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ABSTRACT 

Particle swarm optimization is a population-based algorithm 

and used for optimization in a wide range of problems. In this 

article, a method that is called Hybrid Particle Swarm 

Optimization or HPSO is proposed. It is composed of some 

versions of particle swarm optimization algorithms, which 

have subgroups in their structures. They are DMS-PSO, 

PS2OS and MCPSO. In fact, a hierarchical structure is used to 

compose a new version of optimization algorithm and 

combine the results of other structures of PSO. Proposed 

structure has been tested on four unimodal and four 

multimodal test functions. Although the memory usage has no 

difference with other compared versions, it is much faster in 

many cases. Also the rank of fitness values, are good and 

suitable in all test functions. In addition, it is possible to 

execute it concurrently.    
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1. INTRODUCTION 
Kennedy and Eberhart [1] proposed the idea of Particle 

Swarm Optimization in 1995. They initially wanted to 

produce some form of computational intelligence by using 

social relationship that does not need individual ability. Their 

attempts led to a robust optimization algorithm called Particle 

Swarm Optimization or PSO algorithm. This algorithm has 

been inspired from social behavior of animals such as bird’s 

flocking and fish movement. PSO is a population-based 

algorithm, and this population is consisted of some particles. 

Although these particles have not enough intelligence 

separately, they show an excellent intelligence as a whole by 

following their leader and using their own experience. The 

implementation of PSO is simple and a few parameters are 

needed to be valued. However, this algorithm has its own 

disadvantages such as low speed convergence and trapping in 

local optimum in some cases, so different versions of this 

algorithm is suggested. All of them try to improve different 

aspects of it and cover its weakness. In [2] a dynamic model is 

introduced that particles are divided into many small groups 

and each group executes PSO separately. The groups 

exchange some of their particles randomly to exchange 

information. It is used for preventing from trapping in local 

optimums. The same structure is used in [3, 4] however a 

local search that employs Quasi-Newton method is used in it. 

In [4] this structure is applied for large-scale optimization. 

Hanning Chen et all [5] designed hierarchical structure called 

hierarchical swarm optimization. They try to simulate natural 

hierarchical systems. Particles are divided into separate 

groups. Each group executes PSO independently and the best 

particles of each group are selected as their representative, and 

make higher level. In this level, the PSO is executed and best 

particle is selected as the global best. Ben Nui et al [6, 7] 

introduced a Master-Slave PSO. Particles are divided into 

some groups. One of them is master and others are slaves. 

Slaves groups execute PSO separately. In master group, 

particles’ positions are updated using their own knowledge 

and slave groups’ experiences. Yen and Daneshyari [8] 

propose a method to exchange information among multiple 

swarms in particle swarm optimization. This Method is 

developed to solve problems that have a high number of local 

optima. [9] proposes a multi-swarm algorithm based on fast 

particle swarm optimization for dynamic optimization 

problems. It employs a method to track multiple peaks by 

preventing overcrowding at a peak and a fast particle swarm 

optimization algorithm as a local search method. Chen [10] 

proposes a hierarchical particle swarm optimization. In the 

suggested algorithm, all particles are arranged in a regular tree 

structure and move up or down in the tree based on their 

fitness value. The velocity update of each particle depends on 

the position of each particle in the tree. A mutation operator is 

also added into the proposed approach. Bergh and 

Engelbrecht [11] present a cooperative behavior to improve 

the performance of the standard algorithm. This is done by 

using multiple swarms to optimize different components of 

the solution vector cooperatively. Most of these structures are 

using different groups in order to improve the quality of PSO. 

There are also some surveys that discuss and compare 

different aspects of PSO [12, 13]. Author in [12] comprises a 

snapshot of particle swarming from the authors’ perspective, 

including variations in the algorithm, current and ongoing 

research, applications and open problems. In [13] the history, 

various methods, and taxonomy of PSO are discussed and its 

different applications together with an analysis of these 

applications are evaluated. Sierra and Coello [14] did a 

comprehensive review of the various Multi-Objective Particle 

Swarm Optimizers. It includes a classification of the 

approaches, and the main features of each proposal. In the last 

part of it, they list some of the topics within this field that are 

considered as promising areas of future research. 

In this research, standard PSO is described in section two. 

Section three introduces the proposed methodology. Section 

four and five explain experimental results and conclusions 

respectively.  

2. REVIEW OF STANDARD PSO 
PSO is inspired from nature and is based on iteration. It is like 

many other evolutionary algorithms such as Genetic 

Algorithms and Ant Colony Optimization, because all of them 

use an initial random population. Each component of 

population of the algorithm is called a particle. Each particle 

is initialized with a random velocity and position. These 

particles move in an n-dimensional space repeatedly. The 

dimension of the problem is equal to parameters of function 

that should be optimized. Each particle not only remembers 

the best position that has achieved so far but also the global 
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best position among all other particles. By using these data, 

the particles set their movements in next iteration. In order to 

find the optimal solution, in each iteration both the velocity 

and position of each particle are updated using equations 1 

and 2 respectively. 
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Where v is velocity of particle, p is position of particle, r1 and 

r2 are random numbers uniformly distributed between [0, 1], 

Γ1 and Γ2 are learning rates, ppersonalBest is the best position that 

a particle has found yet and pglobalBest is the best global 

position. w is inertia weight that causes the particle to 

continue to its way although it reaches the best position. 

According to the equation 1, it is clear that the motion of a 

particle is influenced by three factors: (i) its best position that 

the particle has found so far, (ii) Best position that is founded 

so far by all particles and (iii) The previous path of the 

particle. 

3. A HIERARCHICAL STRUCTURE OF 

PSO 
As it is mentioned, different versions of PSO have been 

suggested. Their main goal is improving PSO efficiency. In 

comparison, each version has better results in some cases and 

functions, and worse results in some others. The main goal is 

finding an algorithm, which has the best efficiency on all 

functions as fast as possible. One way to achieve this goal is 

finding a method to combine efficient algorithms in the best 

way. The obstacle to do this is the different structures of 

algorithms, and it is why their combination is not easy. In this 

research, three different versions of PSO is used and 

combined. They are selected because not only they have good 

efficiency but also they have nearly same structure. It makes 

their combination easier. They are DMS-PSO[2], PS2OS [5] 

and MCPSO [6]. Table 1 show their average results of 20 

times execution of algorithms on some test functions which 

are introduced in table 2 and 3. Also this structure can be used 

to combine other versions of PSO. 

It is clear in table 1, that each version has better result on 

some functions. For example, DMS-PSO has the best result 

on almost all functions except Schwefel, which PS2OS is the 

best on this function. But Otherwise DMS-PSO is very slow 

and takes a long time to find optimum. Otherwise PS2OS is 

very faster and find solution with higher speed and lower 

time. We can combine their advantages using proposed 

structure. 

In DMS-PSO, velocity update is happened in two steps. At 

90% of iterations that form first step, particles are arranged in 

different groups and their movements are affected by the best 

position that a particle has ever found; stpersonalBeP , and the 

best position that is found by its neighborhood particles in its 

group; 
localBestP  . Then in 10% of iterations that form second 

step, particles movements are affected by the global best 

between all particles; 
globalBestP  instead of local bests. In the 

first step, a regroup operation is done in some predefined 

iterations in which some particles move from one subgroup to 

another one. 

In PS2OS, particles are arranged in different groups and their 

movements are affected by the best position each particle has 

ever found, the best position its neighborhoods have found 

and global best position. 

MCPSO divides particles into N groups. One group is master 

and others are slaves. Particle movement in slave groups are 

affected by the best position each particle found and the best 

position that found by the other particles in its group. In 

master group particle movement are affected by previous best 

position of the master swarm; 
M

i
p , best global position of the 

master swarm; 
M

g
p  and previous best position of the slave 

swarms; 
S

i
p . 

In the proposed method that is a hybrid algorithm and is 

called HPSO, we use a hierarchical structure and particles are 

divided into three groups. Each group has some subgroups. 

Groups have equal number of particles. The first group 

executes DMS-PSO, the second one executes PS2OS, and the 

third one executes MCPSO. These algorithms have been 

chosen because they have good efficiency to some extent and 

also same structure in creating subgroups. Creating subgroups 

in all of these algorithms is illustrated in figure 1. In DMS-

PSO and PS2OS, particles are affected by local best particles, 

which are members of predefined subgroups. In MCPSO, both 

master and slave groups are considered as subgroups. Figure 2 

shows the Pseudo Code of this algorithm. They can be 

executed on separate processor. After each iteration, 

information is exchanged between the groups. This 

information is the best position that groups have been founded 

so far. Each algorithm found its own global best. Then the 

best one among these three bests is chosen as a global best 

and all other algorithms use it from now on. If the best 

positions of each group are named gBestDMSPSO, gBestPS2OS 

and gBestMCPSO, then: 

),,(
2 MCPSOOSPSDMSPSOALL

gBestgBestgBestBestgBest   (3) 

The Best(.) function chooses the best one. Update equations in 

DMS-PSO, PS2OS and MCPSO are changed respectively as 

equations 4, 5 and 6. 
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4. EXPERIMENTAL RESULTS 
HPSO is tested on four unimodal and four multimodal test 

functions. These functions are shown in table 2 and 3. Table 4 

shows parameters values that are needed for different 

algorithms. In DMS-PSO algorithm, regrouping happens after 

ten iterations. Population size of particles, the number of 

iterations, group number and dimension in all algorithms are 
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100, 10000, 5 and 30 respectively. Each algorithm is executed 

20 times and the mean of fitness value are shown in table 5. 

The best values, standard deviations and execution time are 

shown in table 6, 7 and 8 respectively. Also figure 3 shows 

the evolutionary process of proposed structure and other 

algorithms. In this figure, horizontal axis shows number of 

iterations and vertical axis shows logarithm of fitness. As it is 

obvious in table 5 and figures 3 that our algorithm rank in not 

worse than second in all test functions and in some of them 

such as Rosenbrock and Griewangk is the best. However, as it 

is clear in table 8 the most remarkable point about the results 

is its time cost. Although the number of particles is constant, 

execution time is often shorter than other algorithm except 

standard PSO. We do not consider standard PSO because of 

its very low efficiency. In Sum of Different Powers and 

Rosenbrock functions, HPSO algorithm has second and third 

rank. However, in other functions it is the fastest algorithm. In 

Rastrigin, Schwefel and Ackley functions, execution speed is 

about two times faster than others are. 

 

Table 1. The mean of fitness values of 20 times execution on different functions in 30 dimensions 

T
y

p
e Function Name 

Algorithm Name 

PSO PS2OS MCPSO DMS-PSO 

U
n

im
o
d

a
l 

Step 40 10.2 0 0 

Sum of Different Powers 6.68307E+16 61063177863 1.50713E+13 0 

Rosenbrock 2634.983 2051.209 57.12211 5.252174 

Sphere 3920.4 871.2 6.92832E-88 0 

M
u

lt
im

o
d

a
l 

Rastrigin 136.1682 80.3533 73.57082 6.56673 

Schwefel 5755.476 3522.819 4394.075 5825.996 

Griewangk 27.15134 4.525284 0.00849 0.00234 

Ackley 7.781164 1.041985 7.8948E-08 2.66454E-15 

 

Table 2: List of functions 

Name Definition Interval 
Global 

Minimum 
Optimal Point 

Step 
2

1

])5.0([floor)( 



n

i

i
xxf  

-100 ≤ xi ≤ 100 0 xi=0 , i=1,…,n 

Sum of 
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Powers 







n

i

i

ixxf
1

1
)(  

-1 ≤ xi ≤ 1 0 xi=0 , i=1,…,n 

Rosenbrock 




 
1

1

222

1 ])1()(100[)(
n

i

iii xxxxf  
-2.048 ≤ xi ≤ 2.048 0 xi=0 , i=1,…,n 

Sphere 



n

i

ixxf
1

2)(  
-5.12 ≤ xi ≤ 5.12 0 xi=1 , i=1,…,n 

Rastrigin 



n

i

ii
xxnxf

1

2 )]2cos(10[10)(   -5.12 ≤ xi ≤ 5.12 0 xi=0 , i=1,…,n 
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Table 3: Continue of List of functions 

Name Definition Interval 
Global 

Minimum 
Optimal Point 

Schwefel nxxxf
n

i

ii 9829.418)]sin([)(
1




 -500 ≤ xi ≤ 500 0 
xi=420.9687 , 

i=1,…,n 
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n

i

i
n

i

i
i

x
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11
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1
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x
n
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Fig 1: HPSO structure 
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Algorithm HPSO 

Divide population into 3 groups randomly, with equal population in each group 

Initialize particles position and velocity 

Set globalBest as the best position of particles 

Repeat 

 Do PS2OS, MCPSO and DMS-PSO in parallel using equations 4 to 6 

 When all process finished update globalBest using equation 3 

Until a termination condition is met 
Fig 2: Pseudo-code for the HPSO algorithm 

 

Table 4: Different algorithms parameters 

 Γ1 Γ1 Γ1   

PS2OS --- --- --- 0.4693 

MCPSO 2.05 2.05 0.5 --- 

DMS-PSO 1.3667 1.3667 1.3667 --- 

 

Table 5: Fitness value averages 

T
y

p
e 

Function Name 

Algorithm Name 

PSO PS2OS MCPSO DMS-PSO HPSO 

U
n

im
o
d

a
l 

Step 40 10.2 0 0 0 

Sum of 

Different 

Powers 

6.68307E+16 61063177863 1.50713E+13 0 6.0666E-202 

Rosenbrock 2634.983 2051.209 57.12211 5.252174 1.994196 

Sphere 3920.4 871.2 6.92832E-88 0 5.57791E-74 

M
u

lt
im

o
d

a
l Rastrigin 136.1682 80.3533 73.57082 6.56673 10.24808 

Schwefel 5755.476 3522.819 4394.075 5825.996 3994.704 

Griewangk 27.15134 4.525284 0.00849 0.00234 0.000863 

Ackley 7.781164 1.041985 7.8948E-08 2.66454E-15 5.86198E-15 

 

Table 6: Bets fitness values 

T
y

p
e 

Function Name 

Algorithm Name 

PSO PS2OS MCPSO DMS-PSO HPSO 

U
n

im
o
d

a
l 

Step 0 0 0 0 0 

Sum of 

Different 

Powers 

1.1101E+11 0 11094.69 0 1.7509E-253 

Rosenbrock 3.074407 2.875E-25 0.806731 0.439654 0.001026 

Sphere 1.41077E-56 0 3.17009E-92 0 3.0032E-156 

M
u

lt
im

o
d

a
l Rastrigin 63.91875 52.73256 9.984942 2.984877 4.974795 

Schwefel 4059.869 2576.789 3099.119 5596.943 23820.421 

Griewangk 0 0 0 0 0 

Ackley 6.21725E-15 6.21725E-15 7.8948E-08 2.66454E-15 2.66454E-15 
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Table 7: Standard deviation of fitness values 
T

y
p

e 

Function Name 

Algorithm Name 

PSO PS2OS MCPSO DMS-PSO HPSO 

U
n

im
o
d

a
l 

Step 50.26247 30.71533 0 0 0 

Sum of Different 

Powers 
2.25161E+17 2.23092E+11 3.6763E+13 0 0 

Rosenbrock 4380.078 4084.7441 54.4867 2.777684 2.568101 

Sphere 3128.413191 1787.665 1.79984E-87 0 1.2786E-142 

M
u

lt
im

o
d

a
l Rastrigin 43.91864 21.79923 35.44007 2.026243 3.114714 

Schwefel 727.9518 742.4373 689.716 201.5004 812.225 

Griewangk 42.52906 20.22434 0.008932 0.005562 0.002685 

Ackley 8.093677935 3.1937318 2.28128E-07 0 2.27631E-15 

 

Table 8: Mean of 20 times execution of algorithms in second 

T
y

p
e 

Function Name 

Algorithm Name 

PSO PS2OS MCPSO DMS-PSO HPSO 

U
n

im
o
d

a
l 

Step 33.96467 951.3122 931.9807 994.7493 680.4106 

Sum of Different 

Powers 
63.88169 2153.533 2096.571 2759.359 2469.466 

Rosenbrock 45.84556 2187.975 2144.549 2469.64 2488.982 

Sphere 34.80072 1179.87 1120.856 1252.537 781.094 

M
u

lt
im

o
d

a
l Rastrigin 42.7889 1475.199 1545.962 1678.039 719.9123 

Schwefel 56.3996 1470.374 1395.198 1583.201 775.41 

Griewangk 50.42329 2434.045 2360.87 2618.147 2203.812 

Ackley 42.39741 1213.938 1223.791 1305.369 784.7638 

 

  
(a) (b) 
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(c) (d) 

  
(e) (f) 

  
(g) (h) 

Fig 3: Mean best fitness values in (a)Step (b)Sum of Different Powers (c)Rosenbrock  (d)Sphere (e)Rastrigin (f)Schwefel 

(g)Griewangk (h)Ackley 

 

5. CONCLUSIONS 
In this paper, a hybrid PSO that is called HPSO has been 

proposed. It is composed of three version of PSO i.e. DMS-

PSO, PS2OS and MCPSO. In this algorithm, a hierarchical 

structure is used .Population is divided into three groups and 

each group executes a different algorithm. Meanwhile, they 

use the best global best position that each algorithm has ever 

found. Then it is compared with its components algorithms. 

They are tested on four unimodal and four multimodal test 

functions. The performance of HPSO is better in some cases 

meanwhile its speed is often much better than the algorithms 

that composed it. 
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