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ABSTRACT 

This paper propose a semi supervised clustering model  TPC-

IRBM(Two phase clustering-Integrated rule based model) for 

clustering large data set such as gene expression data. TPC-

IRBM works in two phases to cluster the gene expression data 

set. The proposed model is based on rule based models 

CRT,C5,CHAID and QUEST. In the first phase of the model 

30 % data(which may vary) is extracted to prepare training, 

testing and validation data (TTV data)using suitable heuristic 

or neural network based clustering techniques. The output of 

first phase is used as build the models and generate the rule 

base fitting to TTV data  using aforesaid models.   The 

proposed model  is then constructed by selecting and 

integrating the quality rules of various models using 

qualifying criteria corresponding to every cluster.The number 

of quality rules in proposed model is much more compared to 

that of CRT,C5,CHAID and QUEST.The performance in 

terms of accuracy is better compared to the models. Although 

in some cases Neural Network based models performance is 

slightly better but a very high cost of complexity for very 

large data set. 
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1. INTRODUCTION 
Clustering is very important technique in many data analysis 

applications. One of the most important applications is in 

bioinformatics. In bioinformatics clustering is mostly used to 

group genes whose expression patterns are available 

corresponding to various experimental(samples) or at various 

time points(time series). The most challenging task in 

clustering is to find actual number of clusters corresponding 

to given patterns of a dataset. Another is similarity measure; 

third one is how data is arranged. In bioinformatics clustering 

is very much useful because the genes that are co-expressed 

(belongs to same clusters) tend to have similar gene functions, 

premotor regulatory sequences and protein complexes. 

Clustering is the far most used method in gene expression 

analysis.  

In some exceptional cases genes with nearly similar 

expressions may have different control strategies. After 

clustering a gene expression dataset into appropriate number 

of clusters we need not to evaluate individual gene functions, 

premotor sequences and protein complexes. Instead we can 

evaluate functions, premotor sequences and protein 

complexes of very few genes of various clusters and so genes 

belonging to same cluster will have mostly same functions, 

premotor sequences and protein complexes.        The main 

types of microarray data analysis include gene selection, 

clustering, and classification[19]. Piatetsky-Shapiro and 

Tamayo present one great challenge that data mining 

practitioners have to deal with. Microarray datasets -in 

contrast with other application domains- contain a small 

number of records (less than a hundred), while the number of 

fields (genes), is typically in thousands[20]. 

Large amount of gene expression data have been generated, 

but there is great requirement of developing the methods to 

analyze and explore the genes and related information 

[9].Clustering is much useful technique for the analysis of 

gene expression data. Many clustering algorithms are there 

which are being used to analyze gene expression data, 

including heuristic based like hierarchal[10],k-means[11], self 

organizing maps[12], graph theoretic approaches[13][14] and 

support vector machine[15] , Model based 

clustering[16],Bayesian model based clustering([17]. 

Many clustering techniques have been used to cluster gene 

expression dataset. But no one is reported to be widely 

efficient and acceptable in all cases due to various reasons. 

Because gene expression datasets are very large and expressed 

over very large samples or time series. It is more challenging 

to cluster gene expression datasets. So it is very difficult and 

time consuming to analyze genes corresponding to all 

experiments and time series expressions. 

As not all the sample experiments and time expressions play 

role to corresponding cluster identification. We need such 

clustering techniques which can explore the expression 

regarding the importance of experiments (or time series). So 

that gene data sets can be clustered using only important 

feature expressions. Clustering in this way reduces overall 

effort and cost to cluster the genes for predictions of their 

functionalities. 

Here we have used two phase clustering (TPC) technique to 

cluster gene expression data set. We have assumed that data 

points have been generated from same or similar data sources. 

In first phase we have implemented techniques to predict 

correct number of clusters and generate training, testing, and 

validation data sets from data set which have to be clustered 

using two-step, kohonens, k-means algorithms. In second 

phase we have proposed to train various decisions tree (Rule-

based) models for generating rule sets and then use the 

optimal rule sets generated from these models combining 

them all to cluster the rest of the data sets  or data sets 

generated from same source(or distribution). 
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Rest of the paper have been organized as follows: 

Section2: data sets, tools (implementation) 

Section3: methodology 

Section4: cluster assessment 

Section 5: results and discussions 

Section6: conclusions: summary, conclusion, future work, 

acknowledgement. 

In our method we have used heuristic based algorithms(two-

step, kohonens, k-means) for initial phase and on smaller data 

set. We have used the output of first phase to generate rule 

base which will be used to cluster rest of the data set 

originating from same or similar source. 

As we have used rule based clustering technique for clustering 

the gene expression data sets. Rule based clustering 

techniques are easy to interpret and efficient. Once after 

second phase clustering model is generated it is simple and 

very fast to cluster the gene expression data sets with high 

efficiency and accuracy. 

2.  DATA SET & IMPLEMENTATION 
we have used subset of  gene expression data of  Rattus 

norvegicus (Rat) of hippocampal region for CA1 region of 

Gene expression profiling in differential cognitive outcomes 

in aging: CA1 from GEO database with geo_accession id 

GSE14723[18]. 

The subset of CA1 expression data we used contains 3491 

instances over 23 RNA samples from CA1 region of the 

hippocampi of young animals, aged animals with unimpaired 

spatial learning, and aged animals with impaired spatial 

learning. In the dataset there are 6 samples of aged (24-26 

months old) male   unimpaired (AU), 8 samples of aged (24-

26 months old) male   impaired (AI) and 9 samples of young 

(6 months old) male. Features, Sample GEO id and Feature 

names are shown in Table 1. 

Table 1. Feature Variables of dataset. 

Feature 

Variable 

name 

Sample GEO 

id 
Sample_title/ Feature Name 

SX1 GSM367827 Aged Impaired CA1, biological 

rep1 SX2 GSM367828 Aged Impaired CA1, biological 

rep2 SX3 GSM367829 Aged Impaired CA1, biological 

rep3  SX4 GSM367830 Aged Impaired CA1, biological 

rep4 SX5 GSM367831 Aged Impaired CA1, biological 

rep5 SX6 GSM367832 Aged Impaired CA1, biological 

rep6 SX7 GSM367833 Aged Impaired CA1, biological 

rep7 SX8 GSM367834 Aged Impaired CA1, biological 

rep8 SX9 GSM367835 Aged Unimpaired CA1, 

biological rep1 SX10 GSM367836 Aged Unimpaired CA1, 

biological rep2 SX11 GSM367838 Aged Unimpaired CA1, 

biological rep4 SX12 GSM367839 Aged Unimpaired CA1, 

biological rep5 SX13 GSM367840 Young CA1, biological rep9 

SX14 GSM367841 Aged Unimpaired CA1, 

biological rep7 SX15 GSM367842 Aged Unimpaired CA1, 

biological rep8 SX16 GSM367843 Young CA1, biological rep1 

SX17 GSM367844 Young CA1, biological rep2 

SX18 GSM367845 Young CA1, biological rep3 

SX19 GSM367846 Young CA1, biological rep4 

SX20 GSM367847 Young CA1, biological rep5 

SX21 GSM367848 Young CA1, biological rep6 

SX22 GSM367849 Young CA1, biological rep7 

SX23 GSM367850 Young CA1, biological rep8 

 

We implemented all the methods 

(CRT,C5,CHAID,QUEST)using SPSS Clementine 11.1 

computing environment. Microsoft Excel have been used for 

all data storage and manipulation. C&RT(CRT) stands for 

Classification and Regression Trees, originally described in 

the book by the same name [1]. C5 (improvement of C4.5) is 

an algorithm used to generate a decision tree developed by 

Ross Quinlan[3][4][2].CHAID stands for Chi-squared 

Automatic Interaction Detector. It is a highly efficient 

statistical technique for segmentation, or tree growing, 

developed by Gordon V. Kass[5].QUEST stands for Quick, 

Unbiased, Efficient Statistical Tree. It is a relatively new 

binary tree-growing algorithm [6].  

3. METHODOLOGY  
Two phase Clustering described in this research,  works in 

two phases. In first phase actual number of clusters is 

predicted and then using any heuristic based algorithm which 

is efficient enough(we have used K-means) we can cluster the 

data set for training, testing,and validation. In second phase 

using training testing and validation data set we generate the 

models using CART,C5,Chaid & Quest techniques.After the 

models have been generated rule sets are generated 

corresponding to all models for clustering.Then we combine 

all the rule sets to generate a rule base. In rule base we select 

only those rules whose confidence factor are very high( 

greater than rcf). Then finally the clustering is performed 

using  this rule based model. The rule based clustering is more 

efficient and of high quality compared to any of heuristic 

algorithm, decision tree or other rule based classifiers. The 

detailed description of the TPC-IRBM is as follows: 

3.1 TPC Phase1:  (See Figure1) 
 Step1: data preparation:  30% data have been selected from 

the original data set for predicting the actual no of cluster as 

well as preparing the training, testing and validation data set 

for phase2. 

Step2:  if actual number of clusters are known then this step is 

skipped else we have used two-step clustering(hierarchal) 

technique to find lower bound of number of 

clusters.Kohonens self-organizing map have been used to find 

upper bound of cluster number. Then we have used K-

means(optionally any other efficient clustering method can be 

used) clustering technique for clustering the TTV data set 

from k=  Clb  to  Cub.Here we have used proximity measure, 

mean , standard deviation to predict actual number of 

clusters.as proximity measure of any pairs of clusters gets less 

than standard deviation, we stop and that is the predicted 

actual number of clusters. 

On our data set applying this we got actual number of clusters 

predicted to be Kopt=6. Depending upon cases any one can 

analyze the outcome with other measures and then predict the 

actual number of clusters. 

Step3: After predicting actual number of clusters i.e. Kopt, 

cluster the TTV data set using K-means for Kopt=6(optionally 

any other suitable clustering technique can be used). After 

clustering the dataset it is partitioned in training, testing and 

validation data set(T,T,V) to be used in Phase2. 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM367827
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM367828
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM367829
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM367830
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM367831
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM367832
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM367833
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM367834
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM367835
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM367836
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM367838
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM367839
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM367840
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM367841
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM367842
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM367843
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM367844
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM367845
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM367846
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM367847
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM367848
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM367849
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM367850
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                                         Fig1.TPC-IRBM Phase1 

3.2 TPC Phase2:  In phase 2(See Figure2) use T,T,V, 

data set outcome of phase1 to train, test and validate the the 

CRT,C5,Chaid,Quest  models to generate the rule sets. From 

the rule sets generated from these models find out the 

importance factor of various features of patterns(experiments. 

Set threshold for importance factor that is acceptable to TI. 

Now use only those features(samples or experiments) whose 

Importance factor >= TI.  Now find out those rules whose 

confidence is greater than  RCI(confidence threshold). Now 

combine all the rules whose confidence >= RCI. Generated 

from all models to produce a rule base to be used for 

clustering data set. Now this Rule bsed model will be 

validated with data set from GC1 to GC10. Then we will 

generalize the model for clustering. 

 

                              Fig2.TPC-IRBM Phase2 

Benefits of this approach are- 

Reduced experimentation required 

(i) Improved rule base 

(ii) Data reduction 

(iii) Improved efficiency in terms of speed and 

storage. 

(iv) Although ANN models may give slightly better 

results but at much more cost of speed and 

storage. Experiment (samples) features are 

more to that compared with rule based model 

of TPC. 

4. RESULT & DISCUSSION  

4.1 Phase 1 Result: 
In this section, we show the results of each phase and steps 

involved in TPC.  On TTV dataset  Two Step Clustering and 

Kohonen’s Self Organising Map have been applied which 

gives lower and upper bound of number of clusters and for the 

TTV dataset it comes out to be klb=2 and kub=12.Then in 

next step we applied K-means clustering on TTV dataset for 

k=2 t0 k=12 and stopping criteria is considered to be for 

k=Kopt where proximity between clusters is more than 
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std.dev. . For our TTV dataset stopping criteria is met for K=6 

which is the value of Kopt=6.Cluster proximities for k=2 to 

k=6 are shown in  table2 and std dev. are shown in table3. For 

k=2 to k=6 cluster proximities are more or nearly equal than 

that of std.dev. but for k>6 it is overlapping or less than std. 

dev..So the Kopt=6 is taken as actual number of clusters. 

 

Table 2. Cluster proximities  for k=2 to k=6. 

Value 

of K 

Proximity of clusters 

K=

2 

 C1 C2 

 
C1 0 2.057

067 C2 2.057

067 

0 

K=

3 

 C1 C2 C3 

 

C1 0 1.566

794 

1.036

272 C2 1.566

794 

0 2.602

987 C3 1.036

272 

2.602

987 

0 

K=

4 

 C1 C2 C3 C4 

 

C1 0 2.116

887 

0.840

465 

0.874

732 C2 2.116

887 

0 2.957

285 

1.242

218 C3 0.840

465 

2.957

285 

0 1.715

181 C4 0.874

732 

1.242

218 

1.715

181 

0 

K=

5 

 C1 C2 C3 C4 C5 

 

C1 0 2.336

149 

0.751

298 

0.656

864 

1.472

727 C2 2.336

149 

0 3.087

398 

1.679

351 

0.863

525 C3 0.751

298 

3.087

398 

0 1.408

151 

2.223

998 C4 0.656

864 

1.679

351 

1.408

151 

0 0.815

892 C5 1.472

727 

0.863

525 

2.223

998 

0.815

892 

0 

K=

6 

 C1 C2 C3 C4 C5 C6 
C1 0 2.509

129 

0.688

155 

1.119

396 

1.880

699 

0.539

713 C2 2.509

129 

0 3.197

239 

1.389

823 

0.628

499 

1.969

497 C3 0.688

155 

3.197

239 

0 1.807

529 

2.568

817 

1.227

844 C4 1.119

396 

1.389

823 

1.807

529 

0 0.761

376 

0.579

716 C5 1.880

699 

0.628

499 

2.568

817 

0.761

376 

0 1.341

048 C6 0.539

713 

1.969

497 

1.227

844 

0.579

716 

1.341

048 

0 

 

Table 3.  Std deviation & means:  for k=2 to k=6. 

K-

Means 

Cluster 

No.  

Total 

No. of 

Records 

Mean  Std. Dev 

 k=2  Cluster-1 1952 9.150478 1.728522 

Cluster-2 1539 2.998739 1.201652 

k=3 
Cluster-1 1091 7.367261 1.072087 

Cluster-2 1372 2.681913 0.820043 

Cluster-3 1028 10.46652 1.192174 

k=4 

Cluster-1 1044 8.869348 0.750565 

Cluster-2 1284 2.543652 0.642696 

Cluster-3 522 11.38309 0.97687 

Cluster-4 641 6.254087 0.944 

k=5 

Cluster-1 

  

818 9.414957 0.594913 

Cluster-2 

  

1187 2.425826 0.505261 

Cluster-3 

  

414 11.66196 0.902739 

Cluster-4 

  

696 7.449304 0.658522 

Cluster-5 

  

376 5.007783 0.818739 

k=6 

Cluster-1 

  

649 9.858391 0.528522 

Cluster-2 

  

1107 2.348957 0.426348 

Cluster-3 

  

326 11.91861 0.846696 

Cluster-4 

  

448 6.516087 0.618304 

Cluster-5 

  

312 4.239913 0.668 

Cluster-6 

  

649 8.244739 0.509522 

 

      After the estimation of Kopt=6 K-means algorithm is 

applied on TTV dataset and output cluster tags of instances 

are considered to be the classification tags for building 

predictive models of C%,CART,CHAID and QUEST. The 

output of K-means algorithm is output of phase1 that is 

dataset having 3491 instances tagged with cluster number. 

The number of instances ,mean and std.dev. are shown in 

table3. 

4.2 Phase2 Result: 
 For phase two the TTV dataset is partitioned in three sets i.e. 

training dataset (2384 instances), testing dataset (758 

instances)  and validation dataset(349 instances).  

The training data set is used to build the predictive models of 

C5,CART, CHAID and Quest.  We have taken three metrics 

for  analysis of the models i.e. features selected and their 

importance factor in model buiding, rules generated by the 

models with their confidence factor and predictive accuracy 

for training testing and validation datasets. 

The features selected and their relative importance factor used 

in building each model are different.  C5 model used 17 

features, CART 10 features, CHAID 4 features and Quest 3 

features out of total 23 features in training dataset. The most 

important feature in C5,CART, CHAID and QUEST are 

SX19,SX9,Sx9 and SX12  respectively and the least important 

are SX10,SX10,SX7,S15  respectively. Considering all 

models feature selection and relative importance only 17 

features are selected at most out of which 7 features are 

having very less importance compared to others which can be 

ignored having negligible effect on results but we have taken 

all 17 features. Thus the large amount of data is reduced to 

considerable level which improves the efficiency in terms of 

time and space complexity as in bioinformatics a huge amount 

of data is available to analyze space and time complexity is 

major factor. 

The rules generated by the models on training dataset are 

shown in table4 and their compositions are shown in table 5. 

The rules for each cluster generated by the models are shown 

along with number of instances and confidence factor of the 

rule. Higher confidence factor of the rule indicates lower 

misclassification and vice-versa. Total numbers of rules 

corresponding to all clusters generated by C5 are 32, by 

CART are 16, by CHAID are 11 and by QUEST are 7.Rule 

composition is done by logical OR operator. 

Table4. Rule set generated by models after training 

C5 Rule Set Rule  (R) 

(No. of instances; Confidence 

factor) 

 

 

 

 

 

 

 

 

Rules for Cluster 

1  

 

RC51 

Rule 1 (5; 1.0) RC511 

Rule 2 (9; 1.0) RC512 

Rule 3 (4; 1.0) RC513 

Rule 4 (407; 1.0) RC514 

Rule 5 (5; 1.0) RC515 

Rule 6 (5; 1.0) RC516 

Rules for Cluster 

2  

RC52 

Rule 1 (764; 1.0) RC521 

Rule 2 (8; 1.0) RC522 

Rule 3 (2; 1.0) RC523 

Rules for Cluster 

3 RC53 

Rule 1 (3; 1.0) RC531 

Rule 2 (208; 1.0) RC532 

Rules for Cluster 
Rule 1 (3; 1.0) RC541 

Rule 2 (2; 1.0) RC542 
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RC5 

4 RC54 Rule 3 (279; 1.0) RC543 

Rule 4 (3; 1.0) RC544 

Rule 5 (6; 1.0) RC545 

Rule 6 (8; 1.0) RC546 

Rule 7 (2; 1.0) RC547 

Rules for Cluster 

5 RC55 

Rule 1 (5; 1.0) RC551 

Rule 2 (2; 1.0) RC552 

Rule 3 (213; 1.0) RC553 

Rule 4 (1; 1.0) RC554 

Rule 5 (3; 1.0) RC555 

Rules for Cluster 

6 RC56 

Rule 1 (2; 1.0) RC561 

Rule 2 (1; 1.0) RC562 

Rule 3 (6; 1.0) RC563 

Rule 4 (3; 1.0) RC564 

Rule 5 (5; 1.0) RC565 

Rule 6 (398; 0.997) RC566  

Rule 7 (18; 1.0) RC567 

Rule 8 (1; 1.0) RC568 

Rule 9 (3; 1.0) RC569 

 Default: Cluster  

RC5df 

2 

Default 

   

CRT Rule Set Rule 

(No. of instances; Confidence 

factor) 

 

 

 

 

RCR

T 

Rules for Cluster 

1 

 RCRT1 

Rule 1 (2; 1.0) RCRT11 

Rule 2 (15; 0.6) RCRT12 

Rule 3 (418; 0.995) RCRT13 

Rule 4 (5; 1.0) RCRT14 

Rules for Cluster 

2 RCRT2 

Rule 1 (771; 1.0) RCRT21 

Rule 2 (2; 1.0) RCRT22 

Rules for Cluster 

3 RCRT3 

Rule 1 (4; 0.75) RCRT31 

Rule 2 (208; 1.0) RCRT32 

Rules for Cluster 

4 RCRT4 

Rule 1 (295; 0.976) RCRT41 

Rule 2 (6; 1.0) RCRT42 

Rule 3 (4; 1.0) RCRT43 

Rules for Cluster 

5 RCRT5 

Rule 1 (6; 0.833) RCRT51 

Rule 2 (217; 0.991) RCRT52 

Rules for Cluster 

6 RCRT6 

Rule 1 (9; 0.667) RCRT61 

Rule 2 (414; 1.0) RCRT62 

Rule 3 (8; 0.625) RCRT63 

 Default: Cluster 

2 RCRTdf 

 

   

CHAID Rule Set Rule 

(No. of instances; Confidence 

factor) 

 

 

RCH

AID 

Rules for Cluster 

1 RCHAID1 

Rule 1 (189; 0.746) RCHAID11 

Rule 2 (26; 1.0) RCHAID12 

Rule 3 (238; 1.0) RCHAID13 

Rules for Cluster 

2 RCHAID2 

Rule 1 (715; 1.0) RCHAID21 

Rules for Cluster 

3 RCHAID3 

Rule 1 (238; 0.887) RCHAID31 

Rules for Cluster 

4 RCHAID4 

Rule 1 (239; 0.812) RCHAID41 

Rule 2 (215; 0.507) RCHAID42 

Rules for Cluster 

5 RCHAID5 

Rule 1 (238; 0.752) RCHAID51 

Rules for Cluster 

6 RCHAID6 

Rule 1 (24; 1.0) RCHAID61 

Rule 2 (238; 1.0) RCHAID62 

Rule 3 (24; 0.833) RCHAID63 

 Default: Cluster 

2 RCHAIDdf 

 

   

QUEST Rule Set Rule 

(No. of instances; Confidence 

factor) 

 

 

 

 

RQU

EST 

Rules for Cluster 

1 RQUEST1 

Rule 1 (434; 0.961) RQUEST11 

Rules for Cluster 

2 RQUEST2 

Rule 1 (781; 0.986) RQUEST21 

Rules for Cluster 

3 RQUEST3 

Rule 1 (214; 0.963) RQUEST31  

Rules for Cluster 

4 RQUEST4 

Rule 1 (231; 0.944) RQUEST41  

Rule 2 (81; 0.889) RQUEST42 

Rules for Cluster 

5 RQUEST5 

Rule 1 (206; 0.971) RQUEST51 

Rules for Cluster 

6 RQUEST6 

Rule 1 (437; 0.95) RQUEST61 

 Default: Cluster 

2 RQUESTdf 

 

 

Table 5: Rule Composition For Each Cluster 

Corresponding To The Models Generating The Rules. 

  

Number 

or Rules 

cluster 

wise 

Total 

numbe

r of 

rules 

C5 Rule Composition: 

  

RC511 + RC512 +RC513   + RC514 + RC515 

+ RC516 RC51 

RC521+ RC522 + RC523  RC52 

RC531 + RC532 RC53 

RC541 + RC542 + RC543 + RC544 + RC545 

+ RC546 +RC547   RC54 

RC551 +RC552 + RC553 + RC554 + RC555 

 RC55 

RC561 + RC562 + RC563 + RC564 + RC565 

+ RC566 + RC567 + RC568 + RC569  

RC56 

Cluster1

(6 R) 

Cluster2

(3 R) 

Cluster3

(2 R) 

Cluster4

(7 R) 

Cluster5

(5 R) 

Cluster6

(9 R) 

 

32 

R 

CRT Rule Composition: 

  

RCRT11 + RCRT12 + RCRT13 + RCRT14  

RCRT1 

RCRT21 + RCRT22   RCRT2 

RCRT31 + RCRT32  RCRT3 

RCRT41 + RCRT42 + RCRT43  RCRT4 

RCRT51 + RCRT52  RCRT5 

RCRT61 + RCRT62 + RCRT63  RCRT6 

Cluster1

(4 R) 

Cluster2

(2 R) 

Cluster3

(2 R) 

Cluster4

(3 R) 

Cluster5

(2 R) 

Cluster6

(3 R) 

16 

R 

CHAID Rule Composition: 

  

RCHAID11 + RCHAID12 + RCHAID13  

RCHAID1 

RCHAID21  RCHAID2 

RCHAID31  RCHAID3 

RCHAID41 + RCHAID42  RCHAID4 

Cluster1

(3 R) 

Cluster2

(1 R) 

Cluster3

(1 R) 

Cluster4

(2 R) 

Cluster5

11 

R 
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RCHAID51  RCHAID5 

RCHAID61 + RCHAID62 + RCHAID63  

RCHAID6 

(1 R) 

Cluster6

(3 R) 

QUEST Rule Composition: 

  

RQUEST11  RQUEST1 

RQUEST21  RQUEST2 

RQUEST31  RQUEST3 

RQUEST41 +RQUEST42  RQUEST4 

RQUEST51  RQUEST5 

RQUEST61  RQUEST6 

Cluster1

(1 R) 

Cluster2

(1 R) 

Cluster3

(1 R) 

Cluster4

(2 R) 

Cluster5

(1 R) 

Cluster6

(1 R) 

7 R 

 

Coincidence matrices of all the models shows the accurately 

and misclassified number of instances for all clusters 

corresponding to rules generated by the model. The integrated 

rule based model is built by combining the qualifying rules 

generated by each model for each cluster. Qualifying rules are 

those rules whose misclassification is less than threshold set 

by the user in terms of percentage of total instances in actual 

cluster. Here we have set misclassification threshold to be 10 

%.  The qualifying rules are selected based on rule confidence 

factor and  coincidence matrix applying the qualifying 

criteria. 

According to coincidence matrix of C5 all the rules are 

qualifying rules as misclassification is less than 10% for all 

rules. All rules of CART model are also qualifying rules as 

their misclassification is below 10%. For CHAID model  rules 

generated for cluster 1 , cluster 4 and cluster 5 are 

misclassifying the instances more than acceptable limit hence 

for these clusters only the rules having confidence factor more 

than 0.8 are qualifying rules(threshold is optional for the 

user). For cluster 1 RCHAID12 and RCHAID13 have been 

selected as qualifying and RCHAID 11 as no qualifying rule, 

for cluster 4   RCHAID41 as qualifying rule and RCHAID42 

as no qualifying rule and for cluster 5 there is only one rule 

RCHAID51  which is no qualifying. All rules of Quest model 

are also qualifying as their misclassification is less than 10%. 

Rules for integrated rule based model (TPC-IRBM) for each 

cluster are integration of all qualifying rules generated by 

each predictive model.  The rule composition of integrated 

rule based model is shown in table6. 

 

 

 

 

 

Table 6: Rule composition for each cluster corresponding 

to the TPC-IRBM model 

  

Number 

or Rules 

cluster 

wise 

Total 

number 

of rules 

TPC-IRBM Rule Composition: 

 RC511 + RC512 +RC513   + RC514 + RC515 

+ RC516+ RCRT11 + RCRT12 + RCRT13 + 

RCRT14 + RCHAID12 + RCHAID13 + 

RQUEST11 R1 

RC521+ RC522 + RC523+ RCRT21 + RCRT22  

+ RCHAID21+ RQUEST21 R2 

RC531 + RC532+ RCRT31 + RCRT32 + 

RCHAID31+ RQUEST31  R3 

RC541 + RC542 + RC543 + RC544 + RC545 + 

RC546 +RC547+ RCRT41 + RCRT42 + RCRT43 

+ RCHAID41+ RQUEST41 +RQUEST42   R4 

RC551 +RC552 + RC553 + RC554 + RC555+ 

RCRT51 + RCRT52 + RQUEST51 R5 

RC561 + RC562 + RC563 + RC564 + RC565 + 

RC566 + RC567 + RC568 + RC569 + RCRT61 

+ RCRT62 + RCRT63 + RCHAID61 + RCHAID62 

+ RCHAID63 + RQUEST61 RC56 

Cluster1

(13 R) 

Cluster2

(7 R) 

Cluster3

(6 R) 

Cluster4

(13 R) 

Cluster5

(8 R) 

Cluster6

(16 R) 

 

63 R 

             

The accuracy of each predictive model for training, testing 

and validation dataset is compared. The accuracy of C5 model 

is highest i.e. 99.96% for training dataset, 98.15 % for testing 

dataset  and 98.85 % for validation dataset. For CART it is 

98.95% for training dataset, 96.97% for testing dataset and 

97.42% for validation dataset. For QUEST it is 96.39% for 

training dataset, 97.36 % for testing dataset and 97.13% for 

validation dataset. For CHAID it is lowest and is 87.88% for 

training dataset, 87.34 % for testing dataset and 91.12% for 

validation dataset.   

 Fig3. Comparative view of accuracy of models 

The accuracy of integrated rule based model evaluating on 

test data set and validation dataset is improved compared to 

all models individual results and is 99.7% and 99.8% with an 

upper bound of 100% comparative view of results of models 

are shown in figure3.   
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5. CONCLUSION 
Proposed method in this article is quite useful and easy to 

implement for clustering large biological data with large 

number of features. Rules generated by integrating the 

qualifying rules of various rule based model are high quality 

rules to achieve higher accuracy with much less complexity 

compared to neural network clustering methods,graph based 

and model based clustering methods with very marginal 

improvement in predicted accuracy for semi supervised 

clustering. 

6. FUTURE WORK  
As the proposed model works in two phases.  First phase for 

generating and preparing TTV data for second phase. We 

have used K-means clustering method in first phase and 

Heirarichal ,SOM for estimation of lower and upper number 

of clusters respectively. More robust methodology can be 

applied to improve the quality of prediction and clustering in 

first phase.In second phase the criteria that we have chosen 

for qualifying rules to be used in TPC-IRBMis confidence 

factor(misclassification rate) as threshold. The other criteria 

for rule integration and qualification can be explored in future 

work. 
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