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ABSTRACT 
An analysis of entropy generation in an MHD boundary layer 

flow of a viscous incompressible electrically conducting fluid 

past an inclined flat plate embedded in a porous media in a 

rotating system with Hall currents has been presented. The 

governing equations describing the flow have been solved 

analytically. The velocity field, induced magnetic field, shear 

stress and bulk temperature in the boundary layer flow have 

been discussed with the help of graphs. The entropy generation 

is estimated via an analytical solution of the temperature and 

velocity profiles obtained from the momentum and energy 

equations governing the flow. The Bejan number is also 

obtained and discussed. 

Keywords: MHD boundary layer flow, Hall currents, Grashof 

number, rotation parameter, angle of inclination, bulk 
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1. INTRODUCTION 

Analysis of hydromagnetic boundary layer flow and heat 

transfer of electrically conducting fluids is of great interest in 

many branches of engineering. Practical applications are found 

in the design of cooling systems for electronic devices, in the 

field of solar energy collection, geothermal reservoirs, heat 

exchangers, cooling of an infinite metallic plate in a cooling 

bath, magnetohydrodynamic (MHD) stirring of molten metal, 

magnetic-levitation casting, MHD marine propulsion, the 

boundary layer along a liquid film in condensation processes 

and a polymer sheet or filament extruded continuously from a 

dye. MHD flow past a flat surface has many important 

technological and industrial applications such as micro MHD 

pumps, micromixing of physiological samples, biological 

transportation and drug delivery. The application of the 

magnetic field produces Lorentz forces which are able to 

transport liquids in the mixing processes as an active 

micromixing technology method. 

     In an ionized gas where the density is low and/or the 

magnetic field is very strong, the conductivity normal to the 

magnetic field is reduced due to the free spiraling of electrons 

and ions about the magnetic lines of force before suffering 

collisions and a current is induced in a direction normal to both 

the electric and magnetic fields. This phenomenon, well known 

in the literature, is called the Hall effect. The study of 

magnetohydrodynamic viscous flows with Hall currents has 

important engineering applications in problems of 

magnetohydrodynamic generators, Hall accelerators as well as 

in flight magnetohydrodynamics. The magnetohydrodynamic 

natural convective boundary layer flow of an electrically 

conducting fluid along an inclined flat plate is of considerable 

interest in the technical field due to its frequent occurrence in 

industrial and technological applications. A new approach on an 

MHD natural convective boundary layer flow past a flat plate of 

finite dimensions has been studied by Ghosh and Pop [1]. 

Katagiri [2] has investigated the effect of Hall currents on the 

magnetohydrodynamic boundary layer flow past a semi-infinite 

flat plate. Pop and Watanabe [3] have discussed the Hall effects 

on the magnetohydrodynamic boundary layer flow over a 

continuous moving flat plate. Natural convection heat transfer 

from a plate with arbitrary inclination has been studied by Fujii 

and Imura [4]. An analysis of laminar free convective flow and 

heat transfer about an inclined isothermal plate has been 

described by Kierkus [5]. Ganesan and Palani [6] have studied 

the natural convective effects on impulsively started inclined 

plate with heat and mass transfer. Buoyancy effects in the 

boundary layers on the inclined, continues, moving sheets have 

been investigated by Moutsoglou and Chen [7]. Lewandowski 

[8] has presented the natural convection heat transfer from the 

plates of finite dimension. He has carried out a theoretical 

analysis of a hydrodynamic natural convective boundary layer 

flow with reference to an experimental observation of a double 

deck boundary layer to an isothermal flat plate. 

      In these studies, the effects of Darcian fluid flow of a 

porous medium do not appear in the literature. There is a real 

background of a heat-absorbing medium in response to a 

Darcian fluid flow in aerospace science and cryogenics. 

However, several studies on porous medium flow have been 

taken into account in past decades. Authors have concentrated 

to the recent literature on the development of a real-life 

situation of a practical field of interest. The second law of 

thermodynamics is applied to investigate the irreversibility in 

terms of the entropy generation rate. Since entropy generation is 

the measure of the destruction of the available work of the 

system, the determination of the factors responsible for the 

entropy generation is also important in upgrading the system 

performances. The method is introduced by Bejan [9, 10]. The 

entropy generation is encountered in many energy-related 

applications, such as solar power collectors, geothermal energy 

systems and the cooling of modern electronic systems. Efficient 

utilization of energy is the primary objective in the design of 

any thermodynamic system. This can be achieved by 

minimizing entropy generation in processes. The theoretical 

method of entropy generation has been used in the specialized 

literature to treat external and internal irreversibilities. The 

irreversibility phenomena, which are expressed by entropy 

generation in a given system, are related to heat and mass 

transfers, viscous dissipation, magnetic field etc. Several 

researchers have discussed the irreversibility in a system under 

various flow configurations [11-23]. They showed that the 

pertinent flow parameters might be chosen in order to minimize 

entropy generation inside the system. Chen and Chen [24] have 



International Journal of Computer Applications (0975 – 8887)  

Volume 84 – No 9, December 2013 

37 

studied the problem of free convective flow of the non-

Newtonian fluids past an isothermal vertical flat plate 

embedded in a porous medium. The hydromagnetic free 

convective flow with induced magnetic field has been discussed 

by Ghosh et al.[25]. The natural convection boundary layer 

flow past a flat plate of finite dimensions embedded in a porous 

medium has been investigated by Jana et al. [26]. The transient 

MHD free convection past an infinite vertical porous plate in a 

rotating system with mass transfer and Hall current has been 

studied by Ahmed and Kalita [27]. The transient 

magnetohydrodynamic flow of a visco-elastic fluid past an 

infinite vertical porous plate embedded in a porous medium 

with Hall currents and slip condition in a rotating system has 

been discussed by Ahmed and Talukdar [28]. Das et al. [29] 

have studied the Hall effects on an MHD free convective 

boundary layer flow past a vertical flat plate. Makinde [30] has 

made an analysis on MHD boundary-layer flow and mass 

transfer past a vertical plate in a porous medium with constant 

heat flux. Kumar and Chand [31] have studied the effect of slip 

conditions and Hall currents on an unsteady MHD flow of a 

visco-elastic fluid past an infinite vertical porous plate through 

porous medium. Entropy analysis for MHD boundary layer 

flow and heat transfer over a flat plate with a convective surface 

boundary condition has been presented by Makinde [32]. 

    The objective of this study is to investigate the entropy 

generation in magnetohydrodynamic free convection flow past 

an inclined flat plate embedded in a porous medium in the 

presence of a uniform transverse magnetic field on taking  Hall 

currents into account. The effects of governing parameters on 

the flow field and entropy generation are presented graphically 

and in tabuler form. 

 

2. MATHEMATICAL FORMULATION 

AND ITS SOLUTION 
Consider a steady MHD free convective boundary layer flow 

past a flat plate of finite dimensions of a viscous incompressible 

electrically conducting fluid confined to the arbitrary inclination 

  of the plate embedded in a porous medium. A uniform 

magnetic field of strength 0B  is imposed perpendicular to the 

plate. The cartesian coordinates system is chosen in such a way 

that the x - and z -axes are in the plane of the plate and the y -

axis normal to the plane of the plate (See Fig.1). The fluid and 

the plate rotate in unison with a uniform angular velocity   

about the z -axis normal to the plate. Since the plate is 

infinitely long all physical quantities, except pressure, will be 

function of y  only. The flow is generated due to the buoyancy 

force in the presence of a transverse magnetic field. 

 

           
  

       Fig.1: Geometry of the Problem  

The equation of continuity 0q   and the no-slip condition 

at the plate give 0v   everywhere in the flow where 

( , , )q u v w  is the fluid velocity. The solenoidal equation 

. 0B   gives 0=constantyB B  everywhere in the flow, 

where ( , , )x y zB B B B  is the magnetic field intensity. 

Under the usual Boussinesq approximation, the Navier-Stokes 

equations for the steady flow along the co-ordinate axes are  
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 where g  is the acceleration due to the gravity, e  the 

magnetic permeability,   the kinematic viscosity, p  the fluid 

pressure,   the fluid density, T  the fluid temperature, T  the 

ambient temperature,   the angle of inclination of the plate,   

the coefficient of thermal expansion, 
'  the coefficient of 

viscosity of the porous medium and k   the the specific 

permeability of the medium. 

Maxwell's equations in the steady state are  

            , 0, 0, ,e eB J E B D                   (4) 

where E  is the the electric field vector, J  the current density 

vector, D  the displacement current vector and e  the free 

charge density. 

The generalized Ohm's law on taking Hall currents into account 

and neglecting the ion-slip and thermoelectric effects as well as 

the electron pressure gradient (see Cowling [33]) for a 

conducting fluid is  

0
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where e , e  and   denote the cyclotron frequency, the 

electron collision time and the electrical conductivity of the 

fluid respectively. 

Eliminating E  from equations (4) and (5), we have the x - and 

z -components of the magnetic induction equation as  
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where e em   is the Hall parameter. 

We assume the temperature distribution in the boundary layer, 

according to Lewandowski [8] as  
2
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where   is the thickness of the boundary layer, wT  the 

constant wall temperature. 

The pressure distribution in the boundary layer is obtained on 

integration of the equation (2) and using the boundary condition 

( at )p p y    as  
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Differentiating the equation (9) with respect to x , we get  
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According to Fujii and Imura [4] , we assume  

constant.F
x x

  
  

 
                                      (11) 

where bar denotes the mean value. 

The boundary conditions for the velocities, the magnetic fields 

and the temperature distribution are  

   0, 0, 0, 0 and at 0,x z wu w B B T T y       

   00, 0, 0, 0 and at .x zu w B B T T y               (12) 

Introducing the non-dimensional variables  
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 equations (1), (3), (6) and (7) become  
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Combining equations (14) and (15) and equations (16) and (17), 

we get  
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 where  
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On the use of (13), the boundary conditions for ( )q  , ( )b   

and ( )   are  

0, 0, 1 at 0,q b                                      (21) 

0, 0, 0 at 1.q b                                      (22) 

Solutions of equations (18) and (19) subject to the boundary 

conditions (21) and (22) are  
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It is observed from equations (23) and (24) that both the 

velocity fields and the induced magnetic fields depend on the 

Grashof number Gr . In the absence of magnetic field ( 2 0M 

) and Hall currents ( 0m  ), the equation (23) is identical with 

the equation (14) of Jana et al.[26]. In the absence of rotation (
2 0K  ), angle of inclination ( 0  ) and porosity of the 

medium ( Da  ), equations (23) and (24) are identical with 

equations (15) and (16) of Das et al. [29]. In the absence of 

rotation ( 2 0K  ), angle of inclination ( 0  ), porosity of the 

medium ( Da  ) and Hall currents ( 0m  ) equations (23) 

and (24) are identical with equations (16) and (17) of Ghosh et 

al. [25]. 
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3. RESULTS AND DISCUSSION 

We have presented the non-dimensional velocity components 

and magnetic field components for several values of magnetic 

parameter 2M , rotation parameter 2K , Hall parameter m , 

Grashof number Gr , Darcy number Da  and angle of 

inclination   against   in Figs.2-13. It is seen from Fig.2 that 

both the primary velocity 1u  and the secondary velocity 1w  

decrease with an increase in magnetic parameter 2M . This 

indicates that the application of the transverse magnetic field 

plays the role of a resistive type force (Lorentz force) on the 

flow similar to a drag force (that acts in the opposite direction 

of the fluid motion), which tends to resist the flow thereby 

reducing the velocity components. Thus, a magnetic field can 

be used to control the motion of an electrically conducting fluid. 

Figs.3 and 4 show that the primary velocity 1u  decreases 

whereas the secondary velocity 1w  increases with an increase in 

either rotation parameter 2K  or Hall parameter m . It is found 

from Figs.5-7 that both the primary velocity 1u  and the 

secondary velocity 1w  increase with an increase in either 

Grashof number Gr  or Darcy number Da  or angle of 

inclination  . Physically this is due to the fact that an increase 

in Grashof number Gr  means more heating and less density. 

Darcy number is the measurement of the porosity of the 

medium. As the porosity of the medium increases, the value of 

Da  increases. For large porosity of the medium fluid gets more 

space to flow as a consequence its velocity increases. It is seen 

from Fig.8 that the induced magnetic field component xb  

increases in the region 0 0.48   and decreases in the region 

0.48 < 1.0   with an increase in magnetic parameter 2M . On 

the other hand, zb  decreases in the region 0 0.22   and 

increases in the region 0.22 < 1.0   with an increase in 

magnetic parameter 2M . Fig.9 shows that the induced 

magnetic field component xb  decreases in the region 

0 0.46   and increases in the region 0.46 < 1.0   with an 

increase in rotation parameter 2K . On the other hand, zb   first 

increases and then decreases with an increase in rotation 

parameter 2K . It is found from Fig.10 that the induced 

magnetic field component xb  increases with an increase in Hall 

parameter m . On the other hand, zb  decreases in the region 

0 0.26   and increases in the region 0.26 < 1.0   with an 

increase in Hall parameter m . It is observed from Fig.11 that 

xb  increases in the region 0 0.2   and decreases in the 

region 0.2 < 1.0   with an increase in Grashof number Gr

while the induced magnetic field component zb  increases with 

an increase in Grashof number Gr . It is seen from Fig.12 that 

the induced magnetic field component xb  increases in the 

region 0 0.32   and decreases in the region 0.32 < 1.0   

while the induced magnetic field component zb  increases in the 

region 0 0.49   and decreases in the region 0.49 < 1.0   

with an increase in Darcy number Da . Fig.13 shows that the 

induced magnetic field component xb  increases in the region 

0 0.16   and decreases in the region 0.16 < 1.0   with an 

increase in angle of inclination  . On the other hand, zb  

increases with an increase in angle of inclination  . It is 

observed from Figs.2-13 that the velocity components and the 

induced magnetic field components become negative away 

from the wall 0   which indicates that there occurs a reverse 

flow at that region. Physically this is due to the fact that there is 

a vertical component of the motion of the fluid in the upward 

direction which is against the gravitational field.    

 
Fig.2: Velocity components 1u  and 1w  for 2M  when 

0.5m  , 5Gr  , 2 10K  , 060   and 0.05Da   

    

   
Fig.3: Velocity components 1u  and 1w  for 2K  when 

0.5m  , 5Gr  , 2 10M  , 060   and 0.05Da   

     

   

Fig.4: Velocity components 1u  and 1w  for m  when 

2 10M  , 5Gr  , 2 10K  , 060   and 0.05Da   
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Fig.5: Velocity components 1u  and 1w  for Gr  when 

2 10M  , 0.5m  , 2 10K  , 060   and 0.05Da   

 

   
Fig.6: Velocity components 1u  and 1w  for Da  when 

2 10M  , 5Gr  , 2 10K  , 060   and 0.5m   

   

   
Fig.7: Velocity components 1u  and 1w   for   when 

2 10M  , 5Gr  , 2 10K  , 0.5m   and 0.05Da   

   

 
Fig.8: Induced magnetic field components xb  and zb  for 

2M  when 060  , 5Gr  , 2 10K  , 0.5m   and 0.05Da   

    

   
Fig.9: Induced magnetic field components xb  and zb  for 

2K  when 060  , 5Gr  , 2 10M  , 0.5m   and 0.05Da   

  

   
Fig.10: Induced magnetic field components xb  and zb  for 

m  when 060  , 5Gr  , 2 10M  , 2 10K   and 

0.05Da   
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Fig.11: Induced magnetic field components xb  and zb  for 

Gr  when 060  , 2 10M  , 2 10K  , 0.5m   and 

0.05Da   

   

 
Fig.12: Induced magnetic field components xb  and zb  for 

Da  when 060  , 5Gr  , 2 10M  , 0.5m   and 2 10K   

   

   
Fig.13: Induced magnetic field components xb  and zb  for 

  when 2 10M  , 5Gr  , 2 10M  , 0.5m   and 

0.05Da   

 

The non-dimensional shear stresses at the plate 0  due to the 

primary and secondary flows are  

  x zi   

     
2 2

2 2

1 4
1 2 sin cos

6 12

Gr r r
F

r P P r
 
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 

  
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 

 

     
cos 1

sin cosh (1 cosh ) ,
sinh 3 2

r F
r r

r P




  
      

  
    (26) 

where r  and P  are given by (29). On separating into a real 

and imaginary parts one can easily obtain the shear stress 

components x  and z  from the equation (30). 

Numerical results of the shear stresses x  and z  at the plate 

0   are presented in Tables 1 and 2 for several values of Hall 

parameter m , angle of inclination  , magnetic parameter 2M  

and Darcy number Da . Table 1 shows that the shear stress x  

at the plate due to the primary flow increases with an increase 

in either angle of inclination   or Darcy number Da  whereas 

it decreases with an increase in magnetic parameter 2M . It is 

observed from Table 2 that the shear stress z  at the plate due 

to the secondary flow increases with an increase in either angle 

of inclination   or Darcy number Da  or Hall parameter m  

whereas it decreases with an increase in magnetic parameter 
2M . 

          

Table 1. Shear stress x  at the plate 0   when 5Gr   and 2 10K   

  

   2M  Da  

m  030  045  060  1  2  3  0.01  0.02  0.03  

0.3 

0.4 

0.5 

0.6 

0.49634 

0.48272 

0.47316 

0.46959 

0.58357 

0.56828 

0.55756 

0.55359 

0.62765 

0.61180 

0.60069 

0.59660 

0.68179 

0.68234 

0.68296 

0.68363 

0.67721 

0.67784 

0.67865 

0.67958 

0.67219 

0.67270 

0.67357 

0.67469 

0.41470 

0.41575 

0.41696 

0.41820 

0.51350 

0.51555 

0.51846 

0.52177 

0.56035 

0.56035 

0.56317 

0.56786 
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Table 2. Shear stress z  at the plate 0   when 5Gr   and 2 10K   

  

   2M  Da  

m  030  045  060  1  2  3  0.01  0.02  0.03  

0.3 

0.4 

0.5 

0.6 

0.55203 

0.61809 

0.74486 

0.90131 

0.64697 

0.72075 

0.86308 

1.03897 

0.69414 

0.77030 

0.91788 

1.10044 

1.77753 

1.78407 

1.79166 

1.79976 

1.71032 

1.72081 

1.73314 

1.74628 

1.63506 

1.65073 

1.66935 

1.68915 

0.31191 

0.31535 

0.31828 

0.32064 

0.63100 

0.66033 

0.68595 

0.70647 

0.78609 

0.86265 

0.93762 

1.00159 

  

 

The bulk temperature in the boundary layer flow is given by  
1
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                      (27) 

 where  
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2
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3 6
F

r
 

 
    
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                                          (28) 

where r  and P  are given by (29). 

It is interesting to note from the above equation (27) that the 

bulk temperature in the boundary layer flow does not depend on 

the Grashof number Gr . 

Numerical results of the bulk temperature in the boundary layer 

flow are presented in Table-3 for several values of Hall 

parameter m  and squared-Hartmann number 2M . Table-3 

shows that the magnitude of the bulk temperature x  in the x -

direction as well as the bulk temperature z  in the z -direction 

increase with an increase in magnetic parameter 2M  whereas 

they decrease with an increase in Hall parameter m . 

  

Table 3. Bulk temperatures x  and z  at the plate 0   

  

 
x  z  

2\m M  1  2  3  4  1  2  3  4  

0.3 

0.4 

0.5 

0.6 

0.94747 

0.94627 

0.94342 

0.93940 

1.00929 

1.00921 

1.00600 

1.00057 

1.08004 

1.08008 

1.07511 

1.06674 

1.16219 

1.16137 

1.15289 

1.13951 

1.68450 

1.67676 

1.66844 

1.66003 

1.70571 

1.69624 

1.68588 

1.67525 

1.72844 

1.71875 

1.70739 

1.69508 

1.75198 

1.74452 

1.73392 

1.72091 

  

 

4. ENTROPY GENERATION 
The entropy generation in a fluid is caused by exchange of 

momentum and energy within the fluid and at the boundaries. 

This causes continuous entropy generation. One portion of this 

entropy production is due to heat transfer in the direction of 

finite temperature gradients. Finite temperature difference heat 

transfer irreversibly is common in all types of thermal 

engineering applications. Another portion of the entropy 

production arises due to fluid friction irreversibility. The 

volumetric rate of entropy generation in the presence of a 

magnetic field is given by  
2 2 2 2 2

2

1'

x z
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T y T y y T y y
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                

                   

    2 2( ).
'

u w
k T






                                                                 (29) 

The first term on the right-hand side of (29) is the local entropy 

generation due to heat transfer across a finite temperature 

difference, the second term is the local entropy generation due 

to viscous dissipation, the third term is the local entropy 

generation due to the effect of the magnetic field and fourth 

term is the local entropy generation due to fluid friction. 

The dimensionless entropy generation number may be defined 

by the following relationship:  

 
2 2

2
.

( )

G
S

w

T E
N

T T








                                  (30) 

In terms of the dimensionless velocity and temperature, the 

entropy generation number becomes  
2 2 2 2 2
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 where 
2

2( )

e

'

w

Br
k T T








 is the Brinkmann number, 

2

2( )

'

w

Br
k T T














 the modified Brinkmann number and 

wT T

T






   dimensionless temperature difference. 

The entropy in a system is associated with the presence of 

irreversibility. We have to notice that the contribution of the 

heat transfer entropy generation to the overall entropy 

generation rate is needed in many engineering applications. The 

Bejan number Be  is an alternative irreversibility distribution 

parameter and it represents the ratio between the heat transfer 

irreversibility hN  and the total irreversibility SN . It is defined 

by  

  .h

S

N
Be

N
                                          (32) 

The Bejan number takes the values between 0 and 1 (see 

Cimpean et al. [34]). The value of 1Be   is the limit at which 

the heat transfer irreversibility dominates, 0Be   is the 

opposite limit at which the irreversibility is dominated by fluid 

friction effects and 0.5Be   is the case in which the heat 

transfer and fluid friction entropy production rates are equal 

(see Varol et al. [35, 36]). Further, the behavior of the Bejan 

number is studied for the optimum values of the parameters at 

which the entropy generation takes its minimum. 

The influences of the different governing parameters on entropy 

generation are presented in Figs. 14-27. It is seen from Figs.14-

19 that the entropy generation number SN  increases with an 

increase in either magnetic parameter 2M  or Hall parameter 

m  or Grashof number Gr  or porosity parameter Da  or 
1Br   or 1Br   . An increase in the magnetic field intensity 

causes a general increase of the entropy generation number. 

Fig.20 shows that the entropy generation number SN  decreases 

with an increase in rotation parameter 2K . Figs.21-22 shows 

the Bejan number Be  increases with an increase in either 

magnetic parameter 2M  or rotation parameter 2K . The effect 

of Hall parameter m  on the Bejan number Be  is shown in 

Fig.23. The figure reveals an increase in the Bejan number Be  

as m  increases. It is observed from Figs.24-27 that the Bejan 

number Be  decreases with an increase in either Grashof 

number Gr  or porosity parameter Da  or 1Br   or 1Br  . 

The group parameter is an important dimensionless number for 

irreversibility analysis. It determines the relative importance of 

viscous effects to that of temperature gradient entropy 

generation. An increase in the values of the group parameter 

due to the combined effects of viscous heating and temperature 

difference yields a higher entropy generation rate.  

   

 
Fig.14: SN  for different 2M  when 2 10M  , 5Gr  , 

2 10M  , 0.5m   and 0.05Da   

 

 
Fig.15: SN  for different m  when 2 10M  , 5Gr  , 

2 10M  , 0.5m   and 0.05Da   

Fig.16: SN  for different Gr  when 2 10M  , 5Gr  , 

2 10M  , 0.5m   and 0.05Da   
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Fig.17: SN  for different Da  when 2 10M  , 5Gr  , 

2 10M  , 0.5m   and 0.05Da   

   

 
Fig.18: SN  for different 1Br   when 2 10M  , 5Gr  ,  

0.5m   and 0.05Da   

   

 
Fig.19: SN  for different 1Br   when 2 10M  , 5Gr  , 

2 10M  , 0.5m   and 0.05Da   

 
Fig.20: SN  for different 2K  when 2 10M  , 5Gr  , 

2 10M  , 0.5m   and 0.05Da   

  

Fig.21: Be  for different 2M  when 2 10M  , 5Gr  , 
2 10M  , 0.5m   and 0.05Da   

 
Fig.22: Be  for different 2K  when 2 10M  , 5Gr  , 

2 10M  , 0.5m   and 0.05Da   
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Fig.23: Be  for different m  when 2 10M  , 5Gr  , 
2 10M  , 0.5m   and 0.05Da   

  

   
Fig.24: Be  for different Gr  when 2 10M  , 5Gr  , 

2 10M  , 0.5m   and 0.05Da   

  

     
Fig.25: Be  for different Da  when 2 10M  , 5Gr  , 

2 10M  , 0.5m   and 0.05Da   

      
Fig.26: Be  for different 1Br   when 2 10M  , 5Gr  , 

2 10M  , 0.5m   and 0.05Da   

  

      

   
Fig.27: Be  for different 1Br   when 2 10M  , 5Gr  , 

2 10M  , 0.5m   and 0.05Da   

 

5. CONCLUSION 

Entropy generation analysis in a hydromagnetic free convective 

boundary layer flow past an inclined flat plate embedded in a 

porous medium in the presence of a uniform transverse 

magnetic field taking Hall currents into account has been 

carried out. The magnetic field significantly controls the fluid 

flow. The buoyancy force as well as the porosity of the porous 

medium accelerate the fluid velocity components. The induced 

magnetic field components are radically influenced by the Hall 

currents. Hall currents reduce the bulk temperature at the plate. 

It is interesting to note that there is no effect of the buoyancy 

force on the bulk temperatures. Bejan number enhances as Hall 

parameter increases. The entropy generation increases with an 

increase in either magnetic parameter or Hall parameter or 

Grashof number or porosity parameter. The present study find 

applications in cooling problems in the industry, to control the 

boundary layer separations and to reduce the drag etc. 
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