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ABSTRACT 

Nature–inspired algorithms are the most powerful algorithms 

for optimization problems. This paper presents a novel 

optimization channel allocation algorithm inspired by the 

flash pattern of fireflies that allows suppression of the four–

wave mixing (FWM) crosstalk while maintaining channel 

bandwidth. It is composed of a fractional bandwidth channel 

allocation algorithm by using the concept of Optimal Golomb 

ruler (OGR) sequences. The simulation results conclude that 

the proposed novel optimization algorithm outperforms the 

other two existing conventional algorithms i.e. Extended 

Quadratic Congruence (EQC) and Search Algorithm (SA) in 

terms of the total optical bandwidth. 
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1. INTRODUCTION 
FWM crosstalk is an optical Kerr effect and is one of the 

major limiting sources of performance degradation in all 

optical wave length division multiplexing (WDM) systems. 

FWM crosstalk is due to the interaction of two or more 

channels which results in ghost channels. These ghost 

channels can coincide with other channels resulting in 

distortion. The performance of WDM systems can be 

substantially improved if the generation of FWM crosstalk 

signal at the channel frequencies is avoided. It is therefore 

important to develop algorithms to allocate the channel 

frequencies in order to suppress the FWM crosstalk. The 

efficiency of FWM crosstalk signals depends on both the 

channel spacing and fiber dispersion [1]–[3]. To suppress the 

crosstalk due to FWM signals the frequency separation of any 

two channels of an optical WDM system is kept different 

from that of any other pair of channels [4]–[7]. 

In literature [1], [8]–[14], to suppress the FWM crosstalk in 

optical WDM systems, several unequally spaced channel 

allocation (USCA) algorithms have been proposed. An 

optimum–USCA (O–USCA) algorithm ensures if the 

frequency separation of any two channels is different from 

any other pair of channels no FWM crosstalk will ever be 

generated at any of the channel frequencies [11]. However, 

the algorithms [8]–[14] have the drawback of increased 

optical bandwidth requirement compared to equally spaced 

channel allocation (ESCA). This paper proposes, a fractional 

bandwidth channel allocation algorithm taking into 

consideration the concept of Optimal Golomb ruler sequences 

[7], [15]–[17]. This method for USCA achieves suppression in 

FWM crosstalk with the optical WDM systems without 

inducing additional cost in terms of total optical channel 

bandwidth.  

Golomb rulers represent a class of problems known as NP–

complete [18]. Unlike the traveling salesman problem (TSP), 

which may be classified as a complete ordered set, the 

Golomb ruler may be classified as an incomplete ordered set. 

For higher order models, the exhaustive search [19], [20] of 

such NP–complete problems is impossible. As another mark 

is added to the ruler, the time required to search the 

permutations and to test the ruler becomes exponentially 

larger. Several different algorithms to tackle the Golomb ruler 

problem such as exact methods [19], [20], constraint 

programming [21], local searches [22] and exhaustive parallel 

search [23] have been studied. The success of soft computing 

algorithms such as Genetic Algorithms (GAs) [24]–[27] and 

Biogeography Based Optimization (BBO) [28]–[30] and Big 

Bang–Big Crunch (BB–BC) evolution theory [31], [32] in 

finding relatively good solutions to such NP–complete 

problems provides a good starting point for algorithms of 

finding OGR sequences. Hence, soft computing based 

algorithms seem to be very effective solutions for such 

problems. No doubt, these algorithms do not give the 

best/exact solutions but reasonably good solutions are 

available at given cost. This paper introduces a novel 

algorithm of generating OGR sequences for various marks 

making use of Firefly Algorithm (FA) and its comparison 

with two existing conventional/classical algorithms i.e. 

Extended Quadratic Congruence and Search Algorithm. The 

generated OGR sequences can be used as a bandwidth 

allocation algorithm in WDM systems. 

The remainder of this paper is organized as follows: Section II 

introduces the concept of Golomb rulers. Section III presents 

the problem formulation using FA. Section IV describes a 

brief account of FA optimization algorithm. Section V 

provides simulation results comparing with 

conventional/classical algorithms of generating unequal 

channel spacing. Section VI presents some concluding 

remarks. 

2. GOLOMB RULERS 
The concept of Golomb rulers was first introduced by W. C. 

Babcock [7], and further described by Professor Solomon W. 

Golomb [15]. According to Colannino [33] and 

Dimitromanolakis [34], W. C. Babcock was first who 

discovered Golomb ruler’s upto 10–marks, while analyzing 

positioning of radio channels in the frequency spectrum to 

suppress the third and fifth order distortion. According to 

William T. Rankin [35], all of rulers’ upto eight are optimum, 

the nine and ten mark rulers that were presented by W. C. 

Babcock are near–to–optimum. 

Golomb ruler refers to a set of positive integers such that no 

distinct pairs of numbers from the set have the same 

difference [36], [37]. These numbers are referred to as marks 
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that correspond to positions on a linear scale [15], [24], [28], 

[29]. The difference between the values of any two marks is 

called the distance between those marks. The difference 

between the largest and smallest number is referred to as the 

length of the ruler. The number of marks on a ruler is 

sometimes referred to as the size of the ruler. Normally the 

first mark of the ruler [15], [16], [22] is set on position 0. 

Figure 1 [24] shows an example of Golomb ruler in which all 

the distances between each pair of marks are also shown.  

 

Figure 1: A Golomb Ruler with 4–Marks and Length 6 

A Perfect Golomb ruler measures all the integer distances 

from 0 to L, where L is the length of the ruler [18], [24], [25]. 

In other words, the difference triangle of a perfect Golomb 

ruler contains all numbers between one and the length of the 

ruler. The length [23] of an n–mark perfect Golomb ruler is

 1
2

1
nn .  

An Optimal Golomb ruler is defined as the shortest length 

ruler for a given number of marks [24], [38], [39]. There can 

be multiple different OGRs for a specific number of marks. 

For example, as shown in Figure 2 the set (0, 1, 3, 7) is a non–

optimal 4–mark Golomb ruler since its differences are (1 = 1 

– 0, 2 = 3 – 1, 3 = 3 – 0, 4 = 7 – 3, 6 = 7 – 1, 7 =7 – 0), all of 

which are distinct. As from the differences it is clear that the 

number 5 is missing so it is not a perfect Golomb ruler 

sequence. 

 

Figure2: A Non Optimal Golomb Ruler of 4–Marks and 

Length 7 

However, the unique optimal Golomb 4–mark ruler is (0, 1, 4, 

6), which measures all the integer distances from 0 to 6 (and 

is therefore also a perfect ruler) as shown in Figure 1. 

The OGRs found their applications in Communications and 

Radio Astronomy, X–Ray Crystallography, Coding Theory, 

Linear Arrays, Computer Communication Network, PPM 

Communications, Circuit Layout, Geographical Mapping and 

Self–Orthogonal Codes [7], [15], [24], [25], [35]. 

Since the difference between any two numbers is distinct, the 

new FWM frequencies generated would not fall into the one 

already assigned for the carrier channels. For n–channels, 

Golomb ruler for n–marks is used. 

3. PROBLEM FORMULATION  
If the spacing between any pair of channels is denoted as CS
and the total number of channels is n, then the objective is to 

optimize the length of the ruler denoted as RL , which is 

given by the equation (1): 

           





1

1

)(
n

i
iCSRL   (1) 

subject to )()( CSCS ji
  

where 1,...,2,1,  nji  with ji  are distinct. 

If each individual element is a Golomb ruler, the sum of all 

elements of an individual forms the total optical bandwidth of 

the channels. Thus, if an individual element is denoted as

),(IE then the second objective is to minimize the total optical 

bandwidth ),(TBW which is given by the equation (2): 

          



n

i
iIETBW

1

)(   (2) 

subject to )()( IEIE ji
  

where nji ,...,2,1,   with ji  are distinct. 

To generate optimal Golomb ruler sequences, firefly 

algorithm is being proposed in this paper. 

4. FIREFLY ALGORITHM 
This section outlines the capabilities of a novel soft 

computing algorithm called firefly algorithm for the 

generation of OGR sequences. Xin–She Yang [40], inspired 

by the characteristics and flash pattern of fireflies, introduced 

a novel optimization algorithm named firefly algorithm. For 

describing this novel algorithm the author in [40] use the 

following three idealized rules: 

1) All fireflies are unisex so that one firefly will be attracted 

to other fireflies regardless of their sex;  

2) Attractiveness is proportional to their brightness, thus for 

any two flashing fireflies, the less brighter one will move 

towards the brighter one. The attractiveness is 

proportional to the brightness and they both decrease as 

their distance increases. If there is no brighter one than a 

particular firefly, it will move randomly; 

3) The brightness of a firefly is affected or determined by 

the landscape of the objective function. For a 

maximization problem, the brightness can simply be 

proportional to the value of the objective function. 

There are two important issues in firefly algorithm:  

1) the variation of light intensity and  

2) the formulation of attractiveness.  

For simplicity, it was assumed that the attractiveness of a 

firefly is determined by its brightness which in turn is 

associated with the encoded objective function [40]–[43]. 
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In the simplest case for maximum optimization problems, the 

brightness I of a firefly at a particular location X can be 

chosen as I (X)   f (X).  

The attractiveness β should be judged by the other fireflies 

that will vary with the distance rij between firefly i and firefly 

j. In addition, light intensity decreases with the distance from 

its source, and light is also absorbed in the media, so we 

should allow the attractiveness to vary with the degree of 

absorption. In the simplest form, the light intensity I(r) varies 

according to the inverse square law as given by equation 3 

[40]: 

r

I
rI s

2
)(                     (3) 

where Is is the intensity at the source. The light intensity I for 

a given medium varies with the distance r between any two 

fireflies as given by equation 4 [40]: 

reII  0                    (4) 

where I0 is the original light intensity and γ is fixed light 

absorption coefficient.  

The firefly’s attractiveness is proportional to the light 

intensity seen by the adjacent fireflies. Therefore the 

attractiveness β of a firefly is given by equation 5 [40]: 

 
2

0

rer                      (5) 

where β0 is the attractiveness at r = 0. 

The distance between any two fireflies i and j at Xi and Xj, 

respectively, is the Cartesian distance as given by equation 6 

[40]: 

  


d

k
kjkijiij xxXXr

1

2

,,
                (6) 

where 
kix ,

is the kth component of the spatial coordinate Xi of 

ith firefly and d is the number of dimensions. 

The movement of a firefly i is attracted to another more 

attractive (brighter) firefly j is determined by the equation 7 

[40]: 

   5.0
2

0 


randXXeXX ij

r

ii
ij 



               
(7) 

where the second term is due to the attraction. The third term 

is randomization with a control parameter α, which makes the 

more efficient exploration of the search space. For most cases 

in the implementation, 10  and  1,0 . The general 

pseudo–code for firefly algorithm [40]–[43] is shown in 

Figure 3. 

4.1 Firefly Algorithm to Generate Optimal 

Golomb Ruler Sequences  
The proposed pseudo–code for firefly algorithm to generate 

OGR sequences in this paper is shown in Figure 4. 

5. SIMULATION RESULTS AND 

DISCUSSION 
The firefly algorithm to generate OGR sequences has been 

written and tested in Matlab–7 language [44] under Windows 

7 operating system. The algorithm has been executed on 

Laptop with Intel core2 Duo 2.20 GHz processor with a RAM 

of 3 GB. This section is devoted to the performance of 

proposed firefly algorithm to generate OGRs and its 

comparison with existing known OGR [15], [20], [33], [35], 

[39], [45], [46] and two of the existing classical algorithms of 

generating unequal channel spacing i.e. EQC and SA [1], 

[13], [24]. 

5.1 Simulation Parameters for Firefly 

Algorithm 
To get optimal solutions after a number of careful 

experimentation, following optimum parameter values of FA 

have finally been settled as shown in Table 1. 

With these parameters settings, the large numbers of sets of 

trials for various marks were conducted. A set of 10 trials for 

n = 4 to 6 are given in Table 2. The performance of all the sets 

is nearly the same as given in Table 2. 

Figure 3: Pseudo–code for Firefly Algorithm

Firefly Algorithm 

     Begin 

           /* FA parameter initialization */ 

          Define objective function f (X);   X = (x1,…, xd)
T; 

          Generate initial population of fireflies xi (i = 1, 2,…n); 

                       Compute the light intensity Ii at Xi by f (Xi); 

                       Define light absorption coefficient γ; 

          /* End of FA parameter initialization */ 

          While not T                                                                       /* T is a termination criterion */ 

               For i = 1 : n                                                                  /*all n fireflies*/ 

                    For j = 1 : i  

                         If (Ij > Ii) 

                              Move firefly i towards j in d-dimension;  

                         End if 

                         Attractiveness varies with distance r via exp[− γr]; 

                         Evaluate new solutions and update light intensity; 

                    End for                                                                  /* End for j */ 

               End for                                                                       /* End for i */ 

               Rank the fireflies and find the current best; 

          End while 

          Postprocess results and visualization; 

     End 
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Table 1. Simulation Parameters for Firefly Algorithm 

 

5.2 Sequences 

The OGR sequences generated by proposed algorithm for 
various marks are shown in Appendix–A.  

5.3 Influence of Increasing Iterations on 

Total Bandwidth 

With the increase of number of iterations, the total bandwidth 

occupied by the sequence tends to decrease; it means that the 

rulers reach their optimum values after a certain number of 

iterations. This means, it is the point where we are 

approaching towards the optimal solution. This can be seen in 

tabular form for proposed FA in Table 3 for n = 3 to 10.  

It is noted that the iterations has little effect for low value 

marks such as n = 3 and n = 4. But for higher order marks, the 

iterations have a great effect on the total bandwidth. It means 

bandwidth gets optimized after a certain numbers of 

iterations. By carefully observation, the paper fixed the 

iterations of 100 for firefly algorithm. 

5.4 Comparison of Proposed Approach 

with Previous Existing Algorithms in 

terms of Ruler Length and Total 

Bandwidth 
The objective to use FA in this paper was to optimize the ruler 

length (RL) so as to conserve the total bandwidth (TBW) 

occupied by the channels. Table 3 enlist the ruler length and 

total bandwidth occupied by different sequences obtained by 

the proposed firefly algorithm for various channels n and its 

comparison with known OGR [15], [20], [33], [35], [39], [45], 

[46], EQC and SA [1], [13], [24]. All results have been 

obtained after a set of 10 trials. The numbers of iterations and 

relative error in the length of the ruler by the proposed firefly 

algorithm are also represented in Table 3.  

Figure 4: Pseudo–code for FA to Generate OGR Sequences 

Parameter Value 

Number of fireflies (Popsize) 10 

α 0.05 

β 0.2 

Γ 1 

Firefly Algorithm 

    Begin 

          /* FA parameter initialization */ 

       Define operating parameters for firefly algorithm 

                    Initialize the number of channels (marks), lower and upper bound on the length of ruler; 

                    While not Popsize                                      /* Popsize is the population size input by the user */ 

                Generate a random set of firefly (integer population);                   

                                                                          /* Number of integers in firefly is being equal to the number of channels */ 

                Check Golombness of each firefly; 

                If Golombness is satisfied 

                     Retain that firefly; 

                Else 

                                  Remove that particular firefly from the generated population; 

                End if 

                    End while 

                    Compute the light intensity (total bandwidth);                            /* Light intensity represents the fitness (cost) value */ 

                    Rank the fireflies from best to worst based on fitness value; 

          /* End of FA parameter initialization */ 

          While not T     /* T is a termination criterion */ 

                 /* Movement */ 
                 For i = 1 : n                         /* all n fireflies */ 

                      For j = 1 : i  

                            If (Ij > Ii) 

                      A:      Move firefly i towards the brighter firefly j;  

                                Recheck Golombness of updated firefly; 

                   If Golombness is satisfied 

                         Retain that firefly and then go to B; 

                   Else 

                          Retain the previous generated firefly and then go to A; 

                                                    /* Previous generated firefly is being equal to the firefly generated into the FA parameter  

                                                        initialization step */ 

                   End if 

               End if 

         B:   Vary attractiveness β with distance r via exp[− γr]; 

                             Determine the new position of each firefly and update light intensity; 

          End for                            /* End for j */ 

     End for                                 /* End for i */ 

                 /* End of Movement */ 
    Rank the fireflies from best to worst based on fitness value and find the current best; 

          End while 

          Display the optimal Golomb ruler sequences; 

    End 
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Table 2. Performance of Firefly Algorithm for Different Marks in a Set of 10 Trials 

 

Wing et. al. [1] noted that the application of EQC and SA was 

limited to prime powers, so in Table 3, the ruler length and 

total bandwidth for EQC and SA are shown by a dash line. 

Comparing the simulation results of proposed FA with best 

known OGR, EQC and SA; it is observed that there is a 

significant improvement with respect to the length of the ruler 

and thus the total bandwidth occupied by the use of firefly 

algorithm. Figure 5 and Figure 6 illustrate the comparison of 

FA to generate OGR sequences with known OGR, EQC and 

SA in terms of the ruler length and total optical bandwidth 

occupied by the sequences for n = 3, 4, 6 and 8 respectively. It 

is also clear from Table 3 that the proposed algorithm can find 

near–optimal solutions for larger rulers but at the expense of a 

significant computational time.  

The results obtained for rulers upto 6–marks can be performed 

in few seconds whereas minutes were necessary for other 

instances. From Table 3 it is clear that the proposed FA was 

able to generate the shortest ruler in n = 3, 4, 5, 6, 7, 8 and 10. 

In n = 9 the FA generate the ruler that is 5 unit longer than the 

shortest best known solutions. But the total optical bandwidth 

occupied by n = 9 is same as that of the best known solutions. 

 

Table 3. Comparison of Ruler Length and Total Bandwidth Obtained by FA with Known OGR, EQC and SA 

n 

Best Known OGR 

[15], [20], [33], 

[35], [39], [45], 

[46] 

EQC [1], [13], 

[24] 
SA [1], [13], [24] FA (Proposed Algorithm) 

Ruler 

Length 

TBW 

(Hz) 

Ruler 

Length 

TBW 

(Hz) 

Ruler 

Length 

TBW 

(Hz) 

Ruler 

Length 

TBW 

(Hz) 
Iterations 

Relative 

Error 

(%) 

3 3 4 6 10 6 4 3 4 1 0.0 

4 6 11 15 28 15 11 
6 

7 
11 2 0.0 

5 11 
25 

28 
— — — — 

11 

12 

13 

23 

24 

25 

3 0.0 

6 17 

44 

47 

50 

52 

45 140 20 60 
17 

18 

42 

44 

46 

47 

50 

52 

5 0.0 

7 25 

81 

87 

95 

77 

90 

— — — — 

25 

26 

27 

73 

77 

80 

81 

8 0.0 

8 34 117 91 378 49 189 
34 

39 

113 

117 
50 0.0 

9 44 206 — — — — 49 206 70 11.36 

10 55 249 — — — — 55 249 100 0.0 

Trials 

n = 4 n = 5 n = 6 

Ruler Length 
Total Bandwidth 

(Hz) 
Ruler Length 

Total Bandwidth 

(Hz) 

Ruler 

Length 

Total Bandwidth 

(Hz) 

1 6 11 11 25 18 42 

2 6 11 12 23 17 44 

3 7 11 11 25 17 50 

4 7 11 11 25 17 44 

5 6 11 13 24 18 46 

6 6 11 12 23 17 44 

7 6 11 12 24 18 48 

8 6 11 13 24 18 42 

9 7 11 12 23 18 42 

10 6 11 11 25 17 44 

 
Optimal Ruler Length = 6 

Optimal Total Bandwidth (Hz)= 

11 

Optimal Ruler Length =11 

Optimal Total Bandwidth (Hz)= 

23 

Optimal Ruler Length =17 

Optimal Total Bandwidth (Hz)= 

42 
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It is pertinent to mention here that OGR obtained in [25] by 

non–heuristic exhaustive searches for 10–marks took 12.57 

minutes, whereas for the our proposed approach the execution 

time varied from few seconds for rulers of 6–marks to 15 

minutes for 10–marks ruler with a maximum iterations of 100. 

Of course computers today play dominant role in reducing the 

computation time; efficient algorithms can further reduce the 

time complexity drastically by substituting best for 

reasonably good solutions. 

 

Figure 5: Comparison of the Results Obtained By 

Proposed Firefly Algorithm with Known OGR, EQC and 

SA in Terms of Length of the Ruler 

 

Figure 6: Comparison of the Results Obtained By 

Proposed Firefly Algorithm with Known OGR, EQC and 

SA in Terms of Total Optical Bandwidth 

6. CONCLUSION 
This paper presented the application of FA to solve optimal 

Golomb ruler sequences problem. It has been observed that 

FA produces Golomb ruler sequences very efficiently. The 

performance is being compared with the two existing classical 

algorithm i.e. EQC and SA in terms of the ruler length and 

total bandwidth obtained by the sequences. The preliminary 

results indicate that FA out performs the existing algorithms 

in terms of total optical bandwidth i.e. FA appears to be most 

efficient algorithm to such NP–complete problems.  

In the future, in order for these algorithms to be of practical 

use, it is desired that the performance of these algorithms for 

higher mark OGRs upto about 3000 marks may be evaluated. 

Though this process will be very time consuming yet this 

needs be done for this work to be of some use in the field of 

communication engineering. 
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APPENDIX–A 
The table below illustrates the optimal Golomb ruler 

sequences generated by the proposed FA for various marks: 

Table 4. Optimal Golomb Ruler Sequences Generated By 

Proposed FA 

Order Length Marks 

1 0 0 

2 1 0 1 

3 3 0 1 3 

4 6 0 1 4 6 

7 0 1 3 7 

5 

11 

12 

12 

13 

0 1 4 9 11 

0 1 3 7 12 

0 1 3 8 12 

0 1 4 6 13 

6 

17 

17 

17 

17 

18 

18 

18 

0 1 4 10 12 17 

0 1 4 10 15 17 

0 3 5 9 16 17 

0 4 6 9 16 17 

0 1 3 8 12 18 

0 1 3 8 14 18 

0 1 5 7 15 18 

7 

25 

25 

26 

27 

0 2 6 9 14 24 25  

0 1 4 10 18 23 25 

0 1 7 9 12 22 26 

0 1 5 7 15 18 27 

8 
34 

39 

0 1 4 9 15 22 32 34 

0 1 3 8 14 18 30 39 

9 49 1 5 11 12 20 33 36 38 50 

10 55 0 1 6 10 23 26 34 41 53 55 
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