
International Journal of Computer Applications (0975 – 8887)

Volume 85 – No 11, January 2014

33

Verification IP for Routing Switch based on Network

Layer Protocol, using SystemVerilog

Dipti Girdhar
School of Engineering and

Technology,
ITM University, Gurgaon, India

Neeraj Sharma

School of Engineering and
Technology,

ITM University, Gurgaon, India

Shankar
School of Engineering and

Technology,
ITM University, Gurgaon, India

ABSTRACT

Today, in the world of ASICs and system-on-chip (SoC) designs

which consists of millions of transistors and gates, verification is

the process which consumes most of design efforts and time [4].

One of the major stresses for the verification engineer is to verify

the given design in best possible manner [5]. For this he needs to

cover almost all the hidden corners cases by applying various

real time test cases. This paper will assist the verification

engineers to understand the flow of verification environment for

packet switch IP. We will also learn about the functional

coverage. The language used for verification is SystemVerilog.

Keywords
SystemVerilog, Verification IP, Packet switch

1. INTRODUCTION
SystemVerilog is one of most preferred hardware verification

language used worldwide [6]. To create any Verification IP

(VIP), one need to understand various modules, which are the

part of the verification environment. A design which is to be

verified is commonly known as design under test (DUT). DUT is

like a black box, and verification engineer is least bother about

the internal schematic of the DUT. A set of specification is

provided to verification engineer and he need to develop the

complete VIP after reading the given specifications only.

2. COMMENCEMENT WITH DESIGN

SPECIFICATION
To start with, readers must recall the basic thumb rule of

verification as mentioned above, that the verification engineer is

provided only with the specification booklet [7]. Based on the

given specifications, the verification team develops a VIP. So it

is paramount to understand the given specifications. So here we

will start with understanding the specifications given for DUT.

 We need to prepare a VIP for a simple switch which is used to

drive an incoming packet to different output ports of the router.

In a network, the switch acts as a router which has one input port

and various output ports. In this case we have switch with one

input ports and four output ports. Switch works on network layer

of Open System Interconnection (OSI) model. The basic block

diagram is shown in Figure 1.

Figure 1: Block diagram of switch with various interfaces

2.1 Input condition for switch
Input port is responsible for collecting all the incoming packets.

It consists of two signals; named as data_status and data as

shown in Figure 2. Both the signals are active high.

Ideally, data_status signal is low, when there is no incoming

packet on input port. As soon as any packet needs to enter to the

switch through the input port, switch pulls up the data_status

signal to high value at the rising edge of the clock. The data

signal then carries the packet byte by byte. Switch releases the

data_status signal to low value after receiving all the data bytes.

International Journal of Computer Applications (0975 – 8887)

Volume 85 – No 11, January 2014

34

Figure 2: Shows the waveform for receiving condition

2.2 Morphology of packet
Packet header consists of three different fields as shown in

Figure 3.

Figure 3: Shows the different fields of simple packet

All the incoming packets usually consist of 8 bits long

destination address. This 8 bits long destination address is a

unique port address for each output port. This destination address

helps switch to drive the packets to the respective output port.

However, the 8 bits long source address implies the origin of the

packet. Length field is also 8 bits long which imply that we can

have maximum 28 data bytes. If the length field of the packet

contains numeric value 2, it means that particular packet contains

2 bytes of data. The last field is responsible frame check

sequence (FCS). FCS is an extra checksum added for error

detection.

2.3 Memory
As we know that switch comprises of four output ports and each

output port have special port address which is 8 bits long.

Memory interface is one of important interface which is

responsible for configuring each output port to the unique

address.

Memory interface consists of four signals mem_en, mem_rd_wr,

mem_add and mem_data as shown in Fig. Ideally, mem_en

signal is at “low” value. To configure the output port address,

switch asserts the “high” value to mem_en signal. This enables

the process of configuring the output port addresses. Mem_add

signal carried the port no and mem_data carries 8 bits long

address for the respective port. In this manner a table is generated

for addressing each output port, as shown in Table 1.

Table 1: Port Adrresses

Port Number Port Address

0 0000_0000

1 0000_0001

2 0000_0010

3 0000_0011

2.4 Output condition for switch
Output ports are used to send the packets to different devices

connected to switch in a network. For this switch need to take

care of ready, read and data signals as shown in Figure 4.

Figure 4: Shows the waveform for output port condition

When the packet is ready to hurl through the output port, switch

pulls up the ready signal. Now when ready signal is high and

read signal is assert to high value, data can be received from the

data signal.

3. INTRODUCTION TO VERIFICATION

ENVIRONMENT
Any verification methodology usually consists of layered

Testbench [1]. This layered structure tends to make the

verification task easier by dividing the complete code into

smaller target modules. This makes it easy to develop and debug

these smaller modules. Figure shows the various layers of the

Testbench.

The Signal layer is bottom most layer of the testbench that

contains DUT and the various signals that connects it to

testbench [2].

International Journal of Computer Applications (0975 – 8887)

Volume 85 – No 11, January 2014

35

The command layer is the next higher level to signal layer.

Command layer consists of driver, assertion and monitor block.

Driver is the class of verification environment which is

responsible for driving the inputs for DUT. Monitor usually

performs the task of collecting and grouping the signal

transitions into commands. Command layer also holds assertions,

which are responsible for monitoring the individual signals and

changes across an entire command layer.

Figure 5: Shows the various layers of Testbench [3]

The functional layer contains agent block, scoreboard and

checker block. Agent block is commonly known as transactor

which receives higher level transactions and cleft them into

individual transactions. The scoreboard is responsible to receive

these individual transactions and predicts the results. The checker

is responsible for inspecting the commands received from

monitor and scoreboard. The scenario is used to drive the

functional layer. It provides the protocol specific scenario

generation.

The basic verification environment is shown in Figure 5. Here,

generator is used to create constrained random test vectors which

are fed into the driver and hence can stimulate the DUT. Monitor

is also known as receiver which receives the output from DUT

for the given stimulus generated by the generator and generates

the verification report. This report is fed into the checker and is

compared with the accepted report generated by scoreboard.

Hence, adding to the coverage report. The object-oriented feature

of SystemVerilog can be used to reinforce the reusability of these

test bench components.

The verification environment also involves the special class

known as interface. This class is used to inter connect the test

program to the DUT. Top module includes instance of memory

interface, input interface, output interface, testcase and DUT.

4. CONCLUSION
In today’s world all the electronic design automation (EDA)

tools are hastily in fabrication labs or for even programming

design functionality into programmable IC’s [8]. EDA

companies make a huge turn over in terms of money. Field

Programmable Gate Arrays (FPGAs) have become a critical part

of every system design [9]. Developing and reusing IP for SOC

verification is always a desired but challenging methodology

[10].

This paper presents a method of creating a simple verification

environment involving almost all the essential objects of the

verification plan. The packet can have a bad fcs kind, if it has

length greater than the data size and similarly it can have good

fcs, if it has length equal to data size. Figure 6, shows simulation

result for one of the packet which can be called as bad test packet

Figure 7, shows simulation result for one of the packet which can

be called as good test packet

The field with the index value 0 and 1 shows the destination

address and the source address respectively. The field with index

value 2 shows length of the data. As we have (ed) 16 which is

equivalent to (237)10. This is reason we have the data byte at 237

index value. The next address value (i.e. 238) hold the hex value

which is correspondent to some fcs calculation. The simulation

results also show that scoreboard has successfully received the

packet from the receiver. This received packed is compared with

packet earlier received from the driver. Results show that all the

test packets generated have successfully passed the test. All this

have been achieved by creating an efficient verification

environment by using SystemVerilog language.

International Journal of Computer Applications (0975 – 8887)

Volume 85 – No 11, January 2014

36

Figure 6: Shows the simulation result for packet with bad FCS kind

Figure 7: Shows the simulation result for packet with good FCS kind

International Journal of Computer Applications (0975 – 8887)

Volume 85 – No 11, January 2014

37

5. REFERENCES
[1] Chris Spear, Greg Tumbush, Verification Guidelines,

SystemVerilog for Verification, Third Edition (Ney York:

Springer), pp. 58.

[2] Chris Spear, Greg Tumbush, Verification Guidelines,

SystemVerilog for Verification, Third Edition (Ney York:

Springer), pp. 61.

[3] Chris Spear, Greg Tumbush, Verification Guidelines,

SystemVerilog for Verification, Third Edition (Ney York:

Springer), pp. 62

[4] Purvi D. Mulani, “SoC Level Verification using

SystemVerilog,” In the proceedings of Emerging Trends

in Engineering and Technology (ICETET) Conference,

Nagpur, pp. 378-380, Dec. 2009

[5] Young-Jin Oh Gi-Yong Song, “Simple hardware

verification platform using SystemVerilog,” In

the proceedings of TENCON 2011 - 2011 IEEE Region

10 Conference, Bali, pp. 1414 – 1417, Nov. 2011.

[6] Ma Pei-Jun, Ma Wen-Bo, Li Kang, Shi Jiang-Yi, others,

“The verification of network processor Fast Bus Interface

using SystemVerilog,” In the proceedings of Electron

Devices and Solid-State Circuits (EDSSC), 2011

International Conference, Tianjin, pp. 1 – 2, Nov. 2011.

[7] Simmons, M., Geishauser, J., “FlexBench: reuse of

verification IP to increase productivity,” In the

proceedings of Design, Automation and Test in Europe

Conference and Exhibition, Paris, 2002.

[8] Chia-Chih Yen, Jing-Yang Jou, An-Che Cheng, “A formal

method to improve SystemVerilog functional coverage,”

In the proceedings of High Level Design Validation and

Test Workshop (HLDVT), 2012 IEEE International

Conference, Huntington Beach, CA, pp. 56 – 63, 9 – 10

Nov. 2012,

[9] Young-Jin Oh, Gi-Yong Song, Jae-Jin Lee, “Design and

verification of an application-specific PLD using

VHDL and SystemVerilog,” In the proceedings of ASIC

(ASICON), 2011 IEEE 9th International Conference,

Xiamen, pp. 159 – 162, 25 – 28 Oct. 2011,

[10] Pierres, A. Hu Shiqing, Chen Fang and others, “Practical

and efficient SOC verification flow by reusing IP

testcase and testbench,” In the proceedings of SoC

Design Conference (ISOCC), 2012 International

Conference, Jeji Island, pp. 175 – 178, 4 – 7 Nov. 2012

IJCATM : www.ijcaonline.org

