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ABSTRACT 
Hall effects on an unsteady MHD flow of a viscous 

incompressible electrically conducting fluid between two 

rotating disks with non-coincident parallel axes embedded in a 

porous medium have been studied. The governing equations 

have been solved analytically using the Laplace transform 

technique. The effects of rotation parameter, Hall parameter, 

Hartmann number and Darcy number have been considered on 

the flow characteristics and illustrated by graphs. It is observed 

that the velocity components are significantly affected by Hall 

parameter and Darcy number. The velocity components 

increase near the lower disk whereas they decrease near the 

upper disk with an increase in either rotation parameter of disk 

or rotation parameter of axis. Further, the torque experienced by 

the disks increases with an increase in either Hartmann number 

or rotation parameter while it decreases with an increase in 

either Hall parameter or Darcy number. 

Keywords: Hall effects, Hartmann number, rotation 

parameters, rotating disks, non-coincident, porous medium.  

 

1. INTRODUCTION  

The rotating flows over rotating disks or bodies through a 

porous medium have numerous applications in meteorology, 

geophysical and cosmical fluid dynamics. It is also important in 

the areas such as computer storage devices, viscometry and 

rotating machinery, aerospace, extraction process of fluid from 

the porous ground, lubrication of porous bearings, chemical 

engineering as well as biophysics, electrochemistry and 

materials processing. The hydrodynamic flow between two 

disks, rotating about the same axis, has been studied by 

Stewartson [1], Rott and Lewellen [2], Mellor et al.[3], 

Erdogan[4], Ersoy [5] and many others. The hydrodynamic 

flow between two non-coincident rotating disks embedded in a 

porous media has been discussed by Jana et al.[6]. The study of 

a magnetohydrodynamic (MHD) flow between two rotating 

disks plays a dignified representation of rotating flows with the 

axisymmetric solution of the problem. Mohanty [7] has studied 

the hydromagnetic flow between two rotating disks with non-

coincident parallel axes of rotation. Guria et al. [8] have studied 

the unsteady MHD flow between two disks with non-coincident 

parallel axes of rotation. The hydromagnetic flow between two 

porous disks rotating about non-coincident axes has been 

discussed by Guria et al.[9]. 

The Hall effects are important when the magnetic field is high 

or when the collision frequency is low (Sutton and Sherman 

[10]). The current induced in a fluid is usually carried 

predominantly by electrons, which are considerably more 

mobile than ions. The electron drift velocity in most cases leads 

to a second component of the flow velocity, which in turn leads 

to a secondary force and causes anisotropic electrical 

conductivity in the flow. The current component created by this 

anisotropic conductivity is known as the Hall current. The 

dimensionless product e e  , usually called the Hall parameter, 

is an important characteristic number in the MHD design, 

where e  is the electron cyclotron frequency and e  the 

electron collision mean free time. On the microscopic scale, the 

Hall parameter indicates the average angular travel of electrons 

between collisions, while on the macroscopic scale, the value of 

e e   indicates the relative importance of the Hall field and the 

Hall current. If both the electron ( e e  ) and the ion ( i i ) Hall 

parameters are large simultaneously as the case in some weakly 

ionized gases, the conductivity is then reduced due to a 

phenomenon called ion-slip. Though i  is ordinarily larger than 

e , i  is much smaller than e . Therefore, the product i i  is 

usually negligible (Tillack and Morley [11]). It is obvious from 

the above analysis that the Hall effects cannot be neglected 

when the electron cyclotron frequency is relatively high. The 

problems related to these Hall currents have important 

engineering applications in MHD power generation and of Hall 

accelerators as well as in flight magnetohydrodynamics. Taking 

this fact into account, the effects of Hall currents on the 

hydromagnetic flow under different geometries have been 

studied by Sato [12], Yamanishi [13], Sherman and Sutton [14], 

Gupta [15], Datta and Jana [16, 17], Jana and Datta [18] etc. 

Kanch and Jana [19] have investigated the Hall effects on the 

hydromagnetic flow between two rotating disks with non-

coincident parallel axes of rotation. The Hall effects on an 

unsteady MHD flow between two disks with non-coincident 

parallel axes of rotation have been investigated by Das et 

al.[20]. Recently, Barik et al. [21] have studied the Hall effects 

on an unsteady MHD flow between two rotating disks with 

non-coincident parallel axes. 

The present paper is devoted to study the effects of Hall 

currents as well as rotating axis about which the disk rotates 

through a porous medium. The axes are also rotating with an 

uniform angular velocity  . The governing equations have 

been solved analytically using the Laplace transform technique. 

The effects of various parameters of the problem are discussed. 

In the light of our present analysis it is stated that there arises 

symmetric motion about the mid plane between the two disks as 

referred to the rigid body rotations. 

 

2. MATHEMATICAL FORMULATION 

AND ITS SOLUTION 
 Consider the unsteady flow of a viscous incompressible 

electrically conducting fluid through a porous medium between 

two parallel disks rotating with same uniform angular velocity 

  about two different axes at a distance a  apart. The axes are 

also rotating with an uniform angular velocity  . We choose a 
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cylindrical polar co-ordinates system ( , , )r z  with the axis 

normal to the disks situated symmetrically between two axes of 

rotation (see Fig.1). The two axes of rotation of the disks are 

parallel to the z -axis. A uniform transverse magnetic field 0B  

is applied perpendicular to the disks. 

 

 
                           

                           Fig.1: Geometry of the problem 

 

The Navier-Stokes equations along r ,   and z -directions are  
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where ( , , )q u v w , 
0( , , )rB B B B , ( , , )r zj j j j , p ,  , 

k   and   are respectively the velocity vector, the magnetic 

field vector, the current density vector, the fluid pressure, the 

density of the fluid, the permeability of the porous medium and 

the kinematic viscosity. 

We assume that the magnetic Reynolds number is small so that 

the induced magnetic field is neglected. This assumption is 

reasonable for the flow of liquid metals, e.g. mercury or liquid 

sodium which are electrically conducting under laboratory 

conditions. The electron-atom collision frequency is assumed to 

be relatively high so that the Hall effects can be included. The 

generalized Ohm's law on taking Hall currents into account is 

(see Cowling [22])  

0

( ) ( ),e ej j B E q B
B


                                 (4) 

where ( , , )r zE E E E  is the electric field vector, e  the 

cyclotron frequency, e  the electron collision time and   the 

electrical conductivity of the fluid. 

Maxwell's equations are  

     

    , , 0, ,e e

B
B j E B D

t
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
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
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 where e  is the magnetic permeability, D  the displacement 

current vector and e  the free charge density. 

The equation of the conservation of current is  

0.j                                                                    (6) 

The equation of continuity 0q   with no-slip condition at 

the disks gives 0w   everywhere in the flow. The solenoidal 

relation 0B   gives 0= constant =zB B  everywhere in the 

flow. 

In view of the above assumptions, the equation (4) yields  

 0 ,r rj m j E B v                                             (7) 

 0 ,rj m j E B u                                             (8) 

,z zj E                                                                   (9) 

where e em   is the Hall parameter. 

Solving for rj  and j , we have  
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The initial and boundary conditions are  

     ( ,0) 0, ( ,0) 0, 0 for all 0u z v z w z h      

     
1 1
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 (12) 

The equation (6) gives =constantzj . This constant is zero since 

0zj   at the disks which are electrically non-conducting. Thus 

0zj   everywhere in the flow. Hence 0z zj E   in the fluid 

everywhere. 

On the use of the equation (5), we get  
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The equation (13) shows that the electric field is independent of 

z . 

In respect of the initial and boundary conditions (12), we 

assume the velocity and pressure distributions as  

( , )cos ( , )sin ,u A z t B z t    

( , )cos ( , )sin ,v r B z t A z t                            (14) 

2 2 2

0

1
0 and ,

2
w p p r r g z            

where 0p  is a constant and g
 the gravitational acceleration. 

Integrating rj  and j  between the limits 0z   and z h  and 

putting  

0 0
0 and 0

h h

rj dz j dz                                       (15) 

we get, on using (10) and (11)  

0 ( cos sin ),r

B
E rh P Q

h
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0 ( cos sin ),
B

E Q P
h
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 where  

0 0
( , ) and ( , ) .

h h

P B z t dz Q A z t dz                     (17) 

It is noticed that the expressions given by (16) for rE  and E  
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are satisfied with equations (13). 

It can be easily proved that ( , )A z t  and ( , )B z t  satisfy the 

following equations  
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On the use of (14), the initial and boundary conditions (12) 

becomes  
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Introducing the non-dimensional variables  
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equations (18) and (19) can be written as  
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The initial and boundary conditions (20) become  
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Combining equations (22) and (23), we get  
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The initial and boundary conditions (24) reduce to  
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Taking the Laplace transform of the equation (25), we get  
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On the use of the equation (31) in the equation (29) and on the 

evaluation of the integral we get 0n   which in turn gives 

0P   and 0Q  . Substituting the values of P  and Q  in the 

equation (16), we have  
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Substituting 0n  , the equation (31) becomes  
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 where a  is given by (32). 

The inverse Laplace transform of the equation (34) is  
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On separating into a real and imaginary parts one can easily 

obtain the velocity components f  and g  from the equation 

(35). If 0m  , Da   (i.e clear fluid) and 2

1 0K  , then the 

equation (35) coincides with the equation (26) of Guria et al. 

[8]. 

As   , we get the steady state solution as  
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If 0m  , Da   and 2

1 0K   then the equation (37) reduces 

to the equation (22) of Mohanty [7] after simplification of the 
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same. 

 

3. RESULTS AND DISCUSSION  

We have presented the non-dimensional primary and secondary 

velocities f  and g  against   for several values of squared-

Hartmann number 2M , Hall parameter m , rotation parameters 
2K , 2

1K , Darcy number Da  and time   in Figs.2-7. It is 

observed from Fig.2 that the velocity f  increases in the range 

0 0.5   while the reversed result occurs in the range 

0.5 < 1   with an increase in squared-Hartmann number 2M . 

On the other hand, the velocity g  decreases in the range 

0 0.5   while the reversed result occurs in the range 

0.5 < 1   with an increase in squared-Hartmann number 2M . 

Fig.3 shows that the velocity f decreases in the range 

0 0.5   while the reversed result occurs in the range 

0.5 < 1   with an increase in Hall parameter m . On the other 

hand, the velocity g  increases in the range 0 0.5   while 

the reverse result occurs in the range 0.5 < 1   with an 

increase in Hall parameter m . It is seen from Figs.4 and 5 that 

both the velocities f  and g  increase in the range 0 0.5   

whereas the reversed results occur in the range 0.5 < 1   with 

an increase in either rotation parameter 2K  or 2

1K . This means 

that both the rotations have a tendency to enhance the velocity 

components near the lower disk whereas reduce them near the 

upper disk. It is observed from Figs.6 and 7 that the velocity f  

decreases in the range 0 0.5   while the reversed result 

occurs in the range 0.5 < 1   with an increase in either Darcy 

number Da  or time  . On the other hand, the velocity g  

increases in the range 0 0.5   while the reverse result 

occurs in the range 0.5 < 1   with an increase in either Darcy 

number Da  or time  . Darcy number is the measurement of 

the porosity of the medium. As the porosity of the medium 

increases, the value of Da  increases. For large porosity of the 

medium fluid gets more space to flow as a consequence its 

velocity increases. It is noted that there is a symmetric motion 

about the mid plane between the two disks with the 

transparency of the rigid body rotations, which is shown by 

Figs. 2-6. 

 
Fig.2: Primary and secondary velocities for 2M  when 

0.2m  , 0.2  , 
2 5K  , 2

1 5K  and 0.05Da   

 
Fig.3: Primary and secondary velocities for m  when 

2 5M  , 0.2  , 
2 5K  , 2

1 5K   and 0.05Da   

 
Fig.4: Primary and secondary velocities for 2K when 

2 5M  , 0.2  , 0.2m  , 2

1 5K   and 0.05Da   

 
Fig.5: Primary and secondary velocities for 

2

1K when 

2 5M  , 0.2  , 0.2m  , 
2 5K   and 0.05Da   
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Fig.6: Primary and secondary velocities for Da  when 

2 5M  , 0.2  , 0.2m  , 2

1 5K   and 
2 5K   

 
 

Fig.7: Primary and secondary velocities for time  when 
2 5M  , 0.05Da  , 0.2m  , 2

1 5K   and 
2 5K   

 

The non-dimensional shear stresses due to the primary and 

secondary flows at the disks 0   and 1   are given by  
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The torque required to overcome the transverse shearing stress 

on a disk of radius b  is  
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The numerical values of the torque 
0 at the disks are presented 

in Figs.8-12 for several values of squared-Hartmann number 
2M , rotation parameters 2K , 2

1K , Darcy number Da  and time

  against Hall parameter m . It is seen from Figs.8-10 that the 

torque 
0 at the disks increases with an increase in either 2M  

or 2K  or 2

1K . Figs.11 and 12 show that the torque 
0 at the 

disks decreases with an increase in either Da  or  . Further, it 

is observed from Figs.8-12 that the torque 
0  at the disks 

decreases with an increase in Hall parameter m . 
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Fig.8: Variation of torque 
0  for 2M when 0.05  , 

2 5K 

, 2

1 5K  and 0.05Da   

 
Fig.9: Variation of torque 

0  for 2K  when 
2 5M  , 

0.05  ,  2

1 5K   and 0.05Da   

 

 
Fig.10: Variation of torque 

0  for 2

1K when 
2 5M  , 

0.05  , 
2 5K   and 0.05Da   

 

 

 
Fig.11: Variation of torque 

0  for Da  when
2 5M  , 

0.05  , 
2 5K   and 2

1 5K   

 

 
Fig.12: Variation of torque 

0  for time τ when
2 5M  ,  

2 5K  , 2

1 5K   and 0.05Da   

 

It is seen from (40) that in the steady state ( i.e.   ), the 

torque 
1  becomes  
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This steady state is reached through the inertial oscillations with 

frequency  
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2 2

1 2
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K K
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                                      (43) 

The equation (42) coincides with the equation (24) of Mohanty 

[7] when 0m  , Da   and 2

1 0K  . 

 

4. CONCLUSION 

Hall effects on an unsteady MHD flow through a porous 

medium between two disks rotating with the same uniform 

angular velocity about two different axes have been studied. It 

is observed that both the rotation parameters have a tendency to 

enhance the velocity components near the lower disk whereas 

reduce them near the upper disk. The torque required to 

overcome the transverse shearing stress on the disks increases 
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with an increase in either squared-Hartmann number or rotation 

parameters while it decreases with an increase in either Hall 

parameter or Darcy number. The significance of the study of 

this problem of MHD rotating flows is that there exists 

symmetric solution of this problem with regard to a rigid body 

rotation. 
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