
International Journal of Computer Applications (0975 – 8887)  

Volume 84 – No 9, December 2013 

12 

Analysis of a Repairable System Operating Under 

Different Weather Conditions 

Ashish K. Barak 
Department of Mathematics 
Manipal University Jaipur, 

Jaipur-303007, India 

 
 
 
 

M.S. Barak 
Department of Mathematics, 

IGPGRC, Rewari, M.D. 
University, Rohtak-124001, 

India 

ABSTRACT 

The purpose of this paper is to develop and analyze a 

reliability model of a repairable system of single–unit 

considering two weather conditionsnormal and abnormal. In 

this model a unit may fail totally either directly from normal 

mode or via partial failure. There is a single server who visits 

the system immediately to do repair of the failed unit. The 

operation and repair of the unit are stopped in abnormal 

weather as a precautionary measure to avoid excessive 

damage to the system. Failure rates, repair rates and rate of 

change of weather conditions follow general distribution. By 

using semi-Markov process and regenerative point technique 

some reliability and economic measures of system 

effectiveness are obtained. The graphical of MTSF, 

availability and profit with respect to abnormal weather rate 

has also been shown for a particular case. 
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1. INTRODUCTION 
It is very difficult to keep the environmental conditions under 

control which may fluctuate due to changing climate, voltage 

and other natural catastrophic. However, it becomes necessary 

to protect the operation of the system in abnormal weather for 

reducing the down time and maintaining the reliability of the 

system. Generally, the given controlled conditions reckon to 

normal weather; otherwise, weather is taken as abnormal. A 

number of reparable systems which operate under strict 

control of temperature, voltage, storm and moisture, etc. have 

been considered by the researchers including Osaki (1972), 

Goyal (1984), Naidu and Gopalan (1984)  and Singh (1989) in 

the field of reliability theory. These conditions when satisfied 

correspond to normal weather; otherwise, it is supposed that 

the system is working under abnormal weather. Dhillon and 

Natesan (1983) and Goel etal.(1985) have studied the 

stochastic behavior of systems operating under different 

weather conditions by assuming that repair of the unit is 

always possible and economical to the system. However, 

sometimes repair of the unit is not possible and beneficial due 

to excessive use and high cost of maintenance. In such a 

situation, the unit may be replaced by new one in order to 

increase the availability of the system and hence profit. 

Recently, Chander and Bansal (2005) have discussed single-

unit reliability models by introducing the concept of 

inspection to examine the feasibility of repair.  

While incorporating the idea of weather conditions, a single-

unit reliability model of a repairable system is analyzed where 

a unit may fail completely either directly from normal mode 

or via partial failure. There is a single server who can be made 

available promptly whenever needed. Server repairs the unit 

at its complete failure. The unit after repair works as new. All 

random variables are mutually independent. The operation 

and repair of the unit are not permitted in abnormal weather as 

a precautionary measure to avoid excessive damage to the 

system. It is assumed that the distribution of failure time and 

time to change in weather conditions and repair time are 

general distribution. The system is observed at suitable 

regenerative epochs by using regenerative point technique. 

Some economic-related reliability characteristics such as 

mean sojourn times, mean time to system failure (MTSF), 

steady state availability, busy period and expected numbers of 

visits by the server are obtained. Finally, the profit is 

evaluated for the system to carry out the cost-benefit analysis. 

Graphs are drawn to show the behavior of MTSF and profit of 

the model for a particular case when all distributions are taken 

as negative exponential.  

2. NOTATIONS 
O  :        Operative state             

E  :        Set of regenerative states for 

           each model 

f1(t)/f2(t)/f(t) :         pdf/cdf of failure rate from 

            normal mode to partial failure 

F1(t)/ F2(t) /F(t)           mode /partial failure mode to 

            total failure mode/normal  

            mode to total failure mode. 

z(t)/Z(t), z1(t) /Z1(t):          p.d.f./c.d.f. of time to change of 

                                          weather conditions  form normal to              

abnormal, abnormal to normal  

p/q  :         Probability that repair is not 

            feasible/feasible. 

g(t)/G(t)    :         pdf/cdf  of repair times of  

            completely failed unit  

h(t)/H(t) :                          pdf/cdf of inspection time. 

O/PF   :          Unit is operative and in normal 

              mode/unit is partially failed  

PFO /                 :    Unit is good / partially failed but  

       not working due to abnormal weather 

FUi/FUr   :     Unit is totally failed and under 

                                  inspection/under repair. 

ir
FWFW /  :    Unit is completely failed and  

                                  waiting for repair/ inspection 

                                  due to abnormal weather.           

 qij(t),Qij(t) :    pdf and cdf of direct transition 

                                  time from a regenerative state i to a  

                                  regenerative state j or a failed state  

                                  j without visiting any other  

                                  regenerative state in (0,t] 

i(t)  :    cdf of first passage time from 

                                  regenerative state i to a failed state. 

Ai(t)              :    Probability that the system is up 

                                  at epoch t/E0=SiE  

Bi(t)               :    Probability that server is busy in  

                                 the system at instant  t/E0=SiE. 
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Ni(t) :   Expected number of visits by 

                    the server in (0,t]/E0=SiE 

Mi(t) : Probability that system initially in regenerative 

state Si remains up till time ‘t’ without  making 

anymtransition to any other regenerativemstate or 

returning itself through one ormmore non-

regenerative states. 

Wi(t)   :     Probability that the server is busy in the state Si up 

                  to time t without making any transition to any 

                 other regenerative state or returning tothe same 

                  state via one  or more non-regenerative state. 

mij        : Contribution to mean sojourn time in state Si when  

 system transits directly to state Sj(Si ,SjE)so that  

               i= 
i

ij
m , where dttqm

ijij
)(  = 

              ∫ )](([)(
0

*




sijij
sQ

ds

d
dttdQ and i is the mean 

               sojourn  time in state SiE. 

Ⓢ\©: symbols for Stieltjes convolution /Laplace 

                convolution. 

/*:    symbols for Laplace Stieltjes transform(L.S.T.)/Laplace 

                  transform L.T 

The possible transitions states of system models are 

respectively shown in the following figure:        

                                     Figure 1 

S0 S1 S2 S3 S4 S5 

O PF FUr O  PF  
r

FW  

                             

     All the transition states of the model are regenerative.  

3. TRANSITION PROBABILITIES AND 

     MEAN SOJOURN TIMES 
It can be observed that the epoch of entry into any of the 

states ESi   are regenerative point. Let 

,.......T,T),0(T 210  denote the epochs at which the 

system enters any state ESi  . Let Xn denote the state 

visited at epoch Tn+, i.e just after transition at Tn. Then {Xn, 

Tn} is a Markov-renewal process with state space E and 

  i} = X | t  T-T j, ={XPr =(t)Q nn1n1nij  is the 

semi-Markov kernel over E. 

The transition probability matrix of embedded Markov-chain 

is 

  ))(QQ()p(p ijij   with non-zero elements.      

By probabilistic arguments, the non-zero elements ijp  are 

0,1 1
0

( ) ( ) ( )p f t Z t F t dt


  

 

Where p01 means that probability of the normal unit is 

partially failed at time t. 

All other transition probabilities can be explained in the same 

manner and given by 

30 41 52 1p p p    0,2 1
0

( ) ( ) ( )p f t Z t F t dt




0,3 1
0

( ) ( ) ( )p z t F t F t dt


   1 , 2 2
0

( ) ( )p f t Z t d t


       

1,4 2
0

( ) ( )p z t F t dt


            2,0
0

( ) ( )p g t Z t dt


               

2,5
0

( ) ( )p z t G t dt


  

 

It can be easily verified that  

30 52 41p p p  

01 02 03 14 12 20 25p p p p p p p       1  

                                                                                            (1) 

The mean sojourn times i  in the state Si are given by 

0 1
0

( ) ( ) ( )Z t F t F t dt


    1 2
0

( ) ( )Z t F t dt


  

2
0

( ) ( )Z t G t dt


             3 1
0

( )Z t dt




4 1
0

( )Z t dt


  5 1
0

( )Z t dt


                (2) 

The unconditional mean time taken by the system to transit 

from any regenerative state Si when time is counted from 

epoch of entrance into state Sj is given by 

    
0s

**
ijijij sQ

ds

d
ttdQm










                                                                                 

(3) 

 

 

Relationship between Unconditional Mean and Mean 

Sojourn Times 

01 02 03 0m m m    ,    12 14 1m m  

20 25 2m m   , 30 3 41 1 52 5, ,m m m                                  

                             (4) 

4. RELIABILITY AND MEAN TIME TO 

     SYSTEM FAILURE 
Let i(t) be the c.d.f of first passage time from the 

regenerative state i to a  failed state. Regarding the failed state 

as absorbing state, we have the following recursive relation 

for i (t): 

        
k

k,i
j

jj,ii tQttQt

               

(5) 

Where j is an un-failed regenerative state to which the given 

regenerative state i can transit and k is a failed state to which 

the state i can transit directly.Taking LST of above relations 

(5) and solving for 
**

0 (s), we have 
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 
 

s

s1
sR

**

0* 
                   (6) 

The reliability of the system model can be obtained by taking 

inverse LT of (6) MTSF is given by  

MTSF =  
1

1*

0s D

N
sRlim 


                          (7) 

where 1N

' '
03 30 03 14 41 41 03 14 30 14 03

' ' '
14 03 41 14 03 02 01 12 12 01 02

' '
14 14 02 41 14 02

m m p m p m p p p p p

p p p p p m m p m p p

p p p p p p

    

     

 

 

1D 14 41 03 30 03 30 41 141 p p p p p p p p    

5. STEADY STATE AVAILABILITY 
Let Ai(t) be the probability that the system is in up state at 

instant 't' given that the system entered regenerative state i at t 

= 0. The recursive relations for Ai(t) are given as  

        
j

jj,iii tAtqtMtA                   (8) 

where j is any successive regenerative state to which the 

regenerative state i can transit and Mi(t)’s obtained as 

0 1
0

( ) ( ) ( )M Z t F t F t dt


 1 2
0

( ) ( )M Z t F t dt


  

                                         (9) 

Taking LT of relations (8) and solving for  sA*
0 . The 

steady state availability can be determined as  

   
2

2*

0
0s

0
D

N
sAslimA 


                        (10) 

where  

   2 25 52 0 41 14 01 11 1N p p p p p                       

    

    

   

2 0 03 3 41 14 25 52

1 14 4 01 25 52

2 25 5 41 14 02 01 12

1 1

1

1

D p p p p p

p p p p

p p p p p p

 

 

 

     

     

    

      

6. BUSY PERIOD ANALYSIS 

Let 
 tBi  be the probability that the server is busy in 

repairing the unit at an instant 't' given that the system entered 

regenerative state i at t=0. The recursive relations for 
 tBi  

are given as  

        
j

jj,iii tBtqtWtB

                    (11) 

where j is any successive regenerative state to which the 

regenerative state i can transit and Wi(t)’s obtained as 

2
0

( ) ( ) ( )W t Z t G t dt




                                       (12) 

Taking LT of relations (11) and solving for 
 sB*

0 . The 

busy period of the server can be determined as.  

 ssBlimB *

0
0s

0



2

3

D

N


                                     (13) 

Where  

3N  2 01 12 02 41 14[ 1 ]W p p p p p  
            

and D2 has already mentioned. 

7. EXPECTED NUMBER OF VISITS BY   

     THE SERVER 
Let Ni (t) be the expected number of visits by the server in (0, 

t] given that the system entered the regenerative state i at t=0, 

we have the following recurrence relations for Ni(t): 

       
j

jjj,ii tNtQtN

 

           (14) 

Where j is any regenerative state to which the given 

regenerative state i transits. 










otherwise

stateveregeneratiisj
j

0

1
   

Taking LST of the relation (14) and solving for

**

0N
(s). The 

expression for expected number of visits per unit time is given 

by    

 sNslimN **

0
0s

0


  = 

2

4

D

N
,             (15) 

Where  

4N  25 52 02 14 41 01 12[1 ] 1p p p p p p p       

and D2 has already mentioned. 

8. PROFIT ANALYSIS 
Any manufacturing industry is basically a profit making 

organization and no organization can survive for long without 
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minimum financial returns for its investment. There must be 

an optimal balance between the reliability aspect of a product 

and its cost. The major factors contributing to the total cost 

are availability, busy period of server and expected number of 

visits by the server. The cost of these individual items varies 

with reliability or mean time to system failure. In order to 

increase the reliability of the products, we would require a 

correspondingly high investment in the research and 

development activities. The production cost also would 

increase with the requirement of greater reliability. 

The revenue and cost function leads to the profit function of a 

firm/organization, as the profit is excess of revenue over the 

cost of production. The profit function in time t is given by 

P(t) = Expected revenue in (0, t] – Expected total cost in (0, t] 

In general, the optimal policies can more easily be derived for 

an infinite time span or compared to a finite time span. The 

profit per unit time, in infinite time span is expressed as 

 

i.e. profit per unit time = total revenue per unit time – total 

cost per unit time. Considering the various costs, the profit 

equation is given as 

P = K0A0 – K1B0 – K2N0 

Where  

P   = Profit per unit time incurred to the system 

K0 = Revenue per unit up time of the system 

A0 = Total fraction of time for which the system is 

operative 

K1 = Cost per unit time for which server is busy 

B0 = Total fraction of time for which the server is 

busy 

K2 = Cost per visit by the server 

N0 = Expected number of visits per unit time for the 

server 

9. RESULTS AND DISCUSSION 
To show the importance of results and characterize the 

behavior of MTSF and profit of the system, here we assume 

that failure times of unit, time of change of weather conditions 

and repair times of the unit as Weibull distributed with two 

parameters.  Probability density function and figure of 

cumulative distribution function of Weibull distribution with 

two parameters is given by 

1
( ) exp           t 0   

1

bth t t
b


      

 

                   Fig. 2: Cumulative Distribution Function 

Where  and b  are positive constants and are known as 

shape and scale parameters respectively. From the properties 

of Weibull distribution, If b = 0, it become the exponential 

distribution. 

Let    

1
1 1 1( ) exp[ / 1]bf t t b      

1
2 2 2( ) exp[ / 1]bf t t b      

1( ) exp[ / 1]bf t t b    

]1b/texp[)t(z 1b  
 

]1b/texp[)t(z 1b

111  

1( ) exp[ / 1]bg t t b        

For particular values to various parameters and costs, the 

graphical results for MTSF and profit function are obtained by 

considering exponential  distributions for all random variables 

associated with failure, weather conditions and repair times as 

shown in fig 3and 4. 

10. CONCLUSION 
The graphical behavior of mean time to system failure 

(MTSF) with respect to abnormal weather rate () shown in 

fig.3. It is observed that MTSF increase with the increase of β. 

It is also observed that MTSF decreases as direct failure rate 

() and normal weather rate (1) increase. Thus, we can say 

that life time of the system keeps on increasing with the 

increase of abnormal weather rate() due to the increase of 

non working period of the system. Figure 4 highlight the 

behavior of profit of the model with respect to abnormal 

weather rate (). It can be seen that profit of the system 

decreases with the increase of abnormal weather rate (). 

Further, when failure rate () and normal weather rate (1) 

increase, the profit of the system increase. 
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Fig. 3: MTSF Vs. Abnormal Weather Rate 

 

 
 

Fig. 4: Profit Vs. Abnormal Weather Rate 
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