
International Journal of Computer Applications (0975 – 8887)

Volume 85 – No 7, January 2014

38

Design Pattern Mining by Product of Sum (POS)

Expression for Graphs

Manjari Gupta
Department of Computer Science

Banaras Hindu University, Varanasi

Rajwant Singh Rao
Department of Computer Science & Information

Technology (CSIT), Gurughasidas Vishwavidyalaya

ABSTRACT

There are many recurring patterns of classes which exist in

several object oriented software as an experience of

developers. Design Pattern Mining is an important part of

many solutions to Software Reuse practices.

Design pattern instances are highly important and useful for

program understanding and software maintenance. Hence an

automatic and reliable design pattern mining capability is

required. Here we are proposing a new method for design

pattern detection based on Boolean functions.

Keywords

Design pattern, UML, Boolean function, POS form.

1. INTRODUCTION
Design patterns [1] are increasingly being applied in object

oriented software design processes as a part of many solutions

to Software Engineering difficulties and thus are extensively

used by software industries. Each design pattern denotes a

high level abstraction, and contains expert knowledge and

thus a software developed using design patterns have many

desired properties. Design pattern detection is a part of

reengineering process and thus gives important information to

the designer. To understand a software system and to modify

it, it is necessary to recover pattern instances. It would be

useful for reengineers to have an automatic design pattern

detection tool that can detect design pattern from the system

without need of thorough/manual analysis of it. There are

number of pattern detection techniques, some of them have

been discussed in section 5. In this paper we are proposing a

new method for design pattern detection based on boolean

functions.

We will convert the UML diagrams of design patterns and

model graph into boolean function in POS form. Then by

comparing boolean functions of both it can be decided

whether the pattern exists in system design or not. We are

implementing this approach to get a design pattern detection

tool so that reengineers need not to manually analyze the

design of the system to identify used design patterns, if any, to

understand the design of the system.

Here we are taking two graphs, one is corresponding to the

system design (i.e. system under study) and other is

corresponding to the design pattern graph. A particular

example is shown in figure 1.

The advantage of this approach is that it reduces time

complexity of matching two graphs. Using this approach we

can also detect instances of design patterns that is not possible

by many other approaches proposed in the literature. Related

works are discussed in section 2. In section 3 boolean function

in POS form representation of the system design and design

patterns are explained. The proposed design pattern detection

is described in section 4. Section 5 describes the issues in

design pattern detection based on boolean functions. Lastly

we concluded in section 6.

2. RELATED WORK
Brown [6] proposed a method for automatically detection of

design patterns. In his work Smalltalk code was reverse-

engineered to facilitate the detection of four well-known

patterns from the catalog by Gamma et al. [1]. Nikolaos

Tsantalis [3], proposed a methodology for design pattern

detection using similarity scoring between graph vertices. It

can detect variants of design patterns also. But the limitation

of similarity algorithm is that it only calculates the similarity

between two vertices, not the similarity between two graphs.

To solve this Jing Dong [4] gave another approach called

template matching, which calculates the similarity between

sub-graphs of two graphs instead of vertices. They detected

design patterns from software by using normalized cross

correlation. Stencel and Wegrzynowicz [5] proposed a method

for automatic design pattern detection that is able to detect

many nonstandard implementation variants of design pattern.

Their method was customizable because a new pattern

retrieval query can be introduced along with modifying an

existing one and then repeat the detection using the results of

earlier source code analysis stored in a relationaldatabase.

Drawback was that the method was not general enough to

identify all design patterns. Further the translation of first

order logic formulae as SQL queries is very laborious and

error-prone.

In our earlier work, we used the klenberg approach and fuzzy

graph algorithms for design pattern detection [9]. The

drawback of these two methods is that they are only

concerned about node similarity not the whole graph. We used

sub-graph isomorphism detection approach that overcomes

this drawback [9]. We have used these and other approaches

for design pattern detection in GIS application [10]. To reduce

complexity of design pattern detecting algorithm we used the

graph decomposition technique [11]. The order of complexity

of this decomposition algorithm is O(n3), where n is the

number of nodes present in the graph. This algorithm works

for only those design patterns having similar relationships

among at most three classes in its UML class diagram.

However this condition may not hold for only few of the

design patterns.

Thus this approach can be applied for almost all of the design

patterns. In another work we find out whether design pattern

matches to any sub-graph of system design by using decision

tree [12]. A decision tree is developed with the help of row-

column elements, and then it is traversed to identify patterns.

By applying the decision tree approach, the complexity is

reduced. We proposed a new approach ‘DNIT’ (Depth-Node-

Input Table) [13]. It is based on the concept of depths from

the randomly chosen initial node (also called root node which

has depth zero) in directed graph. In another work we applied

state space representation of graph matching algorithm to

detect design patterns [14]. State space representation easily

describes the graph matching process.

International Journal of Computer Applications (0975 – 8887)

Volume 85 – No 7, January 2014

39

The advantage of this method used for design pattern

detection was that the memory requirement was quite lower

than from other similar algorithms. Another advantage is that

it detects variants as well as any occurrence of each design

patterns.

3. BOOLEAN FUNCTION

REPRESENTATION OF SYSTEM

DESIGN AND DESIGN PATTERN
UML diagrams of system design and design patterns are

converted into graphs. Before converting a UML diagram into

graphs we first modify the UML diagram in such a way so

that variant of design patterns can also be detected. The

reason for the design pattern variant problems is the fact that

the inheritance and aggregation relationship have the property

of transitiveness [2]. Thus if there is an inheritance (or

aggregation) relationship between classes c1 and c2 and the

same relationship between c2 and c3, we will introduce the

same relationship between c1 and c3 also. We have taken the

UML Diagram of system design as shown in Figure 1. There

are three relationships (i.e. generalization, direct association

and aggregation), the corresponding relationship graphs (i.e.

directed graph) are shown in Figure 2(a), 2(b) and 2(c)

respectively.

Fig. 1 UML Diagram of System Design [8]

Fig. 2(a) Generalization Relationship Graph for System

Design

Fig. 2(b) Direct Association Relationship Graph for

System Design

Fig. 2(c) Aggregation Relationship Graph for System

Design

The relationship graphs for design patterns can be extracted in

similar manner as for system design. For example singleton,

façade and strategy design pattern relationship graphs are

shown in section 4.

All relationship graphs can now be converted into Boolean

function form in product of sum (POS) form [7]. Algorithm

for converting a directed graph into sum of product form

(POS) is as follows.

Directed_Graph2POS

Aij is the adjacency matrix of order nxm corresponding to

relationship directed graph

count=0 // count is a flag whose value becomes 1 when 1 is

found in a row in the adjacency matrix

step1. for j=1 to m begin

step2. if a1j ≠ 0 then

 position[count] = j; // position counts column number

which has value 1

 count= count +1;

 j= j + 1;

//end of if condition step 2

else j= j+1

//end of for loop staep 1

Step3. for l=1 to k (where k<count) begin

 i = 1;

 j = position[count];

 print i;

 for j = 1 to m begin

 if aij ≠ 0 then

International Journal of Computer Applications (0975 – 8887)

Volume 85 – No 7, January 2014

40

 if j<i then print j break

 end if

 print j

 i = j; j = 0;

 end if

 j= j + 1;

 end for

 m = m + 1;

 end for

END Directed_Graph2POS

Now by applying Directed_Graph2POS algorithm on

relationship adjacency matrices, corresponding POSs can be

written.

On applying the above algorithm on adjacency matrices of

relationship graphs of system design (figure 5, 6, 7), three

POS form will be generated: for generalization, for direct

association and for aggregation, as shown in equation 1.

POS(gen) = (2+1) *(3+1)… (1-a)

POS (d.a.) = (5+4+2) * (5+4+3)… (1-b)

POS(agg) = (5+1)… (1-c)

The relationship graphs of design patterns can also be

converted into POS form by applying above algorithm in

similar manner as done for system design. Singleton facade

and strategy design pattern relationship graphs are converted

into POS form in section 4.

4. PROPOSED METHOD FOR DESIGN

PATTERN MINING
There are 23 GoF (Gang of Four) [1] design patterns. UML

diagrams can be drawn for each of the corresponding design

patterns. After checking sub isomorphism between the

relationship graphs of a design pattern and the model graph,

there may be three

cases [14]:

i) Relationship graph of a design pattern is (sub) isomorphic

to the model graph. This is the case of existence of design

pattern.

ii) Relationship graph of a design pattern is partially (sub)

isomorphic to the model graph. This is the case of existence of

variant of a design pattern.

iii) Relationship graph of a design pattern is not sub

isomorphic to the model graph. This is the case of non-

existence of design pattern.

In the 23 GoF (Gang of Four) [1] design patterns. Generally

design patterns are used to reuse design. Thus there exists a

UML diagram corresponding it each design pattern. Our

method can be used for all those design patterns in which

there is no relationship from a class to itself. Here we are

considering some of them. We will first convert the design

pattern into relationship graphs and that into Boolean function

in POS form. This string (of design patter) represented by

Boolean function will be searched into corresponding string of

system design.

Substring search, is a kind of sub-graph isomorphism

detection, where the string to be searched is corresponding to

sub-graph and the bigger string, in which we search the

smaller one, is corresponding to whole graph. Graph

Matching techniques are important and very general form of

pattern matching that finds realistic use in areas such as image

processing, pattern recognition and computer vision, graph

grammars, graph transformation, bio computing, search

operation in chemical structural formulae database, etc. Using

the discussed algorithm one can find whether a design pattern

or its variants exist in the system design or not. In the first

case design pattern relationship graph exist in corresponding

relationship graph of system design. In the second case design

pattern relationship graph partially exists in the corresponding

relationship graph of system design. Further more than one

mapping we may get for one relationship graph. That shows

possibility of multiple occurrence of a design pattern

(complete/variant) in the system design.

It is important to note that even if POS expressions of all the

relationships of design pattern exist in corresponding POS

expressions of system design, design patterns may not fully

match with subgraph of the system design. Reason is that the

incidence relationship preservation condition may not satisfy.

In the following subsections we demonstrate the proposed

method of design pattern detection by some examples.

4.1 Design Pattern Mining: Exact

Matching
Design pattern is said to be fully matched to a subpart of

system design if it matches to each relationship which present

in design pattern. To demonstrate this case, let us chose

façade design pattern Which UML diagram is shown in

Figure 3. It is having a single direct association relationship.

Graph for this relationship is shown in Figure 4(a).

Fig. 3 Façade Design Pattern [8]

Fig. 4(a) Direct Association Relationship Graph for

Façade Design Pattern

To search façade design pattern in the system design first we

find out Boolean function for façade design pattern. By

applying Directed_Graph2POS algorithm on adjacency matrix

for graph shown in figure 4(a), we get the corresponding POS

expressions as follows:

International Journal of Computer Applications (0975 – 8887)

Volume 85 – No 7, January 2014

41

POS(d.a.) = a+b … (2)

To find out whether it exists in system design or not, we have

to consider equation 2 and equation 1(b) (Boolean function

for system design for direct association). Since façade design

pattern has one term with two components only, so in system

design we will search for a term having more than two

components. In this way we get three distinct mappings {[(a,

5) (b, 4)], [(a, 4), (b, 2)], [(a, 4), (b, 3)]}. There is no other

relationship in the design pattern thus no need to check for

other POS expressions of system design. Only one

relationship in design pattern also relieves us from checking

the incidence relationship preservation. Thus, there are three

occurrences of façade design patterns in system design.

Please use a 9-point Times Roman font, or other Roman font

with serifs, as close as possible in appearance to Times

Roman in which these guidelines have been set. The goal is to

have a 9-point text, as you see here. Please use sans-serif or

non-proportional fonts only for special purposes, such as

distinguishing source code text. If Times Roman is not

available, try the font named Computer Modern Roman. On a

Macintosh, use the font named Times. Right margins should

be justified, not ragged.

4.2 Design Pattern Detection: Partial

Matching
Design pattern is said to be partially matched to a subpart of

system design if it does not match for each relationship

present in the design pattern or some of the incidence

relationship preservation done not hold. The example of

partial match in our case is abstract factory design pattern.

Relationship graph of direct association is a sub-graph of

corresponding graph of system design. But for rest of the

relationships it is not the case. Generalization relationship

graph of design pattern is disconnected while for design

pattern it is connected thus we have to check for partial

existence.

Fig. 5 Abstract Factory Design Pattern [8]

Fig. 6(a) Generalization Relationship Graph for Abstract

Factory Design Pattern

Fig.6 (b) Direct Association Relationship Graph for

Abstract Factory Design Pattern

Fig. 6(c) Dependency Relationship Graph for Abstract

Factory Design Pattern

To search abstract factory design pattern (figure 5) in the

system design first we find out Boolean function for abstract

factory design pattern. By applying Directed_Graph2POS

algorithm on adjacency matrix for figure 6(a), 6(b) and 6(c)

we get the orresponding

POS expressions as follows:

POS(gen1) = d+b POS(gen 2) = e+c 3(b)

POS(d.a.) = a.b + a.c 3(a)

POS(dep) = d+e 3(c)

To find out whether it exists in system design or not, we will

check for each relationship one by one. Consider equation

2(a) and equation 3(a). Both POS expressions for

generalization relationship of this pattern match with two

terms present in corresponding POS expression of system

design independently. Thus two mappings {[(d,2), (b,1)],

[(e,3), (c,1)]}. Since both of these two mappings do not cover

all vertices of generalization relationship graph of design

pattern to which edges are incident, it is partial mapping.

Now we will check for direct association relationship. By

comparing equation 2(b) and 3(b) we get two partial

mappings {(a,4), (b,2), (c,3)], [(a,4), (b,3), (c,2)]}. Since both

these mappings cover all elements of direct association

relationship graph of design pattern to which edges are

incident, it is full mapping for direct association. No other

relationship is common. Now we check incidence relationship

preservation. After checking incidence relationship we get

two final mappings that consider all relationships of design

patterns that are common with relationships present in design

pattern. These mappings are {[(a,1), (b,2), (c,3), (d,4)], [(a,1),

International Journal of Computer Applications (0975 – 8887)

Volume 85 – No 7, January 2014

42

(b,2), (c,3), (e,4)]. Since both these two final mappings do not

cover all vertices of design pattern, there are two variants of

abstract factory pattern in the system design.

Please use a 9-point Times Roman font, or other Roman font

with serifs, as close as possible in appearance to Times

Roman in which these guidelines have been set. The goal is to

have a 9-point text, as you see here. Please use sans-serif or

non-proportional fonts only for special purposes, such as

distinguishing source code text. If Times Roman is not

available, try the font named Computer Modern Roman. On a

Macintosh, use the font named Times. Right margins should

be justified, not ragged.

4.3 Design Pattern Detection: may not exist
The limitation of this approach is that it cannot be used to

identify some design patterns where relationship exists from a

class to itself for example singleton design pattern. Its UML

diagram and relationship graph is shown in figure 7 and figure

7(a) respectively.

Since there is a self-loop, one cannot write Boolean function

for the graph shown in figure 7(a) and thus this method cannot

be used for these types of design patterns.

Figure 7. Singleton Design Pattern [8]

Figure 7(a) DPG of UML Diagram of Singleton Design

Pattern

Please use a 9-point Times Roman font, or other Roman font

with serifs, as close as possible in appearance to Times

Roman in which these guidelines have been set. The goal is to

have a 9-point text, as you see here. Please use sans-serif or

non-proportional fonts only for special purposes, such as

distinguishing source code text. If Times Roman is not

available, try the font named Computer Modern Roman. On a

Macintosh, use the font named Times. Right margins should

be justified, not ragged.

5. CONCLUSIONS
In this paper we proposed an approach to design pattern

detection using an algorithm for converting of directed graphs

(for relationships) into sum of product (POS) form of boolean

functions. By taking the combination of terms (substring)

present in design patternwe tried to detect design pattern in

system design. The limitation of this approach is that few

patterns involving self-relationship on a class cannot be

identified. We are developing a prototype that allows the

implementation of the approach discussed.

6. REFERENCES
[1] Gamma E., Helm R., Johnson R., Vlissides J. (1995):

Design Patterns Elements of Reusable Object-Oriented

Software, Addison- Wesley.

[2] Xhang Z.X., Li Q.H. and Ben K.R. (2004): A New

Method for Design Pattern Mining, IEEE Explore.

[3] Tsantalis N., Chatzigeorgiou A., Stephanides G., and

Halkidis S. (2006): Design Pattern Detection Using

Similarity Scoring, IEEE transaction on software

engineering, 32(11).

[4] Dong J., Sun Y., Zhao Y. (2008): Design Pattern

DetectionBy Template Matching , the Proceedings of the

23rd AnnualACM, Symposium on Applied Computing

(SAC), pages 765- 769,Ceará, Brazil,March.

[5] Stencel K. and Wegrzynowicz P. (2008): Detection of

Diverse Design Pattern Variants, 15th Asia-Pacific

Software Engineering Conference, IEEE Computer

Society.

[6] Brown K. (1996): Design Reverse-Engineering and

Automated Design Pattern Detection in Smalltalk,

Technical Report TR-96-07, Dept. of Computer Science,

NorthCarolina State Univ.

[7] Cortadella J. and Valiente G. (2000): A Relational View

of Sub Graph Isomorphism, In Proc. Fifth Int. Seminar

on Relational Methods in Computer Science.

[8] StarUML, The Open Source UML/MDA Platform.

http://staruml.sourceforge.net/en/

[9] Pande A., Gupta M. (2010): Design Pattern Detection

Using Graph Matching. International Journal of

ComuterEngineering and Information

Technology(IJCEIT), Vol 15, No 20, Special Edition

2010, pp 59-64.

[10] Pande A., Gupta M., Tripathi A.K. (2010): Design

Pattern Mining for GIS Application using Graph

Matching Techniques. 3rd IEEE International

Conference on Computer Science and Information

Technology . 09-11 July, 2010, Chengdu, China.

[11] Pande A., Gupta M., Tripathi A.K. (2010): A New

Approach for Detecting Design Patterns by Graph

Decomposition and Graph Isomorphism. In Proc. Of

Third International Conference on Contemporary

Computing(IC3), published by Springer. 09-11 August,

2010, Noida, India.

[12] Pande A., Gupta M., Tripathi A.K. (2010): A Decision

Tree Approach for Design Patterns Detection by

Subgraph Isomorphism, International Conference on

Advances inInformation and Communication

Technologies, ICT 2010, Kochi, Kerala, published by

Springer.

[13] Pande A., Gupta M., Tripathi A.K. (2010): DNIT – A

New Approach for Design Pattern Detection,

International Conference on Computer and

Communication Technology (ICCCT-2010), proceedings

to be published by the IEEE.

[14] Gupta M., Singh R.R., Pande A., Tripathi A.K.(2011):

Design pattern Mining Using State Space Representation

of Graph Matching, 1st International Conference on

Computer Science and Information Technology,

Banglore, 2011, LNCS, Springer

Singleton

+Instance(): Singleton -instance

IJCATM : www.ijcaonline.org

