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ABSTRACT 
Optimal human forearm trajectories structure was investigated 

using Optimal Regulator. First, the continuous dynamics of 

the human forearm were established on the basis of the 

relation between muscle torque and neural control signal and 

employed Riccati differential equation to obtain the optimal 

movement trajectory of the human forearm. The model and 

control of a human forearm is analyzed. In the advanced 

control of robotic manipulators, it is important for 

manipulators to track trajectories in a wide range of work 

place. If speed and accuracy is required, the control using 

conventional methods is difficult to realize because of the 

high nonlinearity of the robot system. In this work; we study 

the problem of human hand control carrying a mass. The 

equation of motion and the natural frequency of the forearm 

for small angular displacement are derived. We develop new 

methods that use vector fields in the controller construction 

for a set of nonlinear dynamical systems.  The paper deals 

with compensate of non-linear system which has a similar 

idea as the method mentioned in linear system.  We utilize an 

optimal regulator and suggest human arm activities under 

dynamic environments. Humans must pay compensation for 

loads arising from interaction with the physical environment. 

We have managed to design a control law for the non-linear 

arm-mass-system, in such a way that the representation of a 

closed loop system is affine, controllable, and a closed loop 

system is asymptotically stable. Throughout any motion, the 

forearm can be considered a one-link robot manipulator which 

could be exploited to benefit people with disabilities (missing 

extremities). An optimal controller calculates the motor 

command, which minimize the cost function for nonlinear 

arm dynamics.  Therefore, the purpose of our study is to 

construct a computational model of arm movement. For this 

purpose, we use an optimal regulator as the model and 

compare simulated arm movements with actual nonlinear 

model human movements. In this paper, we present two 

approaches to human arm modeling: finite time optimal 

regulator control approach and modern nonlinear control 

approach. The latter one is formalized using Lie-Derivative 

based controllers.  

Keywords 
Two point boundary value problem, optimal regulator, 

Forearm Modeling, Nonlinear Controller, Vector Field, Lie 
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1. INTRODUCTION 
The problems connected with the design of artificial arm 

replacements are far more difficult than those associated with 

the design of robotic arms or terminal devices. The design of 

artificial arms is a multidisciplinary effort. The design side 

needs knowledge of the mechanics of mechanisms, such as 

gears, levers, and points of mechanical advantage, and 

electromechanical design, such as switches, dc motors, and 

electronics [1]. When the someone wants to move the arm, the 

brain sends signals that first bond the chest muscles, which 

send an electrical signal to the prosthetic arm, instructing it to 

reposition. The procedure requires no more aware effort than 

it would for a someone who has an ordinary arm. In general, a 

person with a prosthetic arm can make only a few motions, 

often so slowly that many people use the arms only for limited 

activities. There is a separate motor for each movement. By 

far the most common actuator for electrically powered 

prostheses is the permanent magnet dc electric motor with 

some form of transmission [2]. In proportional control, the 

amount/intensity of a controlled output variable is directly 

related (proportional) to the amount of the input signal. For 

example, the output speed of a DC motor is proportional to 

the amount of voltage applied to its terminals. This is why DC 

motors are said to be speed controlled. This is also the reason 

why most of today’s commercially available prosthetic 

components are speed controlled [3]. Output speed is 

comparative to the amount of input signal. Proportional 

control is used where a graded response to a graded input is 

required. In position control the position of the prosthetic joint 

is proportional to the input amount/intensity. The input 

amount/intensity might be the position of another 

physiological joint or a force level. If the position of another 

joint is used as the input then the system is known as a 

position actuated, position servomechanism. If the amount of 

force applied by some body part is the input, then the system 

is a force actuated, position servomechanism [4].  
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With position control the amputee’s ability to perceive and 

control prosthesis position is directly determined by his or her 

ability to perceive and control the input signal. A major 

disadvantage of position control is that, unlike velocity 

control, it must maintain an input signal to hold an output 

level other than zero. This means that power must be 

continuously supplied to the component to maintain a 

commanded position other than zero. This is one of the 

reasons why speed or velocity control is the main mode of 

control in externally-powered prosthetics today, despite the 

fact that it has been shown that position control for 

positioning of the terminal device in space is superior to 

velocity control.  In control theory, a state observer is a 

system that provides an estimate of the internal state of a 

given real system, from measurements of 

the input and output of the real system[5-6]. It is normally 

computer-implemented, and provides the basis of many 

practical applications. Knowing the system state is necessary 

to solve many control theory problems; for example, 

stabilizing a system using state feedback. In most practical 

cases, the physical state of the system cannot be determined 

by direct observation. As a substitute, indirect effects of the 

internal state are observed by way of the system outputs. If a 

system is recognizable, it is possible to fully rebuild the 

system state from its output measurements using the state 

observer. In this day of digital circuits and microprocessor 

based controllers pulse width modulation is the preferred 

method of supplying a graded (proportional) control signal to 

a component. A PWM stream only requires a single digital 

output line and a counter on the microprocessor to be 

implemented, whereas a predictable analog signal (linear DC 

voltage level) requires a full digital-to-analog (D/A) 

converter. PWM techniques are used extensively in switched-

mode power supply design and audio amplifiers and as such, 

there is a large array of resources available to the designer to 

choose from [8]. General properties of optimal solutions for 

the time-optimal control problem for nonlinear systems that 

are affine functions of the control(s) will be developed in  

which provides an introduction to some of the Lie derivative-

based techniques that form the basis for geometric methods in 

optimal control. In this study, a model for a forearm 

performing a motion is presented, using a new controller 

technique based on vector fields.  Furthermore, we evaluated 

three position controllers. The forearm bar of mass 1m  and 

length b  is shown in Figure 1.  A mass 2m  is carried by the 

angular of the forearm of a human hand.  During motion, the 

forearm  can be considered to rotate about the joint (pivot 

point O) with muscle forcers modeled in the form of a force 

by triceps  1c x 
and a force in biceps  2c  , where  1c

and 2c are constant and x 
 is the velocity with which triceps 

are stretched (or contracted ). We will derive the equation of 

motion and natural frequency of the forearm of the forearm 

for small angular dislocation  .  The paper is organized as 

follows: section 1 describes an introduction about prosthetic 

research and its control techniques.  In Section 2 the 

mathematical model of a human forearm is described i.e. 

equation of motion for the angular motion of the forearm 

about the pivot point  is derived, and the motion of the robot 

arm by a DC motor via a gear is resulting.  Section 3   proceed 

to the study of a finite-dimensional optimal control problem, 

i.e., a dynamic optimization problem in which the state of the 

system is linked in time to the application of a control 

function, by means of the solution to an ordinary differential 

equation whose right-hand side is shaped by the control. 

Sections 4 develops a method for constructing state-feedback 

stabilizing controllers law for a class of dynamical systems 

where position control algorithms are treated. Section 5 

nonlinear state-feedback controller are derived respectively 

for one-link manipulator model.  Lie derivative-based 

techniques nonlinear controller is simulated in section 5 and 

Finally, A short conclusion in Section 6 summarizes the 

study. 

 

2. MATHMATICAL MODELLING 
Equation of motion for the angular motion of the forearm 

about the pivot point O [9]: 

0 2 1 2 2 1 1cos cos 0
2

P P P

b
I m gb m g F a Fa         (1) 

Where P  the angular displacement of the forearm is, 0I  is 

the mass of inertia of the forearm and the mass carried: 

2 2

0 2 1

1

3
I m b b m                    (2) 

 
 

Fig 1: Forearm of a human hand carrying a mass. 

 

http://en.wikipedia.org/wiki/Control_theory
http://en.wikipedia.org/wiki/State_space_(controls)
http://en.wikipedia.org/wiki/Input/output
http://en.wikipedia.org/wiki/Output
http://en.wikipedia.org/wiki/Control_theory
http://en.wikipedia.org/wiki/Full_state_feedback
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And the forces in the biceps and triceps muscles 

 2 1 and F F are given by 

2 2 PF c                          (3) 

1 1 1 1 PF c x c a                     (4) 

Where the linear velocity of the triceps can be expressed as  

1 Px a                     (5) 

Using Equations (2)-(4), equation (1) can be rewritten as 

  
0 2 1 2 2

2

1 1

1
cos

2

0

P P P

P

I m gb m gb c a

c a

  







 
   
 

 

      (6) 

Let the forearm undergo small angular displacement  

about the static equilibrium position,  , so that   

P                          (7)

Using Taylor’s series expansion of cos P about P , the 

static equilibrium position, can be expressed as (for small 

value of   ) 

 cos cos cos sinP                          (8) 

Using 
P   and

P   , Equation (6) can be 

expresses as 

 

 

0 2 1

2

2 2 1 1

1
cos sin  

2

0

PI m gb m gb

c a c a

   

  





 
   
 

   

    Or 
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1
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2

1
sin  0

2

I m gb m gb

m gb m gb c a c a c a

 

    




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   
 

 
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       (9) 

Notice that the static equilibrium equation of the forearm at

P  , Eq.(6) is given by 

2 1 2 2

1
cos 0

2
m gb m gb c a 
 

   
 

             (10) 

In view of Equation (10), Equation (9) becomes    

2 2 2

2 1 1 1

2 2 2 1

1

3

1
sin  0

2

m b b m c a

c a gb m m

 

 

  
  

 

  
     

  

            (11) 

which denotes the equation of motion of the forearm. The 

undamped natural frequency of the forearm can be expressed 

as:  

2 2 2 1

2

2 1

1
sin  

2

1

3

n

c a gb m m

b m m





 
  

 


 
 

 

            (12) 

The design of fully functioning artificial arms with 

physiological speeds-of- response and strength (or better) that 

can be controlled almost without thought is the goal of upper 

extremity prosthetics research. Unfortunately, current 

prosthetic components and interface techniques are still a long 

way from realizing this goal [1]. By far the most common 

actuator for electrically powered prostheses is the permanent 

magnet dc electric motor with some form of transmission. 

While there is much research into other electrically powered 

actuator technologies, such as shape memory alloys and 

electro active polymers, none is to the point where it can 

compete against the dc electric motor. 

In terms of artificial arm, consider a model of one-link robot 

manipulator shown in Figure 2.  Many different types of drive 

mechanisms have been devised to allow wrist and forearm 

drive motors and gearboxes to be mounted close to the first 

and second axis of rotation, thus minimizing the extended 

mass of the arm. The motion of the robot arm is controlled by 

a DC motor via a gear [10]. The DC motor is armature-

controlled and its schematic is shown in Figure 3.The torque 

delivered by the motor is: m m aT K i , where mk   is the 

motor-torque constant, and ai is the armature current. Let N 

denote the gear ratio. Then we have 

       1

  arm     

P

m

radius of motor gear Number of teeth motor gear

radius of gear Number of teeth arm gear N




  

 The work done by gears are proportional to their number of 

teeth and the work done by the gears must be equal. Let PT

denote the torque applied to the robot arm. Then, 

P P m mT T  .  Thus, the torque applied the rod is   

P m m aT NT NK i  . We use Newton’s second law to 

write the equation modeling the arm dynamics,  

2 2

2 1 2 1

1 1
cos

3 2
P P m am b b m m gb m gb NK i    

      
   

(13) 

where   g=9.8 m/sec2 is the gravitational constant.  Applying 

Kirchhoff’s voltage law to the armature circuit yields 

a P
a a a b

di d
L R i k N u

dt dt


                 (14)   

Where Pk is the back emf constant. We can now construct a 

third-order state-space model of the one-link robot. For this 

we choose the following state variables: 

1 2 3, , ,P
P P a

d
x x x i

dt


        

Then, the model in state-space format is 

2

1 2 1

2 1 3
2 2 2 2

2 1 2 13

2 3

1 0
2

cos 0
1 1

1
3 3

m

a
b

a a

x

x m gb m gb
Nk

x x x u

m b b m m b b mx

L
k N R

x x
L L







 
 
   
                                       
    
 

 
 
 

(15) 

Reasonable parameters of the robot are: m2=5kg, m1=2kg, 

b=30cm, N=10, km=0.1Nm/A, kb=0.1 V sec/rad, Ra=1Ω, 

La=100mH. Then the robot model takes the form: 
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1 2

2 1 3

3 2 3

0

34.59cos 1.96 0

10 10 10

x x

x x x u

x x x







     
     

       
          

   (16) 

We assume that the output y, is  

1y x                 (17) 

 
Fig. 4: Plots of the one-link manipulator’s, versus time for 

three different initial angles (0) . 

 

Time histories of state trajectories of the uncontrolled 

nonlinear system of the model by (16) and (17) 

1( ) ( )x t t versus time is shown in Figure 4. The 

manipulator is driven by 0u  , initial conditions 

1(0) 1, 1 and 2x    and 2(0) 0 x  and 3(0) 0x   

It is clear that drastic change response due to the initial 

conditions and also the system has more than one equilibrium 

points. 

 

3. FINITE TIME OPTIMAL 

REGULATOR DEIGN  
The object of the optimal regulator design is to determine the 

optimal control law
*( , )u x t  which can transfer the system 

from its initial state to the final state (with zero system input) 

such that a given performance index is minimized. The 

performance index is selected to give the best trade-off 

between performance and cost of control. The performance 

index that is widely used in optimal control design is known 

as the quadratic performance index and is based on minimum-

error and minimum-energy criteria [11-14]. Consider the plant 

described by 

0( ) ( ) ( ) ( ) ( ),      given x(t ) x t F t x t G t u t 
              

(18) 

We assume that there are no constraints on the control input u. 

with the entries of F(t), G(t) assumed continuous. Let the 

matrices Q(t) and R (t) have continuous entries, be symmetric, 

and be nonnegative and positive definite, respectively.  

The problem is to find the vector k(t) of the control law  

( ) ( ) ( )u t k t x t                                        (19) 

which minimizes the value of a quadratic performance index J 

of the form       
0

ft

t
J x Qx u Ru dt               (20) 

Subject to dynamic plant equation in (18).  In (20) Q is a 

positive semidefinite matrix and R is  a real symmetric matrix.  

Q is positive semi definite if all its principal minors are 

nonnegative. The choice of the elements of Q and R allows 

the relative weighting of individual state variables and 

individual control inputs. To obtain a formal solution, we can 

use the method of Lagrange multipliers λ. The constraint 

problem is solved by augmenting (18) into (20) using an n-

vector of Lagrange multipliers, λ. The problem reduces to the 

minimization of the following unconstrained function 

 ( , , , ) ( )T T Tx u t x Qx u Ru Fx Gu x          (21) 

The optimal values (denoted by the subscript *) are found by 

equating the partial derivatives to zero. 

* * * * * *( , , , )
0

x u t
Fx Gu x x Fx Gu






      


(22) 

* * 1( , , , ) 1
2 0

2

T Tx u t
Ru B u R B

u


 

     


(23) 

*

*

( , , , )
2 0

2

T T T

T

x u t
x Q F

x

Qx F


 

 


    



  

             (24) 

Assume that there exists a symmetric, time varying positive 

definite matrix p(t) satisfying 
*2 ( ) ( )p t x t 

                 (25) 

Substituting (25) into (23) gives the optimal closed-loop 

control law 
* 1 *( ) ( ) ( )u t R B p t x t                   (26) 

Obtaining the derivative of (25), we have 

0 1 2 3 4 5 6 7 8
-6

-5

-4

-3

-2

-1

0

1

2

3

Time (sec)

 x
1
 (

ra
d
)

Uncontrolled one-link robot

 
Fig  2: A manipulator of length b1 and mass   m1 controlled by a 

DC motor via a gear. 

 

 
Fig 3:  Schematic of an armature  controlled DC-Motor 
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* *2( ( ) ( ) )p t x t px                    (27) 

Finally equating (24) with (27), we obtain 
1( ) ( ) ( ) ( ) ( )p t p t A A p t Q P t BR B p t               (28) 

The above equation is referred to as the matrix Riccati 

differential equation. The boundary condition for (28) is 

( ) 0fp t  . Therefore, (28) must be integrated backward in 

time. Since a numerical solution is performed forward in time, 

a dummy time variable 
ft t   is replaced for time t. Once 

the solution to (28) is obtained the solution of the state 

equation (22) in conjunction with the optimum control 

equation (26) is obtained.  P(t) is the matrix of proportionality 

between the costate ( )p t  and  state ( )x t . This matrix of 

proportionality is fully specified by the state transition matrix 

of the Hamiltonian system,   Provided the inverse in (28) 

exists at all times between the initial time and final time. 

A matlab function is developed for finite time domain 

solution of the Riccati  differential equation. The function 

returns the solution of the matrix P(t), the optimal feedback 

gain vector K(t), and the initial state response. In order to use 

this function, the user must declare the function containing 

system matrices and the performance index matrices in an M-

file named.  

For linear time-invariant systems, since 0p   , when the 

process is  infinite duration, that is 
ft    , the equation (28) 

reduces to the algebraic Riccati equation.  
10 pA A p Q PBR B p                    (29) 

Under the controlling of formula (19), the controlled system 
(18) takes the strong stability and robustness, which can be 

expressed in the following properties: 

 

3.1 Stability 
The closed-loop controlled system of (18) and (19) is 

1( ) , ( ) ( ), 0Tx F Gk x K t B B P t t     ,  which is 

asymptotically stable in the large, i.e. its eigenvalues satisfy 

 ( ) 0, 1,2,...,e iR F Gk i n    . In which (.)i denote 

ith eigenvalue of matrix, (.)eR denotes the real part of a 

complex. 

 

3.2 Robustness 
If we let weighting matrixes satisfy the following condition,

 1 2, ,..., , 0p iR diag r r r r   then each feedback 

controlled loop has the performances as follows: 

- At least ±60 degrees’ phase margin; 

- Gain margin is from 1/2 to ∞. 

4. FOREARM LINEARIZATION  
In this forearm model, we linearize the model derived in 

Section 2. Recall that the equations modeling the system have 

the form  in equation (16) and (17)  of an equilibrium state of 

the form 1 2 3 2
[   ] [  0 0]e e e ex x x x     

The Jacobian matrix of the model evaluated at the equilibrium 

state is 

 

(29) 

Hence, the linearized model of the forearm system can be 

represented as:  

1 1

2 2

3 3

0 1 0 0

34.59 0 1.96 0 ,and

0 10 10 10

x x

x x u

x x

        
       
     
       
                 

1

2

3

[1 0 0]

x

y x

x

 
 

  
 
  

                                                          (30) 

 The problem is to find the optimal control law that minimize 

the performance index (20), however, the admissible states 

and control values are unconstrained. The states are initially at 

x1(0) = 2, x2(0) = 0 and x3(0) = -2. For this system we have 

0 1 0 0 4 0 0
1

34.59 0 1.96 ,  G = 0 , 0 3 0 ,  
2

0 10 10 10 0 0 2

F Q R

     
     

   
     
           

    (31) 

The developed algorithm  returns the optimal feedback control 

gains  K(t) and the solution of the state equation x(t) in 

addition to  the control law u(t) .   First a function called the 

system parameters and the matrices Q and R must be defined 

in a file.  The program calls upon two functions. The function 

solves the matrix Riccatie differential equation defined by 

p(t). The second function solves the state equation in 

conjunction with the optimum control equation. This function 

obtains the numerical solution of the time-domain Riccati 
equation with the boundary condition specified at final time. 

 

 

Fig 5:  The optimal feedback control gains  K(t)versus time 

 

0 1 0 0

34.59 0 1.96     and    0
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Fig 6: The system response x(t)versus time 

 

Fig 7: The control law u(t) versus time 

K(t) is plotted in Figure 5. Note that the gain exhibits a 

transient and then approaches a steady –state value far from 

the final time. In situations where the time interval is long 

compared to the settling time of this transient, it may be 

responsible to use only the steady state gain.  The feedback 

system formed using this controller is stable.  The closed-loop 

system is simulated with an initial states of x1(0) = 2, x2(0) = 

0 and x3(0) = -2 and the results are plotted in Figure 6. Note 

that states converges to zero, the settling time is roughly 5 

seconds, and there is only a small overshoot  in the motor 

shaft angle. The control law u(t) of this simulation are plotted 

in Figure 7 and show that zero steady state error is achieved. 

Looking at the plots, the control input is seen to exceed the 

normal specifications during the initial transient, but meets 

that specification after this transient decay to zero. Care must 

be used in interpreting the meaning of the cost when the test 

conditions include both initial conditions and inputs.   

5. NONLINEAR CONTROL SYSTEM 
One of the objective of this paper is to devise a method for 

constructing state-feedback stabilizing control law for a class 

of dynamical nonlinear systems modeled by  

 

( ) ( ) ,x f x G x u

y h x

  


       (32) 

where : , :n n n nxmf R R G R R  and the output 

map : n ph R R  We thus first discuss a method for 

reducing a nonlinear system model into an equivalent form 

that is a generalization of the controller form known from 

linear system theory. In our subsequent discussion, we will be 

using three types of Lie derivatives [15, 16]. They are as 

follows:  

1. Derivative of a vector field with respect to a vector field, 

also known as the Lie bracket. 

Given the vector-valued functions : n nf R R   and

: n ng R R , where f  and g  are C 
 vector fields, 

their Lie bracket is defined as 

 ,
f g

f g g f
x x

 
 
 

    (33) 

2. Derivative of a function with respect to a vector field. Let 

: R Rnh  be a C 
  function on

nR . Let 

TDh h  , where h   is the gradient (a column vector) 

of h  with respect to x . Then, the Lie derivative of the 

function h with respect to the vector field f, denoted

  ( )f fL h or L h , is defined as 

 

1 1

1 1

,  f f

n

n

L h L h h f Dh f

h h h
f f f

x x x

    

  
  

  

        (34) 

3. Derivative of Dh  with respect to the vector field. The Lie 

derivative of Dh   with respect to the vector field f  , 

denoted ( )fL Dh , is defined as 

 
T

T

f f f

h f
L Dh f Dh DL h L h

x x

  
    

  
  (35) 

Our goal now is to construct a C∞ state variable 

transformation  ( ),  0 0z T x T   

for which there is a C 
 inverse

1( )x T z , such that 

system model ( ) ( )x f x g x u    in the new 

coordinates has the form 

21

32

1

1 2

0

0

0

1( , , , )

nn

nn n

zz

zz

u

zz

z f z z z











    
    
    
     
    
    
        

              (36) 

x = T−1(z) is called a diffeomorphism[13].  The transformation 

( )z T x  has the for 2 1

1 1 1, , , ,
T

n n

f f fT T L T L T L T    
 (37) 

The above means that the problem of constructing the desired 

transformation ( )z T x  is reduced to finding its first 

component 1T . The remaining components of T can be 

successively computed using 1T .  The row vector 1( )T x

x




is 

the last row of the inverse of the controllability matrix, 

provided the controllability matrix is invertible. We denote 

the last row of the inverse of the controllability matrix by 

q(x). Then, the problem we have to solve is to find 

1

nT R R   such that  1
1

( )
( ),  (0) 0

T x
q x T

x


 


  

where the controllability matrix of the nonlinear system can 

be expressed in terms of Lie brackets as: 

     0 1 1, , ,nQ ad f g ad f g ad f g 
 

     (38) 

The controllability matrix of the system model in Equations 

(16, 17) is  

     0 1 2, , ,

0 0 19.6

0 19.6 196

10 100 804

Q ad f g ad f g ad f g  
 

 
 


 
  

        (39) 

The above controllability is of full rank on R3. The last row of 

its inverse is  

 0.051 0 0q   , Hence   1 10.05T x   
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Having obtained 1T , we construct the desired transformation 

( )Z T x , where  

 

1 1

1 2

1 3

0.051

( ) 0.051

1.77cos 0.1

f

f f

T x

T x L T x

L L T x x

   
   

    
     

            (40) 

 

Note that the inverse transformation 
1( )x T z exist and 

has the form 

1

1

2

3 1

19.6

( ) 19.6

10 17.7cos(19.6 )

z

T z z

z z



 
 


 
  

              (41) 

Furthermore 

1

0.05 0 0

0 0.05 0

1.77sin 0 0.1

T

x
x

 
  


 
  

            (42) 

Applying the transformation ( )Z T x to the model of the 

one-link robot manipulator yields 

 

1 1( ) ( )

( ) ( )
x T z x T z

T T
z f x g x u

x x 



 

 
 
 

 

2

3

2 1 2 3 1

0

0

34 sin19.6 19.6 10 17.7cos(19.6 ) 1

z

z z u

z z z z z



   
   

 
   
         

(43) 

 

6. NONLINEAR STATE FEED-BACK 

CONTROLLER  
Once the plant model is transformed into the controller form, 

we can construct a state-feedback controller in the new 

coordinates and then, using the inverse transformation, 

represent the controller in the original coordinates [18]. While 

constructing the controller in the new coordinates, a part of 

the controller is used to cancel nonlinearities, thus resulting in 

a linear system in the new coordinates. Then, we proceed to 

construct the other part of the controller. This part can be 

designed using linear control methods because the feedback 

linearized system is linear. The controller form of the one-link 

manipulator model is given by (43). It is easy to design a 

stabilizing state-feedback controller in the new coordinates. It 

takes the form 

   3 1 2 3 1 1 2 2 3 3( , , ) ,u f z z z k z k z k z     (44) 

where

3 1 2 3 2 1 2 3 1( , , ) 34 sin19.6 19.6 10 17.7cos(19.6 )f z z z z z z z z    

Suppose that the desired closed-loop poles of the feedback 

linearized one-link manipulator are to be located at 

 2 3.46,8j  which verify a damping factor 0.5 

and natural frequency 4 / secn rad  . Then, the linear 

feedback gains 1,2,3ik i   that shift the poles to these 

desired locations are  1 128, k  2 48k   
3 12k  .  

Applying (30) with the above values of the linear feedback 

gains to the model gives 

0 1 0

0 0 1

128 48 12

z z

 
 


 
    

            (45) 

Next, applying the inverse transformation yields the controller 

in the original coordinates,    

1 2 3 1

2 1

6.528 1.428 0.2 21.24cos

1.81 sin

u x x x x

x x

    


  (46) 

In Figure 8, three plots of the manipulator’s link angle, 

1 ,x   versus time are presented. The initial conditions 

have the form  (0) (0) 0 0
T

x  . The control law 

applied to the manipulator is given by (46). 

 

Fig 8:  Plots of the one-link manipulator’s link angle, 

1 ,x  versus time for three different initial angles

(0) . The manipulator is driven by the control law (46). 
 

7. CONCLUSIONS 
 Forearm movement which has the kinematic characteristics 

was considered as optimal forearm movement. An analysis 

and design of fully functioning artificial arms with speeds-of 

response and strength is conducted. The equations of motion 

and natural frequency of a human forearm are derived. An 

optimal controller based on Finite Time regulator design that 

calculates the optimal motor command which drives the arm 

movement toward the desired state is designed. Synthesis of 

control law for non-linear systems based on vector fields has 

been successfully solved. The method is exact and does not 

require any system linearization.  We have managed to design 

a control law for the non-linear representation of a system, 

which is controllable and observable, in such a way that the 

representation of a closed loop system is affine, controllable, 

observable and asymptotically stable. This fact gives us more 

flexibility in the choice of the desired behavior of a closed 

loop system than a linear one.  We presented an introduction 

to qualitative theory of a nonlinear control system, with the 

main emphasis on controllability and observabilty properties 

of such systems. We introduced the differential geometric 

language of vector fields and Lie bracket..  We illustrated our 

considerations with forearm nonlinear system. The nonlinear 

controller stabilizes the system and guarantees exponential 

convergence of the tracking error to zero.  Several optimal 

0 1 2 3 4 5
-0.5

0

0.5

1

1.5

2

Time (sec)

 x
1
 (

ra
d
)

One-link robot driven by the linearizing state-feedback controller



International Journal of Computer Applications (0975 – 8887)  

Volume 85 – No 11, January 2014 

27 

criteria or objective functions, for modeling and control arm 

movement are demonstrated. 
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