.5) used 

in  Ref. [19]  for  finding  several  solutions of  the nonlinear 

RLW equation and the nonlinear SRLW equation.  

Comparison between our results  in this article and the well 

known results obtained in  Ref. [19] will be given in Sec. 3.  

2.  APPLICATIONS 
In this section we will apply the generalized Riccati equation 

mapping method  (1.22) and (1.23) to construct several 

solutions of the following nonlinear evolution equations:  

2.1. Example 1. The nonlinear  RLW equation 

This equation is well- known [19] and has the form 
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2( ) 0t x x xxtu u a u bu                                      (2.1) 

where a and b are positive constants. The wave transformation 

(1.2) reduces Eq. (2.1) into the  nonlinear ODE: 

(1 ) 2 0u auu b u       .                              (2.2) 

Integrating (2.2) once with respect to   with zero constant of 

integration, we get  
2(1 ) 0u au bwu     .                                    

(2.3) 

Balancing u   and 
2u  we have 2 .  So Eq. (2.3) has the 

formal solution 
2

0 1 2( ) ( ) ( )u           ,                            (2.4) 

where 0 1 2, ,    are constants to be determined, such that 

2 0  . 

Substituting (2.4) along with Eq. (1.23) into Eq. (2.3), 

collecting all the terms with the same order 

( 0,1,2,...)k k  and setting all the coefficients to zero, 

we have the following algebraic equations: 

 
4 2 2

2 2: 6 (1 ) 0Q b C a      

3 2

2 1 1 2: ( 10 (1 ) 2 (1 ) ) 2 0Q b B C C a          

2 2

2 2 1

2

2 1 0 2

: [ 8 (1 ) 4 3 (1 )]

(1 ) ( 2 ) 0

Q b A C B B C

a

   

    

    

    
 

2

2 1 1

0 1 1

: [6 2 (1 )) ]

2 (1 ) 0

Q b AB A C B

a

   

   

  

   
 

0 2 2

1 2 0 0: ( 2 ) (1 ) 0Q b AB A a           

By solving these algebraic equations with the aid of Maple or 

Mathematica we can distinguish different cases as follows: 

Case 1 

2

0 1

2

2 2

[ 2 (1 )] 6 (1 )
, ,

6 (1 ) 1
,

[1 4 (1 ) ]

b B A C Bb C

a a

b C

a Ab C bB

 
 


 

  
  


  

  
 Case 2 

0 1

2

2 2

6 (1 ) 6 (1 )
, ,

6 (1 ) 1
,

[1 4 (1 ) ]

Ab C Bb C

a a

b C

a Ab C bB

 
 


 

 
 


  

  

 

2.1.1.  Exact solutions of  the nonlinear RLW equation 

(2.1) for case 1. 

By using case 1 and according to the values of solutions of 

type 1 when 
2 4 (1 ) 0B A C      ,  we obtain the 

following  solutions : 

2

1( , ) 1 3tanh ( ) ;
2 2

b
u x t

a




  
  

 
 

2

2( , ) 1 3coth ( ) ;
2 2

b
u x t

a




  
  

 
 

 2

3( , ) 1 3[tanh( ) sec ( )] ;
2

b
u x t i h

a


 


    

 

 2

4 ( , ) 1 3[coth( ) csc ( )] ;
2

b
u x t h

a


 


      

2

5

3
( , ) 1 tanh( ) csch( ) ;

2 4 4 4

b
u x t

a


 

    
    
   

 

2
2 2

1 1 1

6

1 1

cosh( )
( , ) 1 3 ;

2 sinh( )

A B Ab
u x t

a A B





        
      

 

2
2 2

1 1 1

7

1 1

cosh( )
( , ) 1 3 ;

2 sinh( )

B A Ab
u x t

a A B





        
      

 

where A1 and B1 are two non-zero real constant and satisfies 

2 2

1 1 0B A  . 

2

8

2 2 2

2

12 ( 1)cosh( )
2( , ) 2 (1 )

[ sinh( ) cosh( )]
2 2

24 (1 ) cosh ( )
2

[ sinh( ) cosh( )]
2 2

AB C
b

u x t B A C
a

B

A C

B




 



 

 


    
   




 

 
   



 

2

9

2 2 2

2

12 ( 1)sinh( )
2( , ) 2 (1 )

[ sinh( ) cosh( )]
2 2

24 (1 ) sinh ( )
2

[ sinh( ) cosh( )]
2 2

AB C
b

u x t B A C
a

B

A C

B




 



 

 


    
   




 

 
   



 

2

10

2 2 2

2

12 ( 1)cosh( )
2( , ) 2 (1 )

[ sinh( ) cosh( ) ]

24 ( 1) cosh ( )
2

[ sinh( ) cosh( ) ]

AB C
b

u x t B A C
a B i

A C

B i
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2

11

2 2 2

2

12 ( 1)sinh( )
2( , ) 2 (1 )

[ cosh( ) sinh( ) ]

4 (1 ) sinh ( )
2

[ cosh( ) sinh( ) ]

AB C
b

u x t B A C
a B

A C

B




 



 

 


    
     




 

 
      



 

2

12

2

2 2 2

2 2

12 ( 1)sinh( )
2( , ) 2 (1 )

[ sinh( ) 2 cosh ( ) ]
2 4

24 (1 ) sinh ( )
2

[ sinh( ) 2 cosh ( ) ]
2 4

AB C
b

u x t B A C
a

B

A C

B




 



 

 


    
      




 

 
      



 

 

By using case 1 and according to the values of solutions of 

type 2 when 
2 4 (1 ) 0B A C      ,  we obtain the 

following  solutions : 

2

13( , ) 1 3tan ( ) ;
2 2

b
u x t

a




  
  

 
 

. 
2

14( , ) 1 3cot ( ) ;
2 2

b
u x t

a




  
  

 
 

2

15( , ) 1 3[tan( ) sec( )] ;
2

b
u x t

a


 


     
 

 

2

16( , ) 1 3[cot( ) csc( )] ;
2

b
u x t

a


 


     
 

 

2

17

3
( , ) 1 tan( ) cot( ) ;

2 4 4 4

b
u x t

a


 

    
        

 

2
2 2

1 1 1

18

1 1

cos( )
( , ) 1 3 ;

2 sin( )

A B Ab
u x t

a A B





         
      

 
2

2 2

1 1 1

19

1 1

sin( )
( , ) 1 3 ;

2 sin( )

A B Ab
u x t

a A B





         
      

 

where A1 and B1 are two non-zero real constant and satisfies 

2 2

1 1 0A B  . 

2

20

2 2 2

2

12 cos( )
2( , ) 2 (1 )

[ sin( ) cos( )]
2 2

24 (1 ) cos ( )
2

[ sin( ) cos( )]
2 2

AB
b

u x t B A C
a

B

A C

B




 



 

 


    
   




 

 
   



 

2

21

2 2 2

2

12 sin( )
2( , ) 2 (1 )

[ sin( ) cos( )]
2 2

24 (1 ) sin ( )
2

[ sin( ) cos( )]
2 2

AB
b

u x t B A C
a

B

A C

B




 



 

 


    
    




 

 
    



 

2

22

2 2 2

2

12 cos( )
2( , ) 2 (1 )

[ sin( ) cos( ) ]

24 (1 ) cos ( )

[ sin( ) cos( ) ]

AB
b

u x t B A C
a B

A C

B




 



 

 


    
     



  
 

      

 

2

23

2 2 2

2

12 sin( )
2( , ) 2 (1 )

[ cos( ) sin( ) ]

24 (1 ) sin ( )
2

[ cos( ) sin( ) ]

AB
b

u x t B A C
a B

A C

B




 



 

 


    
     




 

 
      



 

2

24

2

2 2 2

2 2

12 sin( )
2( , ) 2 (1 )

[ sin( ) 2 cos ( ) ]
2 2

24 (1 ) sin ( )
2

[ sin( ) 2 cos ( ) ]
2 2

AB
b

u x t B A C
a

B

A C

B




 



 

 


    
      




 

 
      



 

where 
2

1

(1 4 (1 ) )
x t

Ab C bB
  

  
. 

By using case 1 and according to the values of solutions of 

type 3 when 0, (1 ) 0A B C     ,  we obtain the 

following solutions : 

2
2

25 2

2 2

2

6
( , )

(1 ) (1 )[ cosh( ) sinh( )]

6

[ cosh( ) sinh( )]

b B d
u x t B

a bB C d B B

B d

d B B

 

 


  

   


 

  

 
2

2

26 2

2 2

2

[cosh( ) sinh( )]
( , )

(1 ) (1 )[ cosh( ) sinh( )]

[cosh( ) sinh( )]

[ cosh( ) sinh( )]

b B B B
u x t B

a bB C d B B

B B B

d B B

 

 

 

 

 
  

   


 

  

 

where  d  is an arbitrary constant and 

2

1

(1 )
x t

bB
  


. 

By using case 1 and according to the values of solutions of 

type 4 when 0, (1 ) 0A B C     ,  we obtain the 

following solutions : 
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2

27 2

1

6(1 )
( , )

[ (1 ) ]

b C
u x t

a C c

  
  

   
 

where c1  is an arbitrary constant  and x t   . 

 

2.1.2.  Exact  solutions of  the nonlinear RLW equation  

(2.1) for case 2. 

By using case 2 and according to the values of solutions of 

type 1 when 
2 4 (1 ) 0B A C      ,  we obtain the 

following solutions:  

2

1

3
( , ) sech ( );

2 2

b
u x t

a




 
  

2

2

3
( , ) csc ( );

2 2

b
u x t h

a




  
  

2

3

3
( , ) [1 (tanh( ) sec ( )) ];

2

b
u x t i h

a


 


    

 

2

4

3
( , ) [1 (coth( ) csc ( )) ];

2

b
u x t h

a


 


      

2 2

5

3
( , ) [sech ( ) csch ( )];

8 4 4

b
u x t

a


 

  
   

2
2 2

1 1 1

6

1 1

cosh( )3
( , ) 1 ;

2 sinh( )

A B Ab
u x t

a A B





      
   
     

 

2
2 2

1 1 1

7

1 1

cosh( )3
( , ) 1 ;

2 sinh( )

B A Ab
u x t

a A B





      
   
     

 

where A1 and B1 are two non-zero real constant and satisfies 

2 2

1 1 0B A  . 

8

2 2

2

2 cosh( )
6 (1 ) 2( , )

[ sinh( ) cosh( )]
2 2

4 (1 )cosh ( )
2

[ sinh( ) cosh( )]
2 2

AB
b C

u x t A
a

B

A C

B




 



 

 
 

 
   




 

 
   



 

9

2 2

2

2 sinh( )
6 (1 ) 2( , )

[ sinh( ) cosh( )]
2 2

4 (1 )sinh ( )
2

[ sinh( ) cosh( )]
2 2

AB
b C

u x t A
a

B

A C

B




 



 

 
 

 
   




 

 
   



 

10

2 2

2

2 cosh( )
6 (1 ) 2( , )

[ sinh( ) cosh( ) ]

4 (1 )cosh ( )
2

[ sinh( ) cosh( ) ]

AB
b C

u x t A
a B i

A C

B i




 



 

 
 

 
     




 

 
      



 

11

2 2

2

2 sinh( )
6 (1 ) 2( , )

[ sinh( ) cosh( ) ]

4 (1 )sinh ( )
2

[ sinh( ) cosh( ) ]
2

AB
b C

u x t A
a B

A C

B




 



 

 
 

 
      




 

 
      



 

12

2

2 2

2 2

2 sinh( )
6 (1 ) 2( , )

[ sinh( ) 2 cosh ( ) ]
2 4

4 (1 )sinh ( )
2

[ sinh( ) 2 cosh ( ) ]
2 4

AB
b C

u x t A
a

B

A C

B




 



 

 
 

 
      




 

 
      



 

By using case 2 and according to the values of solutions of 

type 2 when 
2 4 (1 ) 0B A C      ,  we obtain the 

following solutions : 

2

13

3
( , ) sec ( );

2 2

b
u x t

a




 
  

2

14

3
( , ) csc ( );

2 2

b
u x t

a




 
  

2

15

3
( , ) [1 (tan( ) sec( )) ];

2

b
u x t

a


 


      

2

16

3
( , ) [1 (cot( ) csc( )) ];

2

b
u x t

a


 


    

 

2 2

17

3
( , ) [sec ( ) csc ( )];

8 4 4

b
u x t

a


 

  
   

2
2 2

1 1 1

18

1 1

cos( )3
( , ) 1 ;

2 sin( )

A B Ab
u x t

a A B





       
   
     

 
2

2 2

1 1 1

19

1 1

cos( )3
( , ) 1 ;

2 sin( )

B A Ab
u x t

a A B





       
   

     
 

where A1 and B1 are two non-zero real constant and satisfies 

2 2

1 1 0A B  . 
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20

2 2

2

2 cos( )
6 (1 ) 2( , )

[ sin( ) cos( )]
2 2

4 (1 )cos ( )
2

[ sin( ) cos( )]
2 2

AB
b C

u x t A
a

B

A C

B




 



 

 
 

 
   




 

 
   



 

21

2 2

2

2 sin( )
6 (1 ) 2( , )

[ sin( ) cos( )]
2 2

4 (1 )sin ( )
2

[ sin( ) cos( )]
2 2

AB
b C

u x t A
a

B

A C

B




 



 

 
 

 
    




 

 
    



 

22

2 2

2

2 cos( )
6 (1 ) 2( , )

[ sin( ) cos( ) ]

4 (1 )cos ( )
2

[ sin( ) cos( ) ]

AB
b C

u x t A
a B

A C

B




 



 

 
 

 
     




 

 
      



 

23

2 2

2

2 sin( )
6 (1 ) 2( , )

[ sin( ) cos( ) ]

4 (1 )sin ( )
2

[ sin( ) cos( ) ]

AB
b C

u x t A
a B

A C

B




 



 

 
 

 
      




 

 
       



 

24

2

2 2

2

2

2 sin( )
6 (1 ) 2( , )

sin( ) 2 cos ( )
2 4

4 (1 )sin ( )
2

sin( ) 2 cos ( )
2 4

AB
b C

u x t A
a

B

A C

B




 



 




 
 

        
 


 




 
   
      
  

 

     
2[1 4 (1 ) ]

t
x

Ab C bB
  

  
. .                                                                                

By using case 2 and according to the values of solutions of 

type 3 when 0, (1 ) 0A B C     ,  we obtain the 

following solutions: 

2

25 2 2

2

[ cosh( ) sinh( )]6
( , )

[ cosh( ) sinh( )]

B d

d B Bb
u x t

a B d

d B B

 

 

 
 

  
  

 
   

 

2

26

2 2

2

6 [cosh( ) sinh( )]
( , )

[ cosh( ) sinh( )]

[cosh( ) sinh( )]

[ cosh( ) sinh( )]

b B B B
u x t

a d B B

B B B

d B B

  

 

 

 

 
 

 


 

  

 

where  d  is an arbitrary constant and 
2(1 )

t
x

bB
  


. 

By using case 2 and  according to the values of solutions of 

type 4 when 0, (1 ) 0A B C      ,  we obtain the 

following  solutions  

2

27 2

1

6 (1 )
( , )

[ (1 ) ]

b C
u x t

a C c






 

  

 

where  c1 is an arbitrary constant and x t   . 

2.2.  Example 2. The nonlinear SRLW equation 

 

This equation is well- known [19] and has the form 

0tt xx xt x t xxttu u uu u u u     ,                        

(2.5) 

where a and b are positive constants. The wave transformation 

(1.2) reduces Eq. (2.5) into the ODE: 
2 2( 1) ( ) 0u uu u         .                        

(2.6) 

Integrating (2.6) once  with respect to   with zero constant 

of  integration, we get  
2 2( 1) 0u uu u        .                               (2.7) 

Balancing u   and uu   we  have 2 .  So Eq. (2.7) has 

the formal solution 
2

0 1 2( ) ( ) ( )u           ,                            (2.8) 

where 0 1 2, ,    are constants to be determined, such that 

2 0  . 

 

Substituting (2.8) along with Eq. (1.23) into Eq. (2.7), 

collecting all the terms with the same order 

( 0,1,2,...)k k  and setting  all the coefficients  to 

zero, we have the following algebraic equations: 

 
5 2 3

2 2

4 2 2 2

1 2 2 2

3

1

: 2 ( 1) 24 ( 1) 0

: [3 ( 1) 2 ] [54 ( 1)

6 ( 1) ] 0

Q C C

Q C B B C

C
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3 2 2

2 0 2 1

2 2 2 2

1 2 2 2 2

2

1

: 2 (1 )( 1) [2 ( 1) ( 1)

3 2 ] [40 ( 1) 38 ( 1)

12 ( 1) ] 0

Q C C B C

B A A C B C

B C

     

     



     

     

  

 

2 2

1 2 0 1

2 2 2

0 2 1 1 2 2

2 2 3

1 1 2

:(1 )[ ( 1) 2 ] [ ( 1)

2 3 ] [52 ( 1)

8 ( 1) 7 ( 1) 8 ] 0

Q C B C

B B A AB C

A C B C B

     

      

  

    

    

     

 

2 2

1 2 0 1 0 2 1

2 2 2 3

2 1 2 1

: (1 )[ 2 ] [ 2 ]

[16 ( 1) 8 ( 1) 14 ] 0

Q B A B A A

A C AB C AB B

        

    

    

      

 

0 2 2 2

1 0 1 1

2 2

2 1

: (1 ) [2 ( 1)

6 ] 0

Q A A A C

A B AB

     

 

   

  
 

 

By solving these algebraic equations with the aid of Maple or 

Mathematic we  have the result: 

2 2

0 1

2

2

1 [8 ( 1) 1]
, 12 ( 1),

12 ( 1) ,

A C B
B C

C


  



   

   
  

  

 

(2.9) 

2.2.1.  Exact solutions of  the nonlinear SRLW (2.5) 

By using (2.9) and according to the values of solutions of type  

1 when 
2 4 (1 ) 0B A C      ,   we obtain the 

following solutions: 

2
2

1

1
( , ) [2 3tanh ( )];

2
u x t


 



 
     

2
2

2

1
( , ) [2 3coth ( )];

2
u x t


 



 
     

 
2

2

3

1
( , ) 2 3[tanh( ) sec ( )] ;u x t i h


  




        

 
2

2

4

1
( , ) 2 3[coth( ) csc ( )] ;u x t h


  




      

2
2

5

1 3
( , ) 2 [tanh( ) coth( )] ;

4 4 4
u x t


  



   
      

 

 

2
2 22

1 1 1

6

1 1

cosh( )1
( , ) 2 3 ;

sinh( )

A B A
u x t

A B




 

      
     
     

 
2

2 22
1 1 1

7

1 1

cosh( )1
( , ) 2 3 ;

sinh( )

B A A
u x t

A B




 

      
     
     

 

where A1 and B1 are two non-zero real constant and satisfies 

2 2

1 1 0B A  . 

2 2

8

2 2 2

2

24 ( 1)cosh( )
1 [8 ( 1) 1] 2( , )

[ sinh( ) cosh( )]
2 2

48 ( 1) cosh ( )
2

[ sinh( ) cosh( )]
2 2

AB C
A C B

u x t

B

A C

B

 



 

 

 




   
 

 
 





 

 

 

2 2

9

2 2 2

2

24 ( 1)sinh( )
1 [8 ( 1) 1] 2( , )

[ sinh( ) cosh( )]
2 2

48 ( 1) sinh ( )
2

[ sinh( ) cosh( )]
2 2

AB C
A C B

u x t

B

A C

B

 



 

 

 




   
 

 
 





 

 

 

2 2

10

2 2 2

2

1 [8 ( 1) 1] 24 ( 1)cosh( )
( , )

[ sinh( ) cosh( ) ]

48 ( 1) cosh ( )

[ sinh( ) cosh( ) ]

A C B AB C
u x t

B i

A C

B i

  

  

 

 

     
 

     

 


     

 

2 2

11

2 2 2

2

1 [8 ( 1) 1] 24 ( 1)sinh( )
( , )

[ cosh( ) sinh( ) ]

48 ( 1) sinh ( )

[ cosh( ) sinh( ) ]

A C B AB C
u x t

B

A C

B

  

  

 

 

     
 

     

 


     

 

2 2

12

2 2 2

2

24 ( 1)sinh( )
1 [8 ( 1) 1] 2( , )

[ cosh( ) sinh( ) ]
2 2

48 ( 1) sinh ( )
2

[ cosh( ) sinh( ) ]
2 2

AB C
A C B

u x t

B

A C

B

 



 

 

 




   
 

 
   





 

   

 

 

By using (2.9) and  according to the values of solutions of 

type 2 when 
2 4 (1 ) 0B A C      ,  we obtain the 

following solutions: 

2
2

13

1
( , ) [2 3tan ( )];

2
u x t


 



 
     

2
2

14

1
( , ) [2 3cot ( )];

2
u x t


 



 
     

 
2

2

15

1
( , ) 2 3[tan( ) sec( )] ;u x t


  




      

 

 
2

2

16

1
( , ) 2 3[cot( ) csc( )] ;u x t


  




      

 
2

2

17

1 3
( , ) 2 [tan( ) cot( )] ;

4 4 4
u x t


  



   
      

 

 
2

2 22
1 1 1

18

1 1

cos )1
( , ) 2 3 ;

sin( )

A B A
u x t

A B
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2
2 22

1 1 1

19

1 1

sin( )1
( , ) 2 3 ;

sinh( )

A B A
u x t

A B




 

       
     
     

 

where A1 and B1 are two non-zero real constant and satisfies 

2 2

1 1 0A B  . 

2 2

20

2 2 2

2

24 ( 1)cos( )
1 [8 ( 1) 1] 2( , )

[ sin( ) cos( )]
2 2

48 ( 1) cos ( )
2

[ sin( ) cos( )]
2 2

AB C
A C B

u x t

B

A C

B

 



 

 

 




   
 

 
 





 

 

 

2 2

21

2 2 2

2

24 ( 1)sin( )
1 [8 ( 1) 1] 2( , )

[ cos( ) sin( )]
2 2

48 ( 1) sin ( )
2

[ cos( ) sin( )]
2 2

AB C
A C B

u x t

B

A C

B

 



 

 

 




   
 

 
 





 

 

 

2 2

22

2 2 2

2

1 [8 ( 1) 1] 24 ( 1)cos( )
( , )

[ sin( ) cos( ) ]

48 ( 1) cos ( )

[ sin( ) cos( ) ]

A C B AB C
u x t

B

A C

B

  

  

 

 

     
 

     

 


     

 

2 2

23

2 2 2

2

1 [8 ( 1) ] 24 ( 1)sin( )
( , )

[ cos( ) sin( ) ]

48 ( 1) sin ( )

[ cos( ) sin( ) ]

A C B AB C
u x t

B

A C

B

  

  

 

 

     
 

     

 


     

 

2 2

24

2 2 2

2

24 ( 1)sin( )
1 [8 ( 1) 1] 2( , )

[2 cos( ) sin( ) ]
2 2

48 ( 1) sin ( )
2

[2 cos( ) sin( ) ]
2 2

AB C
A C B

u x t

B

A C

B

 



 

 

 




   
 

 
   





 

   

 

 

By using (2.9) and according to the values of solutions of type 

3 when 0, ( 1) 0A B C    ,  we obtain the following 

solutions : 

2 2 2

25

2 2

2

1 (1 ) 12
( , )

[ cosh( ) sinh( )]

12

[ cosh( ) sinh( )]

B B d
u x t

d B B

B d

d B B

 

  



 

 
 

 


 

 
2 2 2

26

2 2

2

1 (1 ) 12 [cosh( ) sinh( )]
( , )

[ cosh( ) sinh( )]

12 [cosh( ) sinh( )]
,

[ cosh( ) sinh( )]

B B B B
u x t

d B B

B B B

d B B

   

  

  

 

  
 

 




 

 

where  d  is an arbitrary constant . 

By using (2.9) and according to the values of solutions of type 

4 when 0, ( 1) 0A B C     ,  we obtain the 

following solutions  

2 2

27 2

1

1 12 ( 1)
( , ) ,

[( 1) )]

C
u x t

C c

 

 

 
 

 
 

where c1 is an arbitrary constant . 

 

3. CONCLUSIONS AND DISCUSSIONS  

Liu et al [19] have used the improved  ( / )G G – expansion 

method (1.4) and (1.5) to find the exact solutions of the two 

nonlinear evolution equations (2.1) and (2.5) with the aid of 

formulas (1.6)-(1.9). We have shown that there is  a  minor 

error in the formulas (1.6) and (1.7) which have been 

corrected. This leads to some errors in the solutions of these 

equations which have been corrected  too. 

 

 In the present article we have shown that the improved 

( / )G G – expansion method (1.4) and (1.5) can be reduced 

to the well- known  generalized Riccati equation mapping 

method (1.22) and (1.23). We have noted that the second 

method gives much more solutions of the two  nonlinear 

equations (2.1) and (2.5) than the first one, where most of 

them are new and the others are well-known.   Furthermore, 

we have shown that some solutions obtained using the second 

method are equivalent to  some  solutions obtained using  the 

first one as follows: 

 

(i)If  we choose 1   or 3    in (1.14) and (1.15) 

obtained in Ref. [19] we deduce that the resultant solutions  

are equivalent to our results 1( , )u x t  and 2 ( , )u x t  

obtained in case 1 or  case 2,  respectively.  

 

(ii)If  we choose 1   or 3    and 1 20, 0c c   

in (1.11) obtained in Ref. [19] we deduce that the resultant  

solutions are equivalent to our result  13( , )u x t  obtained  in  

case 1, or  our result  13( , )u x t  obtained in case  2,  

respectively.  

  (iii)If  we choose  1   or 3   and 1 0c   

2 0,c      in (1.11) obtained in Ref. [19] we deduce that the 

resultant  solutions  are equivalent to our result 14 ( , )u x t  

obtained in  case 1,  or  our result  14 ( , )u x t  obtained  in  

case 2, respectively . 

 

 (iv)If  we choose  1 2c c  and 1 2c c  in (1.16) 

obtained in Ref.  [19] we deduce that the resultant  solutions 

are equivalent to our results  1( , )u x t   and 2 ( , )u x t  of  

Eq. (2.5)  respectively. 

 

(v)If  we choose  1 20, 0c c   and 2 10, 0c c   in 

(1.17) obtained in Ref.  [19] we deduce that the resultant  

solutions are equivalent to our results  13( , )u x t   and 

14 ( , )u x t  of  Eq. (2.5)  respectively. 
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Finally, with the aid of the Maple, we  have  assured the 

correctness of the obtained solutions  in this article by putting 

them back into the original equations. 
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