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ABSTRACT 
Contours detection is a key component of many image 

processing and computer vision. This paper proposes and 

validates a new efficient gradient method for detecting the 

contours in grayscale image. This method is based on the 

average of two derivatives, obtained from two different steps. 

This mathematical formulation, derived from a discrete 

numerical differentiation of image, plays a central role in this 

method. There are presented some operators and mask of 

discrete functions, which are effective for the detection of 

contours. Comparison of the mask obtained using the two 

derivatives operator, with the usual linear masks, allows us to 

show the efficiency of the new mask. 
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1. INTRODUCTION 
The gradient edge detection by filtering, applied on discrete 

functions, is based on the determination of an extremum of 

the first derivative (or the second derivative). This method has 

been studied by various authors (see for example [1, 2, 3] and 

references therein). Thereby, Modestino and Fries proposed a 

Wiener filter to detect the contours (see [4]) . The purpose of 

this filtering is to perform the non-noisy image, using the 

Laplacian operation. This technic is followed by the zeros 

detection combined with thresholding. On the other hand, the 

derivation obtained by finite difference of an image or 

discrete functions is discrete in nature. The preceding 

approach have been used, particularly by Bohlen et al., T. 

Kapur (see [5, 6, 7, 8, 9]), to approximate the derivatives by 

divided difference. These derivatives are calculated by 

convolution of the image with a mask.  

Since the appearance of promising results using the gradient 

of digital images, many authors have investigated this topic. 

Especially some interesting filters has been proposed by 

Sobel, Prewitt, Kirch, Robinson, Shen-Castan, these filters are 

studied in [10, 11, 12, 13, 14]. The methods mentioned above 

are the most currently used in the detection of contours, with 

the aid of masks. However, these methods suffer from lack of 

the mathematical definition of masks. For example, some 

rotation in the mask has been introduced by Prewitt, Kirch 

and Sobel for determining these masks. Therefore, as shown 

in the above discussion, the mathematical methods play a 

central role in the detection problem of the contours. 

The main concerns of this paper is to propose a new method 

of gradient called derivative operator, which can be applied to 

every discrete function, signal and matrix, in the aim to 

calculate the gradient. This derivative operator permits to find 

a new powerful mask, able to detect the contours of 

grayscales images.  

 The content of this paper is organized as follows: It starts by 

presenting the Lagrange interpolation of a discrete function.  

Some derivative operators of these functions are presented. 

This paper introduces a new method of gradient with mixture 

of two steps. The comparison of the proposed operator with 

other operators permits to show the efficiency of the new 

method.  

2. METHODS AND BASIC MATERIALS 

2.1 The Method of Discrete Functions d2n 

Let P [resp. 
2n ] denotes the vector space of restrictions of 

polynomials functions on  [resp. of degree at most 2n] 

defined on (see [15]). For every  , let 

 
1,

i

ii n
m a m


  for m and for every z in  

 
1,

i

ii n
z a z


 . Let   and consider the application 

:   defined by 

    m m            (1) 

For every m . It is well known that   is an interpolator. 

The application :   defined by     m m   , for 

every m , is called derivative operator. Since is a 

polynomial, then according to (1) it derives easily that  is 

also a polynomial. 

Proposition. The derivative operator  is fitted with a 

convolution of simple convergence  *L  . More 

precisely, the set P is a real vector space, stable by 

translation actions. Moreover, the two operators  and 

are linear. If  n n   is a translation and   then, 

*n   is a polynomial of P. 

The preceding Proposition permits to show the following 

equality, 

       * *n nm m n m         . 
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Thus, the operator   commutes with translations n  ( n

). 

2.2 The Derivation in the Sense of 

Convolution 
For every  2n , consider Lagrangian interpolation 

polynomial of degree 2n, in 2n +1 arbitrary points of . 

Given 
0m  , then   can be evaluated at 

0m p ( 

0 p n  ), as follows. For every x , let 

   
 0

0

0 p n k p

x m k
x m p

p k
 

  

  
   

 
   

Therefore, the derivative of   at x , is given by,  

   
 

  0 0

0 ,

1

p n i p k i p

k p

x m p x m k
p k

 
   



  
      

    
  



 

And for
0x m  the derivative is given by, 

   
 

 0 0

0 ,

1

p n i p k i p

k p

m m p k
p k

 
   



  
     

    
  



 

The different products involved in the preceding expression 

(2) can be evaluated explicitly. Indeed, since 

 
 

 

   

2

,

2
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1
!
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k i p

n

k n
i

n





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  


 
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then        1 ! !
n p

k p

p k n p n p




     . On the other 

hand, the term of the sum corresponding to p=0 is equal 0, 

thus the substitution of the preceding products in (2), gives  

    
   

   

2
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0
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'
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p
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n
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p n p n p
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
 

  
  

The index change p p    allows to get 

         0 0 2 2 0

0 0

' n n

p n p n

m m p d p p d m p  
   

      

where 

     

   

2

2

0

1 !

! !

p
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
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Then the discrete derivative (3)-(4) can be given by the 

following formula 
2* nd   , where * is the discrete 

convolution product.  

Expression (5) shows that each operator 
2nd can be identified 

with the 2n+1 values obtained from (5). The first operators 

2nd  are given by, 

2

1 1
,0,

2 2
d

 
  
 

,   for               n=1 

4

1 2 2 1
, ,0, ,

12 3 3 12
d

 
   
 

,  for                n=2 

6

1 1 1 1 1 1
, , ,0, , ,

60 10 4 4 10 60
d

 
    
 

,   for             n=3 

8

1 4 1 4 4 1 4 1
, , , ,0, , , ,

280 105 5 5 5 5 105 280
d

 
     
 

, for   n=4 

Hence, the applications
2nd can be viewed as a derivative 

operators of a discrete function on Z . Since the set of these 

operators growth with n, let focus in the sequel on the first of 

them. 

Recall that the local convolution operation is a central key in 

modern image processing. That is, the basic idea is that a 

window of some finite size and shape -the support – can be 

scanned across the image. The output pixel value is the 

weighted sum of the input pixels within the window, where 

the weights are the values of the filter assigned to every pixel 

of the window itself. The window with its weights is called 

the convolution kernel. If the filter h[j,k] is zero outside the 

(odd sized rectangular) window of size J×K centered at the 

origin {j = –J0,–J0+1,…,–1,0,1,…,J0–1 , J0 ; k = –K0,–K0+1 ,…,–

1,0,1,…,K0–1 , K0}, then the convolution can be written under the 

following form  

         
0

0

, , * , , ,
J k

j J k k

s m n f m n h m n h j k f m j n k


 

      

where f is the input image and s is the output image. The new 

idea is to propose below a new technique based on the 

concept of step and convolution kernel, for studying the 

digital image. 

2.3 Derivation by Mixture of Two Steps 

Let first recall some basic and useful definitions. Let f be a 

function defined on an open set . It is well known that the 

gradient  f x of f at x, is the vector pointing in the 

direction of maximum growth of the function f, whose 

modulus is given precisely by the maximum growth rate of f 
at x. In the case of Cartesian coordinates, the gradient is given 

by, 

 , ,
f f

f x y
x y

  
   

    

The next goal is to evaluate f at the mesh node xi, by setting 

fi=f(xi). 

 

Figure 1: Mesh points by the Taylor series 
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To this aim let consider a derivative operator IM2P : 5  ®  

representing a new approximation of gradient, defined by 

   2M PI f Grad f f  where f  is the vector column 

2 1 1 2( , , , , )t

i i i i if f f f f f    . 

The idea is to use the notion of finite differences to calculate 

the derivative of a function or matrix image. Indeed, the 

results of [16, 17] permit to show how to exploit this technic 

in digital images. Then, with the aid of the average of a 

mixture of two different steps to explicit the operator IM2P.  

More precisely, let apply this notion of step for deriving the 

new gradient operator. The main purpose is to propose an 

adequate gradient approximation, using the Taylor series of 

the function f. 

Theorem (Approximation of the gradient with a mixture of 

two steps) The gradient of a discrete function f (matrix or 

polynomial) at x, is obtained by applying the operator IM2P, 

where  2

1
1 2 0 2 1

8

t

M PI      is the operator obtain 

by using a mixture of two steps. 

Proof: The Taylor series of f at point xi (Figure 1) gives the 

following two expressions, 

   
 

    
2 2

21

1 1 122

i i

i i i i i i i i

x xf f
f f x x x x o x x

x x



  

 
     

 

(9) 

   
 

    
2 2

21

1 1 122

i i

i i i i i i i i

x xf f
f f x x x x o x x

x x



  

 
     

 

(10)  

    In fact, these expressions give the derivative of f at node i. 

If the step    1 1 1i i i ix x x x x        , is considered 

in equations (9) - (10) we obtain, 

 

 

     

       

2 2
2

1 1 2

2 2
2

2

2

2
2

i i i i i
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f x f
f f f x x x o x

x x

f x f f
f x x x o x x x
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 

   
        

  

    
      

   

   

 

Therefore,   1 1

2

i i
i

f ff
x

x x

 


 
 , where 

   1 1 1i i i ix x x x x        ,  which means that, 

   1 1
1

2

i i
i

f f
Grad f x  


          

                (11) 

Now, in the step let  2 2i ix x x    , which verifies also 

 2 2i ix x x     . Hence, the Taylor series provide the 

equations,
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i i
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x xf f
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x x



  

 
     
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   
 

    
2 2

22

2 2 222

i i

i i i i i i i i

x xf f
f f x x x x o x x

x x



  

 
     

 

      

From (12) and (13) the difference gives, 

     

       
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2

2

2

2
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f x f f
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 
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  

    
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Therefore,   2 2

2

i i
i

f ff
x

x x

 


 
, where 

   2 2 2i i i ix x x x x 
       . Hence,  

    2 2
2

4

i i
i

f f
Grad f x  

     

Equation (11) and (14) allow us to deduce the following 

expression, 

      1 2

1

2
i iGrad f x Grad f x

 

1 1 2 21

2 2 4

i i i if f f f     
  

                                         

   2 1 1 2 2

1
2 2

8
i i i i M pf f f f I f       

  

Here  2

1
1 2 0 2 1

8

t

M PI     is the new operator 

obtained from a mixture of two steps. End of the proof.  

 Proposition.  Let f be a function defined on an open set .If 

the nodes are uniformly spaced the gradient of f is given by, 

        1 22

1

2
M PI f Grad f Grad f Grad f   ,  

where,  1Grad f  is the gradient of the function f with the 

step equal to 1 and  2Grad f  is the gradient of the function 

f with the step equal to 2. 

3. THE PROPOSED MASK 
This section show that a new derivative operator IM2P, admits 

the same properties as d2n and it is also able to detect contours 

in digital images (see [18, 19, 20, 21, 22]). The proposed 

mask based on the technique of calculating the average 

gradient 
2M PI . This mask – noted MIM2P – is constructed by 

the convolution between a smoothing operator and the 

operator
2M PI .  

Let hx denotes a horizontal derivative filter, hy  denotes a 

vertical derivative filter, and hθ  denotes the arbitrary angle 

derivative filter, then the computation of the directional 

derivatives of f is done by the convolution of f with the kernel 

of hx or hy as follows,     , * ,x

f
x y f h x y

x




 

and     , * ,y

f
x y f h x y

y




, where 

(15) 

(12) 

(13) 

(14) 
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Let t

y xh h  denotes the transpose of 
xh ,   
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Therefore, the equalities *x xf f h  and *y yf f h , 

evaluated at xi, represent an approximation of the partial 

derivative of the function f. In other works, the real numbers 

   *x x i i xf f x f x h  and    *y y i i yf f x f x h   

approximate the partial derivative of the function f. The 

discrete gradient filters and the gradient,  ,f x y , generate 

the same effect on a grayscale image. Moreover, the gradient 

is given by, 

     , * *x y x x y y

f f
f x y i i h f i h f i

x y

 
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where 
xi  and 

yi  are unit vectors in the horizontal and vertical 

direction, respectively.  

This leads to the descriptions of the gradient magnitude and 

the gradient direction given by    
22

* *x yf h f h f    and 

 
 

*
arctan

*
x

y

h f
f

h f


  
  

  

. A new mask MIM2P more 

efficient for detecting the contours is obtained by applying 

successively the operator IM2P and the smooth operator 

 1 1 1 1 1
t .  

 

 

 

 

4. RESULTS 
The results obtained have important efficiency. First of all, 

the formulas (6), (7), (8) and (15) are used for computing the 

gradient of the signal. These formulas called also the 

derivatives operators, are used to detect the peaks in signal. In 

the sequel the different masks are obtained by using the 

operators d2, d4, d6 and IM2P. These masks ( see Table 1) are 

utilized for detecting the contours in the grayscale image 

(Figure 6).  

The derivative operator in formula (7) is applied to the 

original signal. The result presents in the following Figure 2, 

 

Figure 2: The initial frequency I present in blue and green 

present operator d4 applied in I.  

 

 

 

 

 

The derivative operator in formula (8) is applied to the 

original signal. The result presents in the following Figure 3, 
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2 2 2 2 2

3 3 3 3 3

1 1 1 1 1

12 12 12 12 12

 
     
 
 
 
 
 
 
     

 
 
 
 

 

  
1 1 1 1 1 1 1

60 60 60 60 60 60 60

1 1 1 1 1 1 1

10 10 10 10 10 10 10

1 1 1 1 1 1 1

4 4 4 4 4 4 4

0 0 0 0 0 0 0

1 1 1 1 1 1 1

4 4 4 4 4 4 4

1 1 1 1 1 1 1

10 10 10 10 10 10 10

1 1 1 1 1 1 1

60 60 60 60 60 60 60

 
 
 
       

 
 
 
 
 
 
       

 
 
 
 
 
        

 

 

Table 1 : Different types of masks. 
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Figure 3: The initial frequency I present in blue and green 

present operator d6 applied in I.  

Now, the derivative operator in Formula (15) is applied to the 

original signal. The result presents in the following Figure 4, 

 

Figure 4: The initial frequency I present in blue and green 

present operator IM2P applied in I. 

Figure 5 compare the operators d4, d6 and IM2P, when they are 

applied to the original signal. 

 

Figure 5: The comparison of the 3 operators d4, d6 and 

IM2P applied in original signal. 

The masks Md2, Md4 and Md6 are built respectively from the 

formulas (6), (7) and (8). The filter Md2 obtained by (6) is 

identical to the filter of Prewitt and the proposed mask MIM2P 

is constructed with the aid of formula (15). 

The various masks of Table 1, obtained using the preceding 

formulas are applied to detect the contours in grayscale image 

as shown and described in Figure 6. 

 

 

 (i)               (ii)   (iii) 

 

(iv)                 (v)                 (vi) 

Figure 6: (i) shows the original image, (ii)  the image is 

filtered by Md2 (Prewitt filter), (iii)  the image is filtered by 

Md4, (iv) the image is filtered by Md6, (v) the image is 

filtered by Sobel mask and (vi) the same image is filtered 

by MIM2P. 

5. DISCUSSION AND CONCLUSION  
Three operators d4, d6 and IM2P are used to deduce the peaks in 

Figure 2, Figure 3 and Figure 4. The masks in Table1 are 

utilized for deriving the contours in the grayscale image (see 

Figure 5). In Figure 4 the peak becomes negligible after 

applying the operator d6. This shows that the derivative 
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operators d2n are not valid for all n. For 3n  , the filter built 

by the operator d2n becomes a low derivative operator. 

Figure 2 and Figure 4 show that the operator d4 and IM2P 

(green color) are able to detect the high transitions in the 

original signal (blue color), and the operator d6 in Figure 3 is 

unable to detect them. 

A conclusion also seen is that the proposed operator IM2P is 

better than d4 because the later detects small transitions and 

considers them as peaks. But this is not true since the original 

signal has one peak. However, the operator IM2P is more 

realistic. Indeed, Figure 6 highlights the mask MIM2P 

compared to other masks. The results of this comparison are 

favorable to the proposed mask to detect the contours.  

Figure 5 and Figure 6 show that the operators d4 and   
2M PI are 

able to detect contours in two-dimensional case and peaks in 

mono-dimensional. Otherwise, for d2n , with 3n  , it is not 

possible to detect it efficiently. However, Figure 6 highlights 

the mask MIM2P compared to the masks Md2 (the same of 

Prewitt filter), Md4 and Md6. The results in Figure 6 show that 

the mask MIM2P is better than Md2n. Figure 6 allows also to 

compare this mask with some known masks in the literature, 

for example Sobel’s mask and Prewitt’s mask. The results of 

this comparison show that the proposed mask, for detecting 

the contours, is more efficient. 
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