
International Journal of Computer Applications (0975 – 8887)

 Volume 85 – No 14, January 2014

24

Performance Analysis of Homogeneous Beowulf Cluster

Setup on MPI Library

Tadrash Shah
Graduate Student (M. S.)

Computer Science
Stony Brook University, NY

Neel Patel
Graduate Student (M.S.)

Computer Science
Texas Tech University, Texas

Nishidh Chavda
Assistant Professor,

CSPIT - Changa
Charusat University

ABSTRACT

Clusters have been an area of vast research in the domain of

High Performance Computing and a variety of libraries are

available for the cluster installation and administration. One

such library named MPICH2 was selected and a selected

variety of programs were run on the cluster setup and the

performance of MPICH2 was tested against the prevalent

cluster theories. The performance testing was done from

simplest to quite heavy programs and they were tested for the

execution time. The results affirmed the predicted pattern of

execution time. Results also revealed the criteria for selection

of number of compute nodes depending on the complexity of

the problem to be solved. The results were encouraging for

development of a large scale target application on the

MPICH2 library, only held back by the fact that MPICH2

cannot support heterogeneous clusters.

General Terms

Advanced Computing Technology, High Performance

Computing, Cluster Computing, Parallel Systems.

Keywords

Cluster; Beowulf; mpiexec; task distribution; mpiexec;

calculation of Pi, MPICH2, OSCAR

1. INTRODUCTION
A cluster is setup for simultaneous execution of computational

task on multiple processors for high throughput and higher

performance gain. The Beowulf Cluster is normally a group of

homogeneous commodity grade computers interconnected in

a network running over a platform of libraries and programs

which allow shared and parallel processing among the

computers. Simple home computers connected with TCP/IP

LAN with Linux installed as an operating system kernel and

some cluster tool kits put together form the simplest Beowulf

cluster. The biggest advantage is the cluster can be setup on

any group of commodity grade computers with same system

software.

Various cluster toolkits are available like OpenMPI, LAM-

MPI, MPICH, OSCAR, etc.

The toolkit that has been used through development of

Beowulf cluster is MPICH2, developed by Mathematics and

Computer Science division - Argonne National Laboratory.

MPI stands for Message Passing Interface which handles

message passing mechanism among the cluster nodes. All the

communication that needs to be done among the cluster nodes

is done in the form of messages passed from one node to

another. MPI provides these necessary process calls for this

purpose and thus hides the underlying complexity from the

developer. MPI, though not an IEEE or ISO standard, is

essentially an "industry standard" [6]. MPI defines interface in

C, C++ and FORTRAN languages. We have used the

MPICH2 library of the version mpich2-1.4.1 and C

implementation of the same has been chosen.

2. SETTING UP CLUSTER

2.1 Cluster Nodes
A cluster installation began with a preliminary setup with one

master and two slaves which was then expanded. Through the

paper we have shown the installation of 3 nodes which can be

further replicated to many more nodes, for the sake of

simplicity of understanding.

2.2 Hardware
Simple commodity grade computers with Intel Core2 Duo

2.93 GHz processor, 1 GB RAM and 250 GB hard disk with

no graphics acceleration were used for this cluster setup.

Although exactly these steps can be followed for virtual

installation too.

2.3 Operating System
The system ran dedicatedly on Ubuntu 12.04 LTS 32 bit (i386

architecture) with configured bash shell and C/C++ compiler.

The same system has been tested on RHEL 5.0 group of

systems. We enabled root user which was used throughout the

installation and for execution too. Also the virtual installation

of all the nodes of cluster was does and the system tested thus.

2.4 Network
All nodes were connected with 24 port Ethernet switch 1-100

GBPS. Class B IP addresses in range of 172.16.0.1 as master

and 172.16.0.XX as slaves were used. Host names were

assigned from node00 onwards to node01, node 02 and so on

with node00 assigned as the master node and all other being

the slave nodes. This was done for easier access to each node

rather than IP address. If this is to be virtually the network

must be bridged.

2.5 Configuration
All then nodes in cluster systems must be aware of each other

participating node, be it master or slave. This information was

passed to each node through the host names. /etc/hosts [19]

file was altered to confirm the host names of all the nodes on

all the nodes. As a sample "hosts" file of node00 is shown

below.

127.0.0.1 localhost

172.16.0.1 node00

172.16.0.2 node01

172.16.0.3 node02

Hence each node was intimated of host name of each other

node. This facilitates the communication among the nodes

with host names rather than IP addresses for abstraction and

ease of access.

International Journal of Computer Applications (0975 – 8887)

 Volume 85 – No 14, January 2014

25

Password less login with use of authorized keys for SSH was

used for communication among nodes to abate the

requirement of administrator intervention each time when

nodes must communicate. Hence master node which submits

the job to slaves needed to be able to communicate with

slaves through password less SSH. For this SSH was installed

and enabled. SSH key for root user on all the nodes were

generated using RSA key generation algorithm [6]. The keys

were populated to all the nodes to allow automatic login on all

the nodes. For the first time the master submitted the jobs, the

SSH was authenticated and all later communication could

follow without requiring authentication each time.

Files and programs of the MPICH2 toolkit were required on

all the nodes for job execution. The modules of the toolkit

were mounted on the master node to be accessed by slaves

simultaneously through Network File System. The NFS-

kernel-server was installed on master node and a directory in

the root folder was setup to be shared among all the nodes.

Hence this saved us from doing individual install of MPICH

on all the nodes. The firewall in Ubuntu was disabled to

unblock the slaves form accessing NFS directory.

2.6 Installing MPICH2
The MPICH2 package was downloaded from the site

http://mcs.anl.gov/mpi/mpich/download.html. This library was

installed on master node only in the directory which was

shared among all the nodes through NFS. The download were

extracted to the folder. Then the installation was done by

firing the commands using terminal. Entering the MPI

directory that was just created, the command was fired in bash

shell as the root user [11]

./configure

The command sets up the check for the dependency that must

be checked before installation of any package. After the

configuration completes the command

make

was issued to setup the environment for the MPICH

installation. All ran fine and finally MPICH2 was installed

with a command

make install

Once this command was fired, it took few minutes to

complete the process of installation. After all was done we

were ready for executing the programs.

2.7 Running Programs
Once installed MPICH2 the sample program provided with

the package was implemented directly. There was no need to

compile the program as the object files were directly

provided. The programs can be executed by specifying the

number of processes that should run in parallel through an

allowed option in the mpiexec command [10].

mpiexec -f machinefile -n <number>

./examples/cpi

The number of processes that can be accommodated by each

compute node can be controlled with the help of machine file.

The machine file specifies the number of processes that can be

allowed on each node identified with its host name.

3. APPLICATIONS
Apart from the already provided examples in the MPICH2

package various other programs of MPI were tried. These

were solely focused upon testing the process migration,

effectiveness of machine file, load capacity of the cluster and

the degree of parallelism that allows performance gain.

3.1 Task Division
A problem which is bent upon generating N numbers of tasks

on master node and then distributing tasks to slaves depending

upon their capacity is the task distribution problem. Thus it is

a distribution of N processes on P no. of processors, which are

essentially clustered. MPI environment is used for this

migration on compute nodes. Hence, N may or may not be

exact multiple of P.

The algorithm implemented is a "greedy" approach [15][21]

and allowed approximate rounding of tasks, to avoid any left-

over process. This also led to the result were one node may

get one process less or more depending on the leftover. The

process ids were indexed as provided by users and these

indexes are used to send a process to processor [15]. The

processes were distributed based on these indexes only. A

sample output of this program is shown below –

Number of tasks T = 23

Number of processors P = 4

P_FIRST = 0

P_LAST = 3

P_FIRST and P_LAST indicate the index of process ids so

that process can be identified easily compared to the system

assigned pid.

Table 1 Task Division Problem

Processor Number of

Tasks

First Task Last Task

0 6 1 6

1 6 7 12

2 5 13 17

3 6 18 23

This concept established a clearer understanding of the

process migration between the nodes. The program does

nothing but just suspends, migrates, resumes and returns the

process to and from the master node.

3.2 Calculating Value of Pi
A program to calculate the accurate value of mathematical

constant PI (3.14) was evaluated for elapsed time and error in

the calculated value. The benchmark value of PI was

considered up to 25 decimal places whereas cluster computed

the value up to 16 decimal places. Hence the error could be

identified for 9 decimal places in accuracy as compared to the

benchmark value using 25 decimal places. The error was

observed to show very minor change which negligible and

hence we focused mainly on the execution time of the

program. Extensive use of machine file was made for

submitting the processes.

The Task Division problem was a simplest program to know

the process distribution. This example goes a step further.

Here the processes are allowed to move back and forth the

master node depending upon the free resources. The resource

International Journal of Computer Applications (0975 – 8887)

 Volume 85 – No 14, January 2014

26

allocation was made more dynamic than previous example.

For example, say master node was allowed two processes.

When the third process is to be scheduled, it will be scheduled

on one of the slave node. In the meantime the fourth process

is also queued and also one of the process on master node is

terminated. Then there is no need to send the fourth process to

the slave node, it will be executed on the master node itself.

Hence, processes were allocated dynamically depending on

the free resources on a node, be it master or a compute node.

Also note that the empty cells in table indicate that no output

was obtained due to submission of processes beyond capacity

of cluster.

Table 2 Calculation of Value of Pi

Number of

Processes Node = 1 Node = 3 Node = 5

5 0.001481 0.001008 0.001211

10 0.001641 0.003463 0.00357

50 0.047269 0.108689 0.11757

100 0.115619 0.252974 0.2752

200 - 0.55463 0.584591

300 - 0.98335 0.993251

400 - 2.901754 2.925887

550 - - 3.102552

Figure 1 Calculation of Value of PI - Analysis

It can be seen from the graph that as the size of the problem

increases i.e. the number of process increases the number of

nodes needs to be increased else the problem cannot be solved

to success. It was seen that a single node was not capable of

running processes more than 100 whereas 5 nodes could run

the problem as big as the 550 processes which is more than 5

times. In a sense the capacity of computation was increased

by more than 5 times when running the same task on the

cluster as compared to single node. Also it was seen that

execution time of the same problem, on increasing the number

of nodes, increased negligibly. This increase was because the

time incurred on process migration which involved the

process suspension on master node and resume on slave node.

As the number of processes were increased to few hundred the

time to break-up the problem and combine it for consolidated

result was much higher than time incurred in migration. With

increase in number of nodes the size of problem could also

increase.

3.3 Sum of n Numbers
The problem considered so far were small problems which

were not too heavy on execution. The size of the process was

quite small. Hence, we considered a problem with larger size

which could potentially require considerable amount of

resources as well as CPU time. The problem was to add 1 to

N numbers. Seemingly simple, the problem added

considerable range of numbers like 1 to 1000 and other such

[15]. As the processes were quite large in size the number of

processes that the same number of nodes could run was less as

compared to previous problem.

Again from the graph (Figure 2) shown it is clear that with

increase in number of processes and corresponding increase in

number of nodes the time required to complete the execution

of the problem usually increases, though some variation are

evident in 20 processes and an unrecognized peek in nodes 5

for 7 processes were seen. This peak was somewhat

unpredictable but it was hypothesized that it may due to some

effects of program structure. But rest of the observations that

were see in calculation of value of Pi are the same, apart from

the evident fact that the program execution was so heavy that

number of processes cannot even reach a single hundred

where in previous program it could reach to the order of few

hundreds.

Table 3 Sum of N Numbers

Number of

Processes Node = 1 Node = 3 Node = 5

5 0.002407 0.004257 0.005869

7 0.002375 0.010305 0.012143

10 0.003646 0.004451 0.005208

20 0.005789 0.004949 0.004637

30 0.008053 0.008549 0.009261

40 0.042496 0.043341 0.045106

50 0.04908 0.054628 0.058911

60 0.063604 0.064366 0.066098

0

0.5

1

1.5

2

2.5

3

3.5

5 10 50 100 200 300 400 550

T
im

e

Number of Processes

1 3 5

International Journal of Computer Applications (0975 – 8887)

 Volume 85 – No 14, January 2014

27

Figure 2 Sum of N Numbers - Analysis

It was also confirmed with the statement of G.Pfister that

cluster mainly had three major principles: viz. Work Hard,

Work Smart and Get Help. We did not work had as we did not

increase the processing power on single node. We neither

worked smart as we did not work much in optimization of the

used algorithms. But we did Get Help by connecting

commodity grade computers in network and exploiting their

otherwise idle processing power for the benefit of a large

problem execution on the master node.

4. DISCUSSION
It can be observed from the execution of the said MPI

programs that number of nodes in a cluster must be in

accordance with the target application. Also that a larger

application needs more number of compute nodes else the

problem cannot be solved due to shortage on resources. The

time required for process migration and consolidation of the

result on the master node increase with increase in number of

nodes. Thus it can be noted that number of nodes must be

increased with a care so that performance gain can be

genuinely achieved.

Also through this way of clustering the master node becomes

a bottleneck for a large number of processes. Furthermore,

this cluster did not focus critically on the security issue.

Neither has the security been compromised nor imposed

stringently.

After extensive working with MPICH2 it was also observed

that MPICH2 cannot support a cluster environment that has

heterogeneous representation of data dependent on the nodes.

There are number of things that need to be done before this

cluster can be made into an application cluster.

5. CONCLUSION
There are some major conclusions. The clusters are indeed a

powerful way, and even better when a cluster can be

constructed from commodity grade computers to execute a

larger process. Due to the limitation of the MPICH toolkit of

working only on homogenous cluster system, the authors have

thought of diverting to OSCAR [20], another toolkit that is

found better for data-intensive application and allows GUI

based wizard tool for installation and management of a

Beowulf Cluster. The cluster setup described cannot be an

extensive innovation in the dimension but surely is a

precursor to the larger application that can be potentially built

on OSCAR toolkit.

Authors also welcome any constructive criticism or

suggestion in the discussed field.

6. ACKNOWLEDGMENTS
Authors would like to express their gratitude to Charotar

Institute of Technology, Charotar University of Science and

Technology, Changa for equipping them with all the

necessary infrastructure and aesthetics. The institute and the

heads took utmost care for the congenial environment to be

provided to the authors for research. Authors are obliged and

indebted.

7. REFERENCES
[1] Rajkumar Buyya, "High Performance Cluster

Computing", Vol 1, Pearson Education, 1999.

[2] Amit Jain, "Beowulf Cluster Design and Setup", Boise

State University, April 2006

[3] Discussion of topics related to Beowulf Clusters -

http://www.beowulf.org

[4] News and software site for the Beowulf community -

http://www.beowulf/underground.org

[5] Dr. Deven Shah, "Advanced Computing

Technology",Dreamtech Press, pp.2, 2011.

[6] T. Sterling, J. Salmon, D. Becker and D. Savarese, "How

To Build a Beowulf", MIT Press, 1999

[7] An overview of Beowulf clusters, from cluster design, to

cluster use and maintenance by Mike Perry -

http://fscked.org/writings/clusters/cluster-1.html

[8] Message Passing Interface Tutorials by Blaise Barney -

https://computing.llnl.gov/tutorials/mpi/

[9] MPICH2 Official page -

http://www.anl.gov/research/projects/mpich2/

[10] MPICH2 User's Guide

[11] Using MPICH to Build a Small Private Beowulf Cluster -

http://linuxjournal.com/article/5690

[12] T. sterling, “Beowulf Cluster Computing with Linux”,

MIT Press, October 2001

[13] R.J. Allan, S. J. Andrews and M.F. Guest, “High

Performance Computing and Beowulf Clusters”,

[14] 6th European SGI/Cray MPP Workshop, Manchester, 7-

8/9/2000.

[15] Examples of MPI Programs from Florida State

University -

http://people.sc.fsu.edu/~jburkardt/c_src/mpi/mpi.html

[16] Tadrash Shah, Neel Patel, Nishidh Chavda, “Formulation

of Homogenous Cluster Environment using Commodity

grade Computer and MPI Paradigm”, Vol.1 Issue 5,

IJARCSEE, August 2012.

[17] Robert Brown, “Engineering a Beowulf-style Computer

Cluster”, 2004, Duke University, Physics Department

[18] Kerry D. Wong, A Simple Beowulf Cluster

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

5 7 10 20 30 40 50 60

T
im

e

Processes

1 3 5

http://linuxjournal.com/article/5690
http://people.sc.fsu.edu/~jburkardt/c_src/mpi/mpi.html

International Journal of Computer Applications (0975 – 8887)

 Volume 85 – No 14, January 2014

28

[19] Ubuntu Wiki, Setting Up MPPICH2 Cluster in Ubuntu

[20] OpenClusterGroup, OSCAR.

[21] William Gropp, Steven Huss-Lederman, Andrew

Lumsdaine, Ewing Lusk, Bill Nitzberg, Willian Saphir,

Marc Snir, “MPI: The Complete Reference”, Vol. 2, The

MPI-2 Extensions, Second Edition, MIT Press, 1998.

[22] Tadrash Shah, Neel Patel, Nishidh Chavda, “Cluster

Computing using MPI Paradigm : A Practical

Approach”, ISBN : 978-3659296185, December 2012.

[23] Preliminary Cluster with OSCAR registered at -

http://svn.oscar.openclustergroup.org/php/clusters_regist

er.php?cid=270

IJCATM : www.ijcaonline.org

