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ABSTRACT
Over the recent years, concept-evolution has received a lot of at-
tention to the research community because of its importance in the
context of mining data streams. Mining data stream has become a
crucial task due to its wide range of applications such as network in-
trusion detection, credit card fraud identification, identifying trends
in the social networks etc. Concept-evolution means introduction of
novel class in the data stream. Many recent works address this phe-
nomenon. In addition, a class may appear in the stream, disappears
for a while and then reemerges. This scenario is known as recurring
classes and also remained unaddressed in most of the cases. As a
result, generally where a novel class detection system is present,
any recurring class is falsely detected as novel class. This results in
unnecessary waste of human and computational resources. In this
paper, we have investigated the idea of a class-based ensemble of
classification model addressing the issues of recurring and novel
class in the presence of concept drift. Our approach has shown im-
pressive performance compared to the state-of-art methods in the
literature.
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Keywords:
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1. INTRODUCTION
The problem of data stream classification has been studied among
the research community over the recent years. One of the major
characteristics of data stream mining is that, the classification is a
continuous process. As a result, the size of the training data can be
considered infinite. Therefore, it is almost impossible to store all
the examples to train the classifiers. Some methods regarding in-
cremental learning are proposed in [5, 16] to address this problem.
Moreover, it is a common scenario that, the underlying concept may
changes overtime; a characteristics known as concept-drift. A num-
ber of studies addressing the issue of concept-drift are presented in
the literature [2, 6, 11, 14].
However, another significant phenomenon of the data stream is
concept-evolution, which is considered as the emergence of novel
classes in the stream. For example, a new topic may appear in social

network or a new type of intrusion may be identified in the network.
If the number of classes in the classifiers is fixed and no novel class
detection system is present, then the novel class is falsely identified
as existing class. Concept Evolution has become a new research
direction for the researchers recently because of its practical im-
portance. For example, if a new types of attack occurs in the net-
work, it imperative to identify it and take actions as soon as pos-
sible. Several approaches regarding this issue have been studied in
the literature [7, 9].
A special case of concept-evolution is recurring class where a class
reemerges after its long disappearances from the stream. For exam-
ple, a popular topic may appear in a social network at a particular
time of the year (i.e. festivals or elections). This result in a change
of topics in the discussion on the social network over the time pe-
riod and then when the event ends the topic disappears again. A re-
curring class creates several discrepancies if not properly handled.
If it is not properly identified, then it is erroneously considered as a
novel class or an existing one. As a result, a significant amount of
human resources is wasted to detect its reappearance. Some studies
regarding the problem of recurring class are present in [1, 8].
The classification model for data stream can be constructed by en-
semble of classifiers. In an ensemble approach, multiple base clas-
sifiers learn the decision boundary on the learning patterns and their
decisions on test example ares fused to reach the final verdict [12].
The ensemble approach is more popular among the research com-
munity because of their higher accuracy, efficiency and flexibil-
ity [7].
In this paper, we propose a new technique to generate ensemble
of classifiers to detect novel and recurring class in the data stream.
For each class C in the stream we construct an ensemble of sub-
classifiers of size L, where each ensemble of classifiers is com-
posed of K components. Initially, all the sub-classifiers are trained
from the initial data chunk. We have observed the phenomenon
that, if the class boundary between two classes is very close, then
it is possible to get a false prediction if the instances fall closely to
boundary region. In our approach, we have employed several strate-
gies to mitigate this problem. Moreover, we have also used bound-
ary augmentation to address the issue of noise. In addition, we have
also used the falsely predicted instances to update our model. Our
proposed method has outperformed the state-of-the-art techniques
in the literature.
The rest of the paper is organized as follows. In Section 2, we dis-
cuss the previous works regarding data stream classification in the
literature. We present our approach in Section 3. We discuss the
experimental results in Section 4. We conclude in Section 5.
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2. PREVIOUS WORKS
Several studies are present in the literature on data stream classi-
fication [1, 3–5, 8, 13–17]. It has been observed that, existing ap-
proaches can be divided into two categories. First one is single
model approach where one classification model is used and period-
ically updated for new data. On the other hand, batch-incremental
method constructs each model using batch learning. When older
model can no longer give satisfactory results, it is replaced by
newer models [6, 14, 16]. The advantage of ensemble model is
that, updating the classification model is much simpler in this case.
However, these techniques generally do not include novel or recur-
ring class detection.
In [10], authors have proposed an ensemble of classification model
to identify novel class in the stream. Initially a decision boundary
is built during training. Any instances outside the decision bound-
ary are labeled as outliers. The outliers are examined to see that,
whether there is enough cohesion among the outliers and separa-
tion from the training data. If enough cohesion and separation is
found then the instances is declared as novel class. In [9], authors
have proposed an adaptive slack space to mitigate false alarm rate.
Moreover, to distinguish between concept-evolution and drift Gini
Coefficient is used. However, these works does not handle recurring
classes.
An approach to identify recurring class is presented in [8]. Here,
in addition to primary ensemble model, an auxiliary ensemble of
classifiers is present. The auxiliary ensemble model is responsible
for storing all the classes even after they disappear from the data
stream. When an instance is detected as outlier in the primary en-
semble, but falls within the decision boundary of the auxiliary en-
semble, the instances is identified as recurrent class. Any test data
outside the decision boundary of both ensembles are analyzed for
novel class.
The approaches described in [8, 10] are considered as chunk-based
method. A class-based ensemble approach is presented in [1]. Here
an ensemble model is constructed for each class C of the data
stream. Each ensemble has K micro-classifiers. Initially, micro-
classifiers are trained from the data chunk. When a latest labeled
chunk of data arrives, a separate micro-classifier is trained for each
class. Then the newly trained micro-classifier replaces the one with
highest prediction error of the respective class. An instances falls
outside the decision boundary of all the micro-classifiers of all the
classes is considered as an outlier and saved in a buffer. The buffer
is checked periodically to detect novel class. Authors of [1] have
shown experimentally and empirically that, class-based approach
is better than the chunk-based technique.
In this paper, we propose a more sophisticated approach to con-
struct a class-based ensemble of classifiers. We have also present a
better way to update and maintain the ensemble model. Moreover,
we propose two types of outliers to update the classifiers and novel
class detection and also take the wrongly predicted data into ac-
count to modify the classifiers. Experiments show the effectiveness
of our methods compared to other techniques.

3. OUR APPROACH
Here, we discuss the fundamental concept of data stream classi-
fication. Then we describe our approach for stream classification
subsequently.

3.1 Preliminaries
Each data in the stream arrives in the following format:

D1 =< x1, .....xS >,

D2 =< xS+1, .....x2S >,

...........

DΓ =< x(Γ−1)S+1, .....xΓS >

where xi is the ith instance in the stream and S is the size of the
stream. Di is the ith data chunk and DΓ is the latest data chunk.
The problem is to predict the class of each data point. Let li and
l̂i be the actual and predicted label of instance xi. If li = l̂i then
the prediction is correct otherwise it is incorrect. The goal is to
minimize the prediction error.
Stream classification can be used in various applications such as
labeling message in social network or identify intrusion in the net-
work traffic. For example, in credit card fraud detection system,
each transaction can be considered as an instance or data point and
can be predicted either as authentic or fraud by any classification
technique. If the transaction is predicted as fraud, then immedi-
ate action can be taken to withhold the transaction. Sometimes, the
predicted decision can be wrong (authentic transaction predicted as
fraud or vice versa). This can be verified from the cardholder later.
The feedback can be considered as “labeling” the instance and used
to refine the classification model.
Another similar example can be drawn from network traffic where
each action in the network can be considered as normal or intru-
sion. If an action is considered as an intrusion then the connection
from the server can be switched off until further verification. If the
action is verified later, then the connection may be reopened. This
verification is the “labeling” of the data by human expert.
The major task in the data stream classification is to keep the clas-
sification model up-to-date by modifying it periodically with the
most recent concept. The overview of our proposed approach is
shown in Figure 1. The major parts of the algorithm will be de-
scribed step-by-step.

3.2 Ensemble Construction and Training
In this section, we present the approach for generating the ensem-
ble model. We will refer our model as Recurring and Novel Class
Detector Ensemble (RNCDE).
Initially, the data chunk is partitioned into C disjoint groups
(G1,G2,...,GC) according to the class labels, where C is number of
classes in the chunk. Therefore, each group contains the instances
of one class only. Then an ensemble of size L is constructed for
each class i using Gi. Each ensemble Eil , i ∈ C, l ∈ L is com-
posed of a sub-classifier Sil . Each sub-classifier Sil is trained on
the instance of class i (Gi). We apply K-means clustering to gen-
erate K clusters on the instances of each class i. For each cluster
Hilj of ensemble l of class i, where j ∈ K we keep a summary
of the cluster [9] i.e. µ, the centroid, r, the cluster radius (distance
between centroid and the farthest data point of the cluster) and η,
the number of points belonging to the cluster. This way we do not
need every data point of the cluster. Therefore, each sub-classifier
Sil is the union of all the clusters built from the instances of class
i (Sil =

⋃K
j=1 Hilj ). This process for generating sub-classifiers Sil

is repeated L times to construct the ensemble model Ei for class i
(Ei =

⋃L
l=1 Sil). Finally, the overall model is the union of all the
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Fig. 1. Overall Aproach

ensemble built for each class i (E =
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i=1 Ei). For visual purpose,

the partial structure of the ensemble model is shown in hierarchical
form in Figure 2. It should be noted that, each ensemble for class i
has only one sub-classifier, so the term Eil , lth ensemble model for
class i and the lth sub-classifier for class i, Sil can be used inter-
changeably.
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Fig. 2. Partial Structure of the Ensemble Model

Note that, each sub-classifier Sil of an ensemble Ei is trained on
the same data Gi. We vary the seed parameters (γ1, γ2, ...γL) of
K-means clustering to diversify the sub-classifier. We have shown
our method using a hypothetical example in Figure 3. In Figure
3(a), the instances of the same class are shown. The K-means clus-
tering is applied to construct sub-classifier 1 using seed parameter
γ1 (Figure 3(b)), where K = 3. Then again sub-classifier 2 is con-
structed by K-means clustering initialized by the seed parameter γ2

shown in Figure 3(c). We can see that, identical instances belong to
different clusters at each sub-classifier. This process is repeated L
times to construct L alternating sub-classifiers Si1....SiL for class i.
In other words, each ensemble (sub-classifier) is a similar depiction
of another where identical instances belong to different clusters.

The superposition of both sub-classifiers is shown in Figure 3(d).
Diversity is ensured by constructing the ensemble this way.
Each sub-classifier is the union of K clusters. The union of the clus-
ters of sub-classifiers represents the decision boundary of of the
corresponding class. The decision boundary of an ensemble model
Ei for class i is the combination of all the sub-classifiers of the of
class i. An instance is outside a cluster if the distance from the cen-
troid of the cluster to that instance is greater than the radius of that
cluster. An instance is outside a class if it is outside of all the clus-
ters of all the sub-classifiers. The advantages of K-means clustering
is that, its lower time complexity will allow to built classifiers in re-
duced time which is a critical requirements for data stream mining.
Another benefit is that, after construction of the clusters, it is easy
to modify them compared to other types of classifiers.

3.3 Classification
Here we describe our classification procedure and outlier detec-
tion. Each data point in the most recently arrived chunk is first
checked for whether it is an outlier. In our approach, we have
maintained two types of outlier i.e. class-outlier (C-outlier) and
universal-outlier (U-outlier). If any instance is outside the decision-
boundary of all the sub-classifiers of all the ensembles Ei, then it
considered as a U-outlier. If a data point is a U-outlier, then it is
saved in buffer to analyze it further. If an instance xi is not a U-
outlier then, it is inside the decision boundary of any class. It is
possible that, xi may be inside of more than one class due to noise
and the curse of dimensionality. Let Exi be the set of such classes.
We decide which class xi belongs to by computing a coefficient
(m-value). We called this coefficient membership coefficient. The
m-value (τ ilj ) for cluster Hilj , where i ∈ Exi , l ∈ L and j ∈ K can
be computed using the equation below,

τ ilj =

 ηilj
max

m∈Exi
,n∈L,o∈K

ηmno

 /

 dilj
max

m∈Exi
,n∈L,o∈K

dmno

β

, (1)

where dilj is the Euclidean distance between the instance xi and the
centroid of cluster Hilj where ηilj is the size of the cluster. Here β
is the relative importance of the inverse of distance over the size
of the classifier. We refer this constant as ξ-coefficient. The max
size and max distance is used for normalization. After computing
m-value for each cluster of all the sub-classifiers, the class label for
instance xi is computed using the equation below,

c = arg max
i∈Exi

,l∈L,j∈K
τ ilj (2)

The reason behind introducing the cluster size in the classification
process is depicted in Figure 4. Here a hypothetical scenario is
shown where two different clusters of different classes are present.
Boundary of one of the clusters (cluster 1) is shown in continuous
line (Class 1) and the other (cluster 2) is in dashed line (Class 2).
We have also shown the data points of the clusters (i.e. dots and
crosses). Now consider an instance shown by “O” in the figure. It
is inside the boundary of both class. If we only consider only the
Euclidean distance then it belongs to Class 2. However, from the
figure it is evident that, it is more prone to the centroid of cluster
1 than cluster 2. Since size of cluster for Class 1 is larger, the de-
cision boundary of cluster 1 is more expanded. Considering only
the nearest neighbor to label the instance may result in erroneous
prediction. However, if we make the assumption that, all the data
points of a cluster are uniformly distributed, then the number of
points in the overlapped region (common region between two clus-
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(a) Instance in feature space (b) Sub-classifier 1 constructed using seed parameter γ1

(c) Sub-classifier 2 constructed using seed parameter γ2 (d) Sub-classifier 1 and 2 are superimposed depicting the instances be-
long alternate clusters

Fig. 3. A hypothetical example of layer for 2-dimensional search space

ters) will be greater for cluster 1 than cluster 2. In this case, the test
instance will be labeled as Class 1. Therefore, a more sophisticated
measurement can be possible if we take account the size of the clus-
ter in the classification process. That is why we propose Equation 1
and 2 for classification. The overall process is shown in Algorithm
1.
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Fig. 4. A Hypothetical example of decision boundary of 2 clusters of two
different classes in the Euclidean space

Algorithm 1 Classify
Input: xi, the latest test instance

buffer to store U-outlier
Ensemble model for each class C (E1,E2, ...EC)

Output: l̂i, the predicted class label by the ensemble model
1: if x is a U-outlier then
2: buffer ← xi
3: else
4: Exi ← {Ei— xi is inside the decision boundary of Ei}
5: for all É ∈ Exi do
6: for all sub-classifier SÉn ∈ É do
7: for all cluster HÉno

∈ SÉn do
8: compute τmno

by Equation 1
9: end for

10: end for
11: end for
12: Calculate the class label from Equation 2 for the instance xi
13: end if
14: if size of the buffer exceeds the threshold then
15: detect novel class
16: end if

3.4 Ensemble Update
We update the ensemble in two ways. One is single-update and the
other is batch-update. First we discuss the single update.
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When the labels for data points of a chunk are available (labeled by
human expert), the incorrectly predicted data (W) by the ensemble
model is identified. Then the wrongly predicted data are separated
according to their correct label. As a result, the all the inaccurately
predicted data are partitioned into disjoint sets (W1,W2, ....WC).
Each instance ofWi is then analyzed. First the nearest cluster Himn

is identified for each instance xn ∈ Wi where i is the true label for
xn. Suppose, the distance between xn and the centroid of Himn

is
dimn

. Now if

dimn
·
(
ηimn

+ 1
)

ηimn

≥ rimn
(3)

then the radius and the size of the cluster Him is updated using the
following equations:

rimn
=
rimn

·
(
ηimn

+ 1
)

ηimn

, (4)

ηimn
= ηimn

+ 1 (5)

Recall that, rilj represents the radius of jth cluster of lth sub-
classifier belong to class i. The reason behind this radius augmenta-
tion is, due to noise some data points may fall outside the decision
boundary of the actual class. In addition, concept-drift may respon-
sible for this kind of phenomena. To avoid the these errors on the
future prediction this mechanism is implemented.
After single-update method the instances satisfied the Equation 3
are removed from each setWi. Then the remaining data inWi are
clustered using K-means clustering. The number of clusters K for
K-means clustering is computed using the following equation:

K =
|DΓ|

ChunkSize
·K (6)

Here ChunkSize is a constant which can be initialized manually.
These newly formed clusters can be called Ci-outlier clusters where
i ∈ C. The union of Ci-outlier is called C-outlier. After the for-
mation of Ci-outlier clusters, the Euclidean distance from each Ci-
outlier clusters to each Hilj is computed. Now based on the dis-
tance among the clusters we make two types of modifications. One
is cluster merge and the other is cluster replacement.
If the distance between a Ci-outlier clusters and one of the clusters
(Hilj ) in the ensemble is less than the radius of Hilj (rilj ), then the
two clusters are merged. Recall that, the data points of Ci-outlier
are actually the wrongly predicted instances clustered according to
the actual class label i. So it is normal that, any cluster from Ci-
outlier will tend to very remain very close to the Hilj in the ensem-
ble model. A possible scenario depicting the condition for merging
the clusters is shown in Figure 5. Here the distance between Ci-
oulier cluster and the centroid of Hilj is less than the radius of Hilj
(rilj ).
Now to merge the cluster, we have to calculate the new centroid, the
cluster size and the radius. To calculate the position of new centroid
we have used the the equation below:

µilj =
ηilj · µ

i
lj

+ ηCi−outlier · µCi−outlier

ηilj + µCi−outlier

, (7)

where ηC−outlier and µC−outlier are the size and centroid of the Ci-
outlier. Since two clusters are merged, size is addition of the size of
two clusters. The radius is computed by combining the radii of two
clusters with the distance between the centroids. Here it should be

H
i

j

Ci -Outlier

Fig. 5. A hypothetical scenario for cluster merging

noted that, some information is lost when the clusters are formed.
This is performed to save space. As a result, radius calculation is
not so accurate in this case. The position of the farthest data points
for each cluster can be stored additionally for more accurate calcu-
lation of the radius of a cluster while merging.
After the merging of clusters the remaining Ci-outlier clusters are
replaced with the clusters from the sub-classifier. The replacement
policy is as follows. We keep a count of error εilj for each cluster
Hilj for each ensemble model. Recall that, classification is com-
puted by the m-value of the cluster. If prediction is wrong then
count of error is increased by 1 for the cluster with max τ ilj , be-
cause it falsely identified the class as i. Now we replace the re-
maining un-merged clusters with clusters with highest εilj values
accordingly. This way, the sub-classier can get rid of the obsolete
clusters and the issue of concept-drift is resolved. Since we replace
the older clusters with the cluster constructed with the most recent
data points, the ensemble model remains up-to-date with the latest
concept.

3.5 Novel Class Detection
We have extended and generalized the idea of novel class detection
in [1]. The primary assumption behind the novel class detection in
[1] was, data points of the same class should be closer to each other
(cohesion) and farther apart from the other classes (separation).
However, first assumption (i.e. cohesion) may prove different in
some complex cases. It may be possible that, data points of the
same class may be clustered together in various groups where these
groups may be scattered through the feature space.
If the data points of a novel class emerge in the stream, we can as-
sume that, the instances belonging to novel class will be far from
the decision boundary of existing classes. Since data points of U-
outlier are outside the decision boundary of all the existing classes,
these data are analyzed for novel classes. Recall that, the U-outliers
are stored in a buffer, if the size of the buffer reaches a thresh-
old then they are analyzed for novel class. We have used the met-
ric called q-NSC used in [1] for detecting novel class instance.
We have modified the definition of and called it q-mNSC. In this
method, another metric called q,c-neighborhood is used. We mod-
ify the definition of q,c-neighborhood also, which we called q,h-
neighborhood. We define it as follows:

q,h-neighborhood: The q,h-neighborhood (q,h(x) in short) of an
U-outlier x is the set of q clusters that are nearest to x. (q-nearest
cluster h neighbor of instance x).

Here q is a user defined parameter which can be initialized at the
beginning. In summary, we compute the nearest q number of clus-
ters from instance x regardless of the class the clusters belong to.
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Now suppose, D̄hout,q(x) be the mean distance of a U-outlier in-
stance x to its q nearest U-outlier neighbors. Moreover, let D̄h,q(x)
be the mean distance from x to its q, h(x) and D̄hmin,q(x) be the
minimum value among all D̄h,q(x). Here, h is the set of clusters
from the existing classes. Then the q-mNSC of x can be computed
according our definition:

q−mNSC(x) =
D̄hmin,q(x)− D̄hout,q(x)

max(D̄hmin,q(x), D̄hout,q(x))
(8)

The value of q-mNSC(x) ranges between -1 to +1. When the value
is positive x is closer to U-outlier instances and away from the ex-
isting classes resulting more cohesion and vice versa.
Now we explain how we can utilize the metric to detect novel class.
First, we apply K-means clustering on U-outliers to partition the
data to K0 number of clusters, where K0 = K · |buffer|

ChunkSize
. The

reason for applying clustering is to reduce time complexity(reduces
fromO(n2) toO(K2

0), where n is the total number of data points in
U-outlier). For each U-cluster we compute q nearest cluster hn for
all the sub-classifiers of all the class. After that, for each U-cluster
we compute q-nearest neighbor cluster of that U-cluster. Then we
apply the Equation 8 to compute the q-mNSC for each U-cluster.
This way we get a q-mNSC value for each U-cluster in the ensem-
ble. From the value of q-mNSC, we can decide whether a novel
class arrives in the stream.

4. EXPERIMENTAL FINDINGS
We present our experimental results in this section. First we dis-
cuss about the data set and then the parameter settings. Later, we
describe the results and our remarks.

4.1 Data Sets
4.1.0.1 Synthetic Data. We apply the procedure described in
[7] to generate synthetic datasets with concept evolution and drift.
We generate three types of datasets as described in [7]. Each dataset
contain 2.5 × 105 instances with 40 real value attribute. We refer
each set as SynNCX having X classes (i.e. SynNC10 where total
10 classes are present).

4.1.0.2 Real Data. We have also used the data from UCI ma-
chine learning repository and KDD CUP 1999 intrusion detection
challenge. We have taken the dataset Forest from UCI database and
the 10 percent version of KDD CUP. First dataset contains 581000
instances with 7 classes and 54 numeric attributes while the second
datasets have 490000 instances having 23 classes and 34 numeric
attributes. We randomly permutate the instances and construct 10
sequences and report the average results. We have made adjust-
ments to have novel instances in the sequences.

4.2 Comparison with other methods
We have compared our approach (RNCDE) with class-based ap-
proach (CL) [1], ECSMiner (EM) [7], the clustered-based method
presented in [13] (OW) and chunk-based approach (SC) described
in [8]. Here CL, EM, OW have novel class detection mechanism
while EM does not support recurring class detection.

4.3 Parameter Settings
We have set the size of the ensemble L = 3, number of clusters
per sub-classifier K = 20. The minimum number of instances to
detect novel class q = 20. Moreover, ξ is varied between 3 to 8
and size of the buffer is set to the 20% of the size of the chunk.

These parameters are set either according to the parameters of the
previous works or by running preliminary experiments.

4.4 Evaluation
We have used the following evaluation criteria for performance
measurements. Mnew = % of novel class instances misclassified as
existing class, Fnew = % of existing class instances misclassified as
novel class, OTH = % of existing class instances misclassified as
existing class and ERR = average misclassfication error (average
of three types of error).
Initially, we construct the ensemble model from first three data
chunks. Then we begin our performance evaluation from the chunk
four. Table 1 summarizes the results from all the methods. We have
taken the summary results on other methods from [1] and compared
with our approach. OTH can be calculated from the other errors, so
we do not show it. From the table, we can see that, OW has the
highest error rate, because it can not detect majority of the novel
class instances. Therefore, the Fnew rate is also high in case of
OW.
EM can identify novel class but it can not detect recurring class.
As a result, recurring classes are detected as novel class and it has
a high Fnew rate also. SC maintains an auxiliary ensemble model
which contains classifiers for all the class including recurring class.
Therefore, it has comparatively lower Fnew rate than EM. CL uses
class- based ensemble to detect novel and recurring class and it
has a lower error rate than the approaches above. Our proposed
method RNCDE also have shown comparatively lower rate than
other method. In KDD dataset, the ERR is slightly higher than CL,
but in other case RNCDE shows better performance than other ap-
proaches.
In Figure 6, ERR rates for both Synthetic and Real Data are shown.
In each case X axis represents number of data points and Y axis
represents the ERR. For example from the Figure 6(a) and 6(b), we
can see that, ERR rates after 300000 data points are 20% for forest,
10% in KDD. For synthetic data ERR remains almost constant. In
case of KDD, we can see at the beginning ERR fluctuates, but the
ERR decreases afterwards. This occurs because the at first the class
boundary among classes are not accurately drawn so misclassifica-
tion among existing classes (OTH) raises ERR. When the concept
is learned comprehensively then ERR decreases. On the other hand,
in forest ERR rises gradually. This is becauseMnew increases con-
tinuously when more data points arrive. (Mnew is 4.4 in forest, see
Table 1).

4.5 Parameter sensitiveness
We have also changed the value of ξ-coefficient. The effect of ξ on
ERR for forest and KDD are shown in Figure 7. From the figure
we can see that, both higher and lower value of ξ have a negative
impact on ERR.
We have varied the number of clusters per sub-classifier K. The
K is varied between 10 to 50. The impact of varying K for syn-
thetic dataset is shown in Figure 8. We can see from the figure that,
ERR decreases, if the number of cluster K increases. The reason
behind this is when the number of clusters increases more accu-
rate decision boundary can be drawn among the classes. When the
value of K is increased, more clusters will be formed on the same
instances. Therefore, the size of the clusters will be comparatively
lower and each cluster will learn the small portion of the total con-
cept. If the boundary between two classes is noisy then more and
smaller clusters will perform better than fewer and larger clusters.
In other words, the boundary of the class will be more accurate
constructed if an increased number clusters is formed. That is why
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Table 1. Summary results on all the datasets
Performance

Criteria
Methods SynNC10 SynNC20 SynNC40 Forest KDD

Fnew

OW 0.9 1.0 1.4 0.0 0.0
EM 24.0 23.0 20.9 5.8 16.4
SC 14.6 13.6 11.8 3.1 12.6
CL 0.01 0.05 0.13 2.3 5.0

RNCDE 0.01 0.04 0.03 5.8 4.8

Mnew

OW 3.3 5.0 7.1 89.5 100
EM 0.0 0.0 0.0 34.5 63.0
SC 0.0 0.0 0.0 30.1 61.4
CL 0.0 0.0 0.0 17.5 59.5

RNCDE 0.0 0.0 0.0 14.4 60.1

ERR

OW 7.5 7.7 8.0 30.3 37.6
EM 8.2 7.9 7.2 13.7 28
SC 5.1 4.8 4.3 11.5 26.7
CL 0.01 0.02 0.05 7.3 26.0

RNCDE 0.019 0.02 0.02 10.57 24.76

ERR deceases if K is increased. However, it should be noted that,
if the value of K is high, then it would result in high space re-
quirements and increased time complexity, which has a detrimental
effect on the performance of the model. So the value of K should
be adjusted to balance between the performance and accuracy.

5. CONCLUSION
In this paper, we have proposed a new ensemble model for detect-
ing novel and recurring class in continuous data stream (RNCDE)
which can be considered as a class-based approach as opposed to
the chunk-based approach. Our algorithm have shown good perfor-
mance against state-of-the-art methods in the literature. We have
built our initial ensemble model for each class and updated and
modified it periodically to learn the most recent concept. Each en-
semble model has a sub-classifier which is composed of a number
of clusters. The union of the cluster constitutes the concept of class.
Our method has been proven very effective in data stream mining.
Inspired by the promising results, we will concentrate on more effi-
cient techniques for data stream classification. We are also planning
to experiment our method on other real life data.
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