
International Journal of Computer Applications (0975 – 8887)

Volume 85 – No 18, January 2014

35

A Novel Task Scheduling Algorithm for Heterogeneous

Computing

 Vinay Kumar C. P.Katti P. C. Saxena
 SC&SS SC&SS SC&SS
Jawaharlal Nehru University Jawaharlal Nehru University Jawaharlal Nehru University
 New Delhi, INDIA New Delhi, INDIA New Delhi, INDIA

ABSTRACT

The grid computing system can support the execution of

computationally intensive parallel and distributive

applications. The main characteristics of grid computing and

heterogeneous computing system are similar. A novel

scheduling algorithm, called NHEFT is proposed in this paper

to enhance the functions of heterogeneous Earliest-Finish time

(HEFT) algorithm. The NHEFT algorithm works for a

bounded number of heterogeneous processors, the main

objective of NHEFT is getting high performance and fast

scheduling. The algorithm selects the tasks with a rank system

at each step of execution of algorithm, which minimize

earliest finish time with the minimization of cost.

General Terms

Distributed Computing, Heterogeneous Computing, Grid

Computing.

Keywords

Task Scheduling Problem, NP Problems, Dynamic

Scheduling.

1. INTRODUCTION
Most of previous research in parallel and distributive

computing was focused on homogeneous computing system.

In recent years, most of the research on scheduling algorithm

can support the heterogeneous computing system [1], [2]. In a

heterogeneous environment, it is assumed that the bandwidth

of every communication channel and computing power of

every processor can be different. A task scheduling problem

can be represented by a direct acyclic graph (DAG) [3], in

which tasks are represented by nodes and inter-task data

dependencies are represented by edges. Each node label

shows expected computation time of the task and each edge

label shows inter-task expected communication time between

tasks. The objective function of this problem is to map task

onto processors and order their executions so that the task

precedence requirements are satisfied and a minimum overall

completion time is obtained. In general case a task scheduling

problem is NP-complete problem [4].

In this paper, a new scheduling algorithm is proposed for a

bounded number of fully connected heterogeneous processors.

The motivation behind algorithm is to deliver good quality of

schedule with lower costs. In this study the NHEFT algorithm

selects the task with highest sum of top rank and down rank at

each step. The selected task is assigned to processor which

minimizes its earliest finished time with an insertion based

approach [5].

The remainder of this paper is organized as follows: section 2

defines task scheduling problem and related terminology.

Section 3 introduces proposed scheduling algorithm. Section 4

presents a comparison study of proposed algorithm with the

related algorithms like MH [3], DLS [6], LMT [6] and HEFT

[14]. The comparison study is based on randomly generated

task graphs which have several real applications. The

summary of the research is presented in section 5.

2. TASK SCHEDULING PROBLEM AND

RELATED WORK
The application of task scheduling system is represented by a

directed acyclic graph, G= (V, E) where V is the set of tasks

and E is the set of edges between tasks. Each edge (i, j) E

represents the constraint such that the task should complete

its execution before task start. Here data is a v × v matrix

of communication data, where v is total number of tasks. In a

task graph, a task without any parent is called an entry task (

) and a task without any child is called an exit task (

).

In the target computing environment it is assumed that the set

Q of q number of heterogeneous processors connected in a

fully connected topology, so all inter-processor

communications are assumed to be performed without

contention. It is also assumed that computation can be

overlapped with communication. As in previous terminology

on task scheduling problem [6], W is a v × q computation cost

matrix in which each gives the estimated execution time

to complete task on processor . Before scheduling, the

tasks are labeled with the average execution cost.

The average computation cost of a task is defined as [5]

 (1)

The data transfer rates between the processors are stored in

matrix B of size q × q. The communication startup cost of

processor is given as a q-dimensional vector L. The

communication cost of the edge (i, k) which is for transferring

data from task (scheduled on) to task (scheduled

on) by transfer rate is defined by

 = +

 (2)

where is communication startup cost of processor .

If task and are on the same processor, then = 0. The

average communication cost of an edge (i, k) is defined by

 = +

 (3)

where is the average communication startup time.

EST (,) and EFT (,) are the earliest execution start

time and the earliest execution finish time of task on

processor respectively. The EST and EFT values are

computed recursively, starting from the entry task as shown in

equation (4) and (5). In order to compute the EFT of a task

, all immediate predecessor task of must have been

scheduled.

International Journal of Computer Applications (0975 – 8887)

Volume 85 – No 18, January 2014

36

EST(,) =

max (4)

 EFT (,) = + EST (,) (5)

 For the entry task

 EST (,) = 0 (6)

Where avail (j) is the time that processor is free and it is

ready to execute task , the inner max block in equation (4)

returns the ready time i.e., the time when all data needed by

task has arrived at processor . After all tasks in a graph

are scheduled, the scheduled length (overall completion time)

will be the AFT of the exit task (). If there are multiple

exit tasks and the convention of inserting a pseudo exit task is

not applied, the schedule length, called makespan, is defined

as

 makespan = max [AFT] (7)

The next section presents the task scheduling algorithms that

support heterogeneous processors. In Dynamic level

scheduling (DLS) algorithm [6], at each step, algorithm

selects the pair that maximizes the value of the dynamic level

which is equal to

 DL (,) =
 () - EST (,).

The computation cost of a task is the median value of the

computation costs of the task on the processors. In this

algorithm upward rank calculation does not consider the

communication costs.

In mapping heuristic (MH) [3], the communication cost of a

task on a processor is computed by the number of instructions

to be executed in the task divided by the speed of processor.

The algorithm uses static upward ranks to assign priorities.

The Levelized-Min Time (LMT) algorithm [6] is a two phase

algorithm [8], The first phase groups the tasks that can be

executed in parallel using level attribute. The second phase

assigns each task to the fastest available processor. A task in

lower level has higher priority than a task in a higher level.

Within the same level, the task with the highest computation

cost has the highest priority. Each task is assigned to a

processor that minimizes the sum of the task’s computation

cost and the total communication cost with tasks in the

previous levels.

These results can be modified by applying a new approach to

calculate the rank of tasks. With the new upper rank and lower

rank, the minimum makespan is achieved as compare to

previous algorithms like DLS, MH, LMT and HEFT.

3. NEW HETROGENEOUS EARLIEST-

FINISH TIME (NHEFT) ALGORITHM
In this proposed algorithm, tasks are ordered by scheduling

priorities that are based on top ranking and down ranking. The

top ranking of a task is recursively defined as

 () =

 ((8)

where
 is average communication cost between node

and . The suc() is the set of immediate successors of task

 . The is the average communication cost of task . For

exit task, top rank value is equal to

 () = 0 (9)

Top rank computed recursively by traversing the task group

upward. Similarly, down rank of a task is recursively

define as

 () = +

 ((10)

Where pred() is the set of immediate predecessor of task .

Down ranks are calculated recursively by traversing the task

graph downward starting from entry task. The down rank of

entry task is equal to

 () = (11)

This algorithm has two phases, first is task prioritizing phase

that calculate priority of all tasks. Second phase is processor

selection phase, in which scheduling each selected task on its

best processor. In task prioritizing phase, priority of each task

is sum of its top rank and down rank, which is based on mean

computation and mean communication costs. Arrange all

tasks in a queue in decreasing order of its priorities. A tie-

breaking is done randomly.

This algorithm has insertion based policy as defined in HEFT

algorithm, which considers the possible insertion of NHEFT

Algorithm

 a task in an earliest idle time slot between already schedule

tasks on a processor. In the processor selection phase, the

search of an appropriate idle time slot of a task on

processor , i.e. the time when all input data of task that

were sent by ’s immediate predecessor task have arrived at

processor . The search continue until finding the first idle

time slot that is capable of holding the computation cost of

task . The NHEFT algorithm has an O(e × q) time

complexity for e edges and q processors. For a dense graph,

number of edges replace by . Thus for a dense graph time

complexity is O(× q), where v is a total number of tasks.

4. EXPERIMENTAL RESULTS
An example given in Figure 1 that presents a scheduling

problem in Directed acyclic graph (DAG) form. Table 1

represent a computation cost matrix W of order v × q. The top

rank and down rank for each tasks are given in Table 2. The

task schedules obtained by NHEFT algorithm for this DAG

present in Figure 2.

1) set the mean comp. cost of tasks and mean

comm. cost of edges

2) compute sum of and of all tasks by

traversing graph

3) sort tasks in a scheduling queue by

decreasing order of tasks

4) while
there are unscheduled tasks in the queue

5) do
select first task, from queue

6) for (each processor in the processor set do

compute EFT (,) value using insertion

based policy)

7) assign task to processor that minimize

EFT of task .

8) end while

International Journal of Computer Applications (0975 – 8887)

Volume 85 – No 18, January 2014

37

The first phase of algorithm is task prioritizing, for this

calculate the top rank and down rank from (8) and (10).

Because initially take the top rank of exit task is zero and

down rank of entry task is mean computation cost of entry

task, then and is calculated by recursively. A complete

list is given in Table 2. Now sort the task in decreasing order

of rank (+) and tie-breaking solve by randomly chosen.

For given example scheduling queue is as [, , , ,

 , , , , ,].

 Fig 1: DAG form of a task scheduling problem

Table 1: Computation Cost Matrix

Table 2: Ranks for given directed acyclic graph

For the second phase of algorithm, select the unscheduled

tasks from scheduling queue one by one. In our example first

select . Then compute EFT of this task for each processor

by (6), take minimum EFT for this task and schedule it that

processor.

For given example

 EFT (,) = 14

 EFT (,) = 16

 EFT (,) = 9

So select here on , then recursively execute algorithm

for all unscheduled tasks from scheduling queue. This

example takes schedule length 76. This is better than other

algorithms like HEFT, DLS, MH and LMT.

The NHEFT algorithm is applied on five standard examples

given by Siegel [9]. It can be easily seen that in Table 3 that

scheduling length for NHEFT algorithm is better than other

algorithms like HEFT, DLS, MH and LMT. A graph

representation of these examples is shown in Figure 3.

 P1 P2 P3

 14 16 9

 13 19 18

 11 13 19

 13 8 17

 12 13 10

 13 16 9

 7 15 11

 5 11 14

 18 12 20

 21 7 16

 +

 94.8 13 107.8

 60.2 47.6 107.8

 67.2 39.3 106.5

 67.2 34.6 101.8

 57.2 35.6 92.8

 50.6 39.6 90.2

 31.6 73.3 104.9

 25.6 76.6 102.2

 27.6 80.2 107.8

 0 107.8 107.8

International Journal of Computer Applications (0975 – 8887)

Volume 85 – No 18, January 2014

38

Fig 2: Tasks schedule length for given DAG

Table 3: Comparison with various algorithms

 Fig 3: Comparison of HNEFT with various algorithms

5. CONCLUSION
The paper presented a new algorithm called NHEFT for

scheduling graphs onto a system of heterogeneous processors.

Experimental work shows that the NHEFT algorithm

significantly outperformed the other algorithms like MH,

DLS, LMT and HEFT. Because of its robust performance and

low running time, the NHEFT algorithm is a viable solution

for the DAG scheduling problem on heterogeneous systems.

The NHEFT algorithm can be extended in future for

rescheduling task in response to changes in processor and

network loads. Although given algorithm assume a fully

connected network. It is also extend this algorithm for

arbitrary-connected networks.

6. REFERENCES
[1] Foster I and Kesselman C (editors), 1999, The Grid:

Blueprint for a Future Computing Infrastructure, Morgan

Kaufmann Publishers, USA.

[2] Braun R, Siegel H, Beck N, Boloni L, Maheswaran M,

Reuther A, Robertson J, Theys M, Yao B, Hensgen D

and Freund R, 2001, A Comparison of Eleven Static

Heuristics for Mapping a Class of Independent Tasks

onto Heterogeneous Distributed Computing Systems,

International Journal of Parallel and Distributed

Computing, Vol.61(6): 810-837.

[3] Maheswaran M, Ali S, Siegel H.J, Hensgen D. and Freund

R. F,1999, Dynamic Matching and Scheduling of a Class

of Independent Tasks onto Heterogeneous Computing

Systems, International Journal of Parallel and Distributed

Computing,Vol. 59(2):107-131.

[4] Casanova H, Legrand A, Zagorodnov D and Berman

F,(2000), Heuristics for Scheduling Parameter Sweep

Applications in Grid Environments, In. Proc. Of the 9th

heterogeneous Computing Workshop: 349-363,

Cancun,Mexico.

[5] Stone H S,1977, Multiprocessor Scheduling with the aid

of network flow algorithms, IEEE Trans. Software Eng.

3: 85-93.

[6] Stone H S, Bukhara S H,1978, Control of distributed

Processes, Computer: 97-106.

[7] M. M. Eshaghian, ed., 1996, Heterogeneous Computing,

Artech House, Norwood, MA.

0

20

40

60

80

100

120

140

160

DAG 1 DAG 2 DAG 3 DAG 4 DAG 5

DLS

MH

LMT

HEFT

NHEFT

HEFTT

DLS

MH

LMT

NHEFT

Makespan

 (Ex-1)

 80

91

91

 95

 76

Makespan

 (Ex-2)

 71

85

81

 86

 67

Makespan

 (Ex-3)

 92

101

102

 110

 92

Makespan

 (Ex-4)

 136

152

150

 150

 133

Makespan

 (Ex-5)

 106

121

129

 139

 106

International Journal of Computer Applications (0975 – 8887)

Volume 85 – No 18, January 2014

39

[8] A. Khokhar, V. K. Prasanna, M. Shaaban, and C. L Wang,

1993, Heterogeneous computing: Challenges and

opportunities, IEEE Computer, Vol. 26, No. 6, pp. 18-27.

[9] H. J. Siegel, J. K. Antonio, R. C. Metzger, M. Tan, and Y.

A. Li, 1996, Heterogeneous computing, in Parallel and

Distributed Computing Handbook, A. Y. Zomaya, ed.,

McGraw-Hill, New York, NY, pp. 725-761.

[10] H. J. Siegel, H. G. Dietz, and J. K. Antonio, 1997,

Software support for heterogeneous computing, in The

Computer Science and Engineering Handbook, A. B.

Tucker, Jr., ed., CRC Press, Boca Raton, FL, pp. 1886-

1909.

[11]G.C. Sih and E. A.Lee, 1994, A Compile-Time

Scheduling Heuristic for Interconnection-Constrained

Heterogeneous Processor Architectures, IEEE Trans.

Parallel and Distributed System vol. 5, no. 2, pp. 113-

120.

[12] H. El-Rewini and T.G. Lewis, 1999, Scheduling Parallel

Program Tasks onto Arbitrary Target Machines, Journal

of Parallel and Distributed Computing, vol. 9, pp. 138-

153.

[13] M. Iverson, F. Ozguner, and G. Follen, 1995,

Parallelizing Existing Applications in a Distributed

Hetrogeneous Environment”, Proc. Hetrogeneous

Computing Workshop, pp 93-100.

[14] Topcuoglu, H. Hariri, S. Min-You Wu, 2002,

Performance effective and low complexity task

scheduling for heterogeneous computing” IEEE Trans.

Parallel and Distributed System vol. 13, no. 3, pp. 260-

274.

IJCATM : www.ijcaonline.org

